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Abstract— Human Activity Recognition (HAR) is a well-

studied scientific area that has gained much traction with the rise 
of Internet of Things (IoT). Despite the interest in HAR for a wide 
spectrum of domains (technological, medical, etc.) only a few 
works exist, which study the variability in IoT data. To correctly 
perceive this variability, it is essential to dynamically model the 
evolving context of daily-life activities. Additionally, it is required 
to reduce the calculation cost of HAR, which is crucial for security 
and real-time applications. For the purpose of dynamically 
modeling, three context-aware approaches are formalized along 
with a context-free baseline. This study demonstrates 
improvements in terms of both of accuracy and calculation cost by 
considering variability in IoT data; our experimental study on real 
datasets reduced calculation cost by 20% while increasing 
accuracy by 20%.  

Keywords— Internet of Things, Variability, Human Activity 
Recognition, Spatio-Temporal Context  

I. INTRODUCTION  

The value of Human Activity Recognition (HAR) has been 
particularly stressed in the context of daily living of elderly 
people. Remote monitoring of elderly people can help in 
proactively avoiding emergencies [1], social isolation [2] and 
predicting mental disorders [3]. Recently, HAR has gained 
much attention with the rise of Internet of Things (IoT) and 
digital assistants. Understanding a person’s intent to perform an 
activity is significantly important for automating daily tasks and 
taking timely actions. Despite the interest in HAR  for a wide 
spectrum of domains (technological, medical, etc.) [4], only a 
few works exist, which consider the variability in IoT data. 

Variability refers to changes in the meaning of IoT data, 
which can be perceived differently depending on the context. 
For instance, a lack of motion in the bedroom can indicate a 
sleeping activity during the night, but an urgent situation during 
the day. Note that context varies continuously and attempts to 
model it can be challenging. Fig. 1 reveals some interesting 
remarks that indicate a need for context awareness in HAR. Fig. 
1 shows the average firing rate (i.e., firing duration of a  
motion sensor during time 𝑡) of a set of motion sensors (x-axis) 
located in different rooms and a set of daily-life activities (y-
axis) performed by one or two occupants. The color index 
corresponding to the firing rate is also defined. Fig. 1 shows that  

human activity is related to locations. In other words, different 
locations provide different references for an activity. However, 
these references can be misleading if the particular context is 
not modeled. For instance, the sensor of a toilet can be related 
to non-relevant activities, such as cooking or cleaning, due to 
the concurrent activities of two occupants or to the multi-room 
activity of one occupant. In this paper, the cases of both one 
and two occupants are evaluated and this difference in 
occupancy is regarded as part of the spatial context. In the 
same vein, it is desirable to consider the relationship between 
time and human activity. Our temporal context includes the 
time and duration of the active status of a sensor. Thus, spatio-
temporal analysis is expected to improve the accuracy of HAR. 
This paper uses these three contextual models of spatial context, 
temporal context, and spatio-temporal context as well as a 
context-free approach as representative HAR methods differing 
in the required computational power. Moreover, for HAR 
clustering, online CluStream [5] and offline Minibatch 
k-means [6] are used from the perspective of adaptability 
to IoT variability and limited in-house computation. 

This paper is organized as follows. Section II presents our 
context-aware model, the previously discussed context-aware 
approaches for HAR and a context-free baseline. Our 
experimental study and findings are described in Section III. 
Section IV discusses the related work and Section V 
summarizes and concludes the paper. 

II. CONTEXT-AWARE MODEL 

In this section, we describe our data model and provide 
formal definitions for our proposed context-aware approaches. 
Note that the definitions of these approaches do not depend on 
any particular clustering algorithm. On the contrary, any 
clustering technique can be applied. 

 
Fig. 1. Valiability in Meaning 



Algorithm 1 Context-Aware CluStream 
Require: Stream 𝐷, Room 𝑅, Time period 𝑇 
Ensure: Clustering 𝐶 
1: 𝐶 ← 𝑘𝑚𝑒𝑎𝑛𝑠ሺሼ𝑑ଵ, … , 𝑑௡ሽ, 𝑞ሻ 
2: for 𝑑௜ ∈ 𝐷, 𝑖 ൐ 𝑛 do 
3:    if 𝑠௜ ∈ 𝑅 is triggered and 𝑑௜. 𝑡𝑠௜ ∈  𝑇 then 
4:       𝑐௖௟௢௦௘௦௧ ← 𝑓𝑖𝑛𝑑𝐶𝑙𝑜𝑠𝑒𝑠𝑡ሺ𝑑௜, 𝐶ሻ 
5:       if 𝑑𝑖𝑠𝑡ሺ𝑐௖௟௢௦௘௦௧, 𝑑௜ሻ ൏ 𝑅𝑀𝑆𝐷ሺ𝐶ሻ ∗ 𝑟 then 
6:          𝑐௖௟௢௦௘௦௧ ← d୧ ∪ 𝑐௖௟௢௦௘௦௧ 
7:          𝐶 ← cୡ୪୭ୱୣୱ୲ ∪ 𝐶 
8:       else 
9:          𝐶 ← ሼc୬ୣ୵ ← 𝑑௜ሽ ∪ 𝐶 
10:          𝑐௢௟ௗ௘௦௧ ← 𝑓𝑖𝑛𝑑𝑂𝑙𝑑𝑒𝑠𝑡ሺ𝐶ሻ 
11:          if c୭୪ୢୣୱ୲. 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 ൏ 𝛿 then 
12:              𝐶 ← 𝐶\௖೚೗೏೐ೞ೟

 
13:          else 
14:             𝐶 ← 𝑚𝑒𝑟𝑔𝑒𝑇𝑤𝑜𝐶𝑙𝑜𝑠𝑒𝑠𝑡ሺ𝐶ሻ 
15:       if 𝑝-time has been passed then 
16:          𝐶 ← 𝑘𝑚𝑒𝑎𝑛𝑠ሺሼ𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑠 ∈ 𝐶ሽ, 𝑘ሻ 
17:          Return 𝐶 
 

We are given a stream of data points 𝐷 ൌ ሼ𝑑ଵ, … , 𝑑௜, ⋯ ሽ, 
𝑑௜ሺ𝑋పഥ , 𝑡𝑠௜ሻ  where 𝑋పഥ  is a 𝑑 -dimensional vector of features 
denoted by 𝑋పഥ ൌ൏ 𝑥௜

ଵ, ⋯ 𝑥௜
ௗ ൐  and 𝑡𝑠௜  is the timestamp at 

which 𝑋పഥ  is arrived. Each feature 𝑥௜
௝ ∈ 𝑋పഥ , 1 ൏ 𝑗 ൏ 𝑑 describes 

a measurement derived by an IoT device, e.g., 𝐶𝑂ଶ sensor. We 
consider that 𝑑௜  and 𝑑௝  belong to the same time interval 𝑡, if 
𝑡𝑠௜, 𝑡𝑠௝ ∈ 𝑡 . A cluster ci consists of a set of data points 
ሼ𝑑௜భ, … , 𝑑௜೙ሽ arrived during t and aggregated together due to 
their high similarity.  

Context-Free Clustering, 𝑪𝑭: Clustering 𝐶ி  refers to the 
partitioning of data without making any assumption on the 
particular context. The generated clusters contain data points 
regardless of their spatial or temporal dimensions. 

Temporal Clustering,𝑪𝑻: Clustering 𝐶் is a partitioning of 
all data points 𝑑௜ ∈  𝐷 into a set of clusters ሼ𝑐ଵ,൉ ൉ ൉ , 𝑐௞ሽ, where 
𝑑௜. 𝑡𝑠௜ ∈  𝑇 . 

𝐶் refers to the partitioning of data, assuming the existence 
of a common temporal context. For example, we can refer to 
the morning clustering, 𝐶௠௢௥௡௜௡௚ , which contains activities 
taking place during morning hours. 

Spatial Clustering, 𝑪𝑹: Clustering 𝐶ோ is a partitioning of all 
data points 𝑑𝑖 ∈ 𝐷  into a set of clusters ሼ𝑐ଵ,൉ ൉ ൉ , 𝑐௞ሽ , where 
𝑑𝑖. 𝑋పഥ  corresponds to the feature set of room 𝑅. 

𝐶ோ refers to the partitioning of data, assuming the existence 
of a common spatial context. For example, we can refer to the 
kitchen clustering, 𝐶௞௜௧௖௛௘௡ , which contains activities taking 
place in the kitchen. 

Spatio-Temporal Clustering, 𝑪𝑹,𝑻 : Clustering 𝐶ோ,்  is a 
partitioning of all data points 𝑑௜ ∈ 𝐷 into a set of clustersሼ𝑐ଵ,൉ ൉
 ൉ , 𝑐௞ሽ, where 𝑑𝑖. 𝑋పഥ corresponds to the feature set of room 𝑅 
and 𝑑௜. 𝑡𝑠௜ ∈  𝑇. 

𝐶ோ,்  refers to the partitioning of data, assuming the 
existence of a spatio-temporal context. For example, we can 

refer to the morning-kitchen clustering, 𝐶௞௜௧௖௛௘௡,௠௢௥௡௜௡௚, which 
contains activities taking place in the kitchen during morning 
hours. 

 
As mentioned earlier, two different clustering strategies – 

online and offline - are evaluated. The online approach 
processes input data point-by-point in a serial fashion, without 
having the entire input available from the start. The online 
streaming algorithm CluStream is implemented and adapted 
in order to produce the context- aware clustering. Meanwhile, 
the offline approach requires the entire input to generate the 
output. The offline algorithm, Minibatch k-means is used 
in this approach. As an example, Algorithm 1 summarizes the 
processing steps of the online method of a context-aware (or 
context-free) clustering using CluStream. The algorithm 
takes stream 𝐷 , a room 𝑅  and a time period 𝑇 as input and 
produces a clustering 𝐶 over room 𝑅, during period 𝑇 as output. 
Note that for input 𝑅 ൌ ∅, the algorithm yields as output a 
clustering equivalent to 𝐶் . Similarly, for input T ൌ ∅, 𝐶 ≡
𝐶ோ  and for 𝑅 ൌ ∅, and  𝑇 ൌ ∅, 𝐶 ≡ 𝐶ி . 

In the first step, the algorithm produces an initial clustering 
𝐶, using k-means, where 𝑘 ൌ  𝑞, on the first 𝑛 incoming data 
points (line 1). Then, it continuously monitors motion sensor 𝑠௜ 
located in room 𝑅. We assume that there is no activity, if there 
is no motion in the room. Thus, the clustering process begins, if 
and only if the motion sensor 𝑠௜  is triggered during time 𝑇 (line 
3). Note that if 𝑅 ൌ ∅  (resp., 𝑇 ൌ ∅ ), then the clustering 
process starts, if any motion sensor of any room (resp., at any 
time) is triggered. The first step of the clustering process 
requires the detection of the closest cluster c௖௟௢௦௘௦௧ to the data 
point 𝑑௜  (line 4). Proximity is calculated based on Euclidean 
distance, i.e., 𝑑𝑖𝑠𝑡ሺ𝑐௖௟௢௦௘௦௧, 𝑑௜ሻ. 

If their between distance lies within r times the radius of 
𝑐௖௟௢௦௘௦௧, which is calculated as the Root Mean Square Deviation 
(RMSD), then 𝑑௜ is added to c௖௟௢௦௘௦௧ (lines 6 and 7). Otherwise, 
a new cluster is created containing the incoming data point (line 
9). Each time a new cluster is created, either the less recent 
cluster is removed (lines 10-13) or the closest two clusters are 
merged (line 14). The clustering process continues as long as 
new data points arrive via the stream. The algorithm 
periodically (i.e., every time 𝑝 ) produces and returns a 
clustering 𝐶 . 𝐶 , which can also be referred to as macro-
clustering, is considered a snapshot of the current clustering and 
a high level view of the finer clusters. 𝐶 is generated using a 
variation of k-means, where the centroids of clusters in 𝐶 are 
treated as pseudo-points. The k-means is applied over those 
pseudo-points for different values of 𝑘. Clustering 𝐶 with the 
best Silhouette Coefficient [7] is finally returned (lines 16 and 
17). Note that the number of generated macro-clusters is much 
smaller than the number of clusters maintained over time, i.e., 
𝑘 ൏൏  𝑞. The time complexity of the algorithm is 𝑂ሺ𝑛 ∙ 𝑑 ∙ 𝑞ሻ 
where 𝑛  is the number of data points, 𝑑  is the number of 
dimensions and 𝑞 is the number of clusters. 

Similarly, MiniBatch k-means is also implemented to 
adapt to context-free and context-aware approaches. The 
pseudo-code of this algorithm is omitted here for brevity. 
Because Minibatch k-means performs offline 
clustering, it does not require an initialization phase. The time 



complexity of this algorithm is 𝑂ሺ𝑛 ∙ 𝑑 ∙ 𝑘 ∙ 𝐼ሻ where 𝑛 is the 
number of data points, 𝑑 is the number of dimensions, 𝑘 is the 
number of clusters and 𝐼 is the number of iterations. 

Parameters 𝑟  and 𝛿  are experimentally set to 1 and 500 
respectively. Parameter 𝑞 is 10 times the number of annotated 
activities, while 𝑘 is selected to optimize Silhouette Coefficient. 

III. EXPERIMENTAL ANALYSIS 

A. Data Collection 

Our dataset was collected from an actual setting, deployed in 
one-bedroom apartment occupied by two residents. A set of non-
intrusive sensors was placed in each room, to measure 
environmental conditions and motion activities. Data was 
collected between 20th September - 30th October 2018. Data 
collected in September are used as training data for clustering 
and feature selection, while the remaining data as the testing set. 
Sampling resolution is set to 𝑡 ൌ  5 min by averaging. This 
resolution is considered reasonable, as it provides enough data 
for analysis without significant delay in activity recognition. 
Data collection and storage was conducted using the open source, 
IoT middleware of sensiNact [8]. Moreover, an annotation 
system was created for the residents to annotate their daily-life 
activities. A ground truth of 122 annotations was created, 
including 9 different types of activities. 

B. Feature Space 

A rich feature space is explored with features derived from 
several non-intrusive IoT sensors. Table I shows the extended 
list of IoT features (rows), generated by several sensors in 
different rooms (columns) of the apartment. These features are 
grouped into three categories, shown in each row, namely 
electric consumption, environmental and motion.  

For the first category, the real-time electric consumption of 
different home appliances is measured. For instance, the feature 
PC-kwh represents the KWatts per hour consumed by a personal 
computer located in the living room, while hair-dryer-kwh and 
toothbrush-kwh represent measurements from a smart, 
connected electrical outlet in the bathroom.  

For the second category, environmental features such as 
temperature, humidity, and lighting represent measurements 
from every single room, while CO2, sound and pressure are 
measured only for the living room and the kitchen.  

TABLE I.  FEATURE SPACE 

 Living room Kitchen 
Bedroom 

Toilet Bathroom 
Io

T
 F

ea
tu

re
s 

PC-kwh, 
Laptop-kwh 

coffee-
kwh 

- 
hair-dryer-kwh, 
toothbrush-kwh 

CO2, pressure, temperature, 
humidity, lighting, sound 

temperature, humidity, lighting 

𝑓𝑖𝑟𝑒 𝑐𝑜𝑢𝑛𝑡𝑒𝑟௧ሺ𝑠௜ሻ : number of triggers within time 𝑡 

𝑓𝑖𝑟𝑒 𝑟𝑎𝑡𝑒௧ሺ𝑠௜ሻ ൌ   
𝑓𝑖𝑟𝑒  𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛௧ሺ𝑠௜ሻ

𝑡
 

𝑐𝑜 𝑓𝑖𝑟𝑒 ൫𝑠௜, 𝑠௝൯ ൌ   
𝑓𝑖𝑟𝑒 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛௧ሺ𝑠௜ሻ ∩ 𝑓𝑖𝑟𝑒 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛௧൫𝑠௝൯

𝑡
 

 
For the first two categories, two other statistics are explored, 
𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒௧ሺ𝑥௜

௝ሻ  within a  time interval 𝑡  of feature x and 

𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒௧ሺ𝑥௜
௝ሻ between time intervals 𝑡 and 𝑡 െ 1of feature 

𝑥௜
௝.  

For the third category, the first feature, 𝑓𝑖𝑟𝑒 𝑐𝑜𝑢𝑛𝑡𝑒𝑟௧ሺ𝑠௜ሻ, 
measures the number of times the motion sensor 𝑠௜  is triggered 
in the time interval t. The second feature,  𝑓𝑖𝑟𝑒 𝑟𝑎𝑡𝑒௧ሺ𝑠௜ሻ , 
indicates the rate of firing duration (i.e., 𝑓𝑖𝑟𝑒 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛௧ሺ𝑠௜ ሻ) 
of a particular motion sensor 𝑠௜ during time interval 𝑡. The third 
feature, c𝑜 𝑓𝑖𝑟𝑒௧ሺ𝑠௜, 𝑠௝ሻ, indicates the rate of co-firing duration 
of a pair of sensors ሺ𝑠௜, 𝑠௝ሻ during 𝑡. The last two features are 
studied in [9] and are shown to be effective in distinguishing 
concurrently occurring activities. 

C. Feature Selection 

Given this feature space, we are interested in studying  the 
importance and relevance of each feature to the output. To 
achieve this goal, a Recursive Feature Elimination (RFE) 
technique [10] is applied, which uses an external estimator to 
assign weights to features, based on their ability to predict the 
output. Random Forest (RF) [11] is selected as our external 
estimator, since it is designed for high dimensional data and 
multiclass classification problems. RF is trained on the initial 
set of features  and the importance of each feature was obtained 
using Gini Importance [12]. The least important features were 
then pruned from the current set of features. This procedure is 
recursively repeated on the pruned set, until the desired number 
of features was obtained. Note that the RFE technique was 

 
(a) Context-Free Clustering                                                                         (b) Spatio-Temporal Clustering 

Fig. 2. Feature Set for (a) Context-Free and (b) Spatio-Temporal approaches, T=afternoon, and R=Kitchen, Living Room 



applied to generate the feature set of each contextual (i.e., 
context-aware or context-free) approach. In the rest of this 
section, we aim to give an overview of this feature set and how 
this set differs among the different approaches. For brevity, we 
discuss only the generated feature set of the Context-Free 
approach and we contrast it with the feature set generated for 
the Spatio-Temporal approach. However, similar 
observations can be made for the rest of the considered 
approaches.  

Fig. 2a illustrates the top-15 features (x-axis), as ranked by 
Gini-Importance (y-axis), when considering the entire feature 
space (see Section III-B). The top-15 features formalize the 
feature set of the Context-Free approach. We notice that 
half of these features concern sensor data derived by a sensor 
located either at the kitchen or at the living room. This 
observation can be explained, if we consider that the majority 
of daily-life activities are taking place in those rooms. Thus, 
these features are better suited to predict said activities. 

Fig. 2b illustrates the top-15 features (x-axis), as ranked by 
Gini-Importance (y-axis), when considering the spatio-
temporal context (𝑅 ൌKitchen/Living Room, 𝑇 ൌafternoon). 
We notice that when the context is specified, more fine-grained 
features (e.g., laptop-kwh) are included in the feature set. 
These features are more probable predicting activities related 
to a particular spatio-temporal context (e.g., resting). 

D. Evaluation 

In this section, we provide a thorough investigation of our 
proposed approaches, both from the performance and time 
scalability perspective. All the experiments were conducted on 
a 2.40 GHz Intel(R) Xeon(R) CPU E5-2680 v4 processor with 
132 GB memory and running on an Ubuntu 16.04.5 operating 
system. We use 33% of the annotated dataset for feature 
selection and creating initial clustering for algorithms, while the 
rest as stream data. We split the temporal dimension 𝑇 into 4 
periods, namely morning (06:30-12:29), noon (12:30-18:29), 
afternoon (18:30-00:29), night (00:30-06:29). The spatial 
dimension 𝑅 is divided into four rooms, namely Kitchen/Living 
Room, Bedroom, Toilet, and Bathroom.  

The performance of these approaches is evaluated using 
unsupervised and supervised measures. For unsupervised 
evaluation, the average Silhouette Coefficient [7] measure is 
utilized. Intuitively, it measures how well a data point fits in the 
assigned cluster, compared to how well it would fit in the 
nearest cluster. Its value varies between -1 to 1 and the higher 
the value, the better is the quality of the output. 

In the case of supervised evaluation, a variation [13] of the 
traditional measures, Precision, Recall, and F-
Measure, is implemented. This variation is adapted to a 
clustering, where neither the number of clusters nor the 

 
 

                                      (a) Silhouette Coefficient                                                                                                   (b) F-measure 

Fig. 3. Clustering performance, CluStream 

 

                                      (a) Silhouette Coefficient                                                                                                   (b) F-measure 

Fig. 4.Clustering performance, MiniBatch k-means 



mapping between known classes in the ground truth (generated 
by annotations) and clusters are known. 

1) Clustering Performance 

Fig. 3 illustrates the performance (y-axis) of different 
proposed approaches with respect to time (x-axis) using the 
CluStream algorithm. Fig. 3a, in particular, shows the 
average Silhouette Coefficient (y-axis), generated by each of 
the proposed approaches on different days (x-axis). Overall, 
context-aware approaches exhibited a better performance than 
the context-free approach. This result confirms our initial 
intuition that modeling contextual information can positively 
impact the quality of HAR. 

Spatial CluStream reaches a performance close to 
60% of the average Silhouette Coefficient, indicating the ability 
of the spatial context to detect daily-life activities. By 
contrasting its clustering results with the time distribution of the 
daily-life activities, we arrived at a key observation. Spatial 
CluStream is able to detect activities occurring concurrently 
in different rooms, such as bathing and cooking, without 
making any a priory assumption on the duration, place, time, 
and participants of the activity. However, it lacks the ability to 
distinguish activities with similar data distributions, even if they 
occur at different time periods. For instance, visiting and 
cleaning have similar distributions of noise, CO2, etc, causing 
the algorithm to wrongly cluster them together. 

On the contrary, Temporal CluStream does not suffer 
from this problem. It can unfold temporally independent 
activities, even if they exhibit the same spatial context (e.g., 
resting and eating in the living room). Moreover, the longer an 
activity lasts and the higher its occurrence probability in the 
same period, the better is the performance of Temporal 
CluStream. However, this approach  suffers from holding 
apart data of concurrently or sequentially occurring activities, 

such as toileting and bathing. This drawback hurts its 
performance which remains at approximately 30%. 

Spatio-Temporal CluStream overcomes the 
aforementioned limitations and shows promising results. Fig. 
3b illustrates the average F-Measure (y-axis) achieved using 
all approaches over different days (x-axis). Spatio-
Temporal CluStream benefits from modeling the 
dimensions of  both contexts, leading to an accuracy of up to 
98%. As will be discussed in Section III-D2, Spatio-
Temporal CluStream not only distinguishes activities of 
similar underlying distributions, but also evolves its clusters to 
absorb the variability in data and dynamically adapts to 
upcoming changes. 

Fig. 4 depicts the performance (y-axis) of various 
approaches on different days (x-axis), when using 
MiniBatch k-means. Although observations similar to 
those noted when using CluStream can be made, there are 
two significant points that should be mentioned. Firstly, as we 
do not notice a significant difference in the performance 
between CluStream and MiniBatch k-means, we can 
safely assume that the behavior of the various proposed 
approaches is not affected or favored by any particular 
clustering algorithm. This gives us to understand that the 
obtained performance is due to contextual modeling and not 
due to the clustering ability. Secondly, the performance of 
MiniBatch k-means, in overall, is slightly worse than that 
of CluStream. Although the online, streaming CluStream 
has a limited view of the entire dataset, it seems to adapt better 
to the variability in IoT data. 

2) Variability in Data 
In this section, a micro perspective analysis is adopted to help 
us move from the big picture of clustering performance into the 
details of each cluster. We delve into studying the intrinsic 
characteristics of the clusters; size, age, quality, ratio of 
annotated data and prevailing activity label. Our results 
demonstrate the utility of the proposed approaches and show 
the variability in meaning over time.  

Fig. 5 shows a graphical representation of intrinsic cluster 
characteristics. Each plot presents clustering during one day, 
as generated by Spatio-Temporal CluStream, where 
𝑅 ൌ Kitchen/Living Room and 𝑇 ൌ afternoon. We focus our 
analysis only on this approach as it is considered the most 
qualitative and representative method. Each plot illustrates 
clusters, shown as circles; the center of each circle is 
positioned to pinpoint the quality of the cluster (y-axis) and its 
age (x-axis). Quality is calculated as the Silhouette Coefficient, 

 
Fig. 5. Variability in data; age (x-axis), quality (y-axis), size (radius), ratio of annotated data (color) and activity label. 
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while age is the median of all timestamps of the cluster data 
points. The median is normalized from 0 (oldest) to 1 (newest). 
For instance, a circle located at the top right corner exemplifies 
a young and high-quality cluster. Moreover, the size of each 
circle indicates the number of data points inside a cluster, 
while color intensity gives the ratio of annotated data to the 
total number of data within the cluster. For instance, a small 
dark cluster contains only a few data points, where the 
majority of them are annotated. For each cluster, a label is 
assigned representing a daily-life activity. The activity label is 
assumed to be the one indicated by the majority of annotated 
data points within that cluster. This assumption is used to 
facilitate visualization of the activity and enhance the 
understanding of variability in meaning. Along with the 
activity label of the cluster, we show the percentage of 
annotated data with the same label and present in that cluster. 
The higher the number of annotated data within a cluster, the 
more confident we are about the activity label. Finally, we 
draw an arrow between two clusters corresponding to 
different days to illustrate a change in the meaning of that 
cluster. 

Day 1 shows five clusters, indicating most of the daily-life 
activities, such as eating, cooking, cleaning, and resting. We 
notice that the size of the clusters is quite calibrated and a good 
proportion of annotated data exists per cluster. As the algorithm 
processes more data over days, the clusters evolve and exhibit 
new intrinsic characteristics. For instance, the cluster of eating 
survives and expands in size, appearing also on the 5th and 10th 
day. Moreover, several smaller clusters of the same label are 
absorbed by the biggest in size eating cluster. This absorption 
enhances the confidence of the cluster in detecting the right 
activity as shown by the increase in the percentage of annotated 
data (from 34% in Day 1 to 68% in Day 20). Another important 
observation is derived from the arrow connecting cooking on 
Day 10 with visiting on Day 20. Note that these two activities 
exhibit similar underlying distributions (i.e., level of noise and 
firing rate of motion sensors) and same context (i.e. same 𝑇 
and 𝑅 ). Despite the difficulty in distinguishing these two 
activities, the algorithm is successful in detecting them both. 
The algorithm dynamically adapts to the changing meaning in 
data, making itself appropriate for highly varying data. 

3) Real-Time Performance 
Fig. 6 illustrates the total computational time (y-axis) for 

all approaches (x-axis), when executing CluStream. The total 
computational time includes three computational steps (see 
Algorithm 1)- initialization time (line 1), data processing time 
(lines 2-14) and macro-cluster generation time (lines 15-17). 
Note that the latter step is the most time-consuming operation. 
Overall, the required time for all approaches is below a few 
minutes for processing data acquired over several days. We 
notice that Spatio-Temporal requires less time than the 
rest of the approaches. The reduced calculation time is due to 
the limited amount of processed data. Further, given its good 
quality performance, we can conclude that Spatio-
Temporal CluStream strikes the best balance between 

quality and running time. 
Similar observations were made for the computational 

performance of different approaches while executing 
MiniBatch k-means (details omitted for brevity). Given 
that MiniBatch k-means is an offline algorithm, its 
performance on a particular day is calculated over the dataset 
accumulated until that day. To this end, the algorithm exhibits 
an exponential tendency. It is worth mentioning that all 
approaches require more time, at least an order of magnitude 
than CluStream for achieving a similar quality of 
performance. This result encourages the utilization of online 
streaming algorithms for solving HAR problems. 

IV. RELATED WORK 

HAR is a well-studied scientific area, which has revealed 
interesting research questions and remarkable results. Related 
work in this domain can be mainly organized into two 
categories- knowledge-driven and data-driven techniques. 

Knowledge-driven techniques create models, which a priori 
capture the contextual information and reason over it to provide 
valuable insight of where, when, how and by whom each activity 
is usually performed. Attempts were made to exhaustively 
model the daily living context is done in [14] and [15]. The 
authors establish domain-specific ontology associated with each 
activity to a particular time, location, person or even a sensor. 
Based on this model and a detailed list of rules on how an 
activity might be executed, semantic reasoning is applied to 
infer the activity most likely to occur. Although knowledge-
driven approaches are able to model the environmental context 
and recognize activities using rule-based logic, they are limited 
by their ability to capture a variety of activity patterns, handling 
uncertainty, and their comparatively higher computational cost. 

To overcome these limitations, a different research 
methodology focusing on data-driven techniques has been 
developed. These techniques make strategic decisions based on 
data analysis without any a priori modeling of the particular 
domain. Probabilistic models and clustering algorithms are 
among the prevailing techniques for analyzing and predicting 
HAR. The authors of [16] demonstrate the ability of Markov 
probabilistic model to recognize activities performed by a single 
occupant. The authors of [17] go beyond HAR for single 
occupancy by proposing an extension of Hidden Markov Model 
(HMM). This extension adds new transition probabilities, which 
model co-operative activities. The authors of [18] are also 
exploring HMM for the purpose of recognizing multi-resident 
activities, while the authors of [19] exploit an enhanced 
Bayesian network to detect interleaved (or interrupted) activities. 
Although these approaches have been fairly effective, they are 
limited to very few types of activities and ignore variability in 
IoT data over time. This ignorance prevents them from being 
applied in real-life deployments. Recent works [20] and [21] 
have shown that when variability exists in data, several drifts 
(i.e., changes in meaning), may occur at an unprecedented rate. 
To deal with the challenges of understanding and recognizing 
these drifts, adaptive clustering should be considered. In our 



work, we study a state-of-the-art clustering algorithm [5] which 
adapts to drifts by adjusting its model to data changes. 

Although data-driven techniques strengthen the HAR task, 
they face with some limitations. Firstly, they induce a 
comparatively high computational cost depending on the 
complexity of the utilized model. In our work, we show that the 
complexity of the proposed model is exclusively dependent on 
the selection of the clustering algorithm. Secondly, they are 
craving for training data which should be properly selected in 
order to represent different domains, activities and actors. In our 
work, we focus on selecting the appropriate feature space to 
minimize the impact of the training dataset. 

Last but not least, some works [22]–[24] can be found on the 
borderline interface of knowledge and data-driven techniques. 
These hybrid approaches are keen on exploiting the advantages 
of contextual information of knowledge-driven technique and 
dynamic decision making of data-driven techniques. However, 
they have not yet completely overcome the limitations of their 
predecessors. 

V. CONCLUSION 

To facilitate understanding of variability in IoT data and 
capture the meaning of HAR, we proposed three contextual 
approaches. A demonstration of these contextual approaches 
showed that spatio-temporal approaches have a positive impact 
on both of calculation time and the quality performance, 
compared to context-free approaches. This approach resulted in 
approximately 20% reduction in calculation cost and 20% 
improvement in accuracy. Further, the online CluStream 
algorithm strikes the best balance between accuracy and 
computational cost. We believe that this work lays the 
foundation for a series of new contributions in exploring 
variability in IoT data. One direction we are pursuing is the 
applicability of our approach for the detection of urgent 
situations in daily living, which are marked by deviations from 
normal spatial and temporal patterns. 
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