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Abstract. The thermal scattering law (TSL) of 1H in H2O describes the interaction of the neutron with the
hydrogen bound to light water. No recommended procedure exists for computing covariances of TSLs available
in the international evaluated nuclear data libraries. This work presents an analytic methodology to produce
such a covariance matrix-associated to the water model developed at the Atomic Center of Bariloche (Centro
Atomico Bariloche, CAB, Argentina). This model is called as CAB model, it calculates the TSL of hydrogen
bound to light water from molecular dynamic simulations. The performance of the obtained covariance matrix
has been quantified on integral calculations at “cold” reactor conditions between 20 and 80 °C. For UOX fuel, the
uncertainty on the calculated reactivity ranges from ±71 to ±155 pcm. For MOX fuel, it ranges from ±110 to
±203 pcm.
1 Introduction

The calculation of a critical system is carried out by means
of reactor physics simulation code that uses evaluated
nuclear data. The evaluated nuclear data libraries contain
reaction information necessary to quantify the neutronic
parameters that describe the behavior of the system. In
light water reactor calculations, neutrons are slowed down
by the 1H in H2O inelastic thermal scattering data, which
are expressed in terms of thermal scattering law (TSL).
The TSL describes the dynamics of the scattering target
and gives information about the energy and angle of the
scattered neutrons. To evaluate the safety margins, the
uncertainties coming from the nuclear data have to be
assessed. However, no covariance information for the TSL
of 1H in H2O is available in any nuclear data library.

Mathematical frameworks for producing covariance
matrix for the TSL exist. In a previous work, a Monte-Carlo
methodology was developed and applied to hexagonal
graphite [1]. A different procedure based on an analytic
method was also recently proposed [2]. It was applied to the
TSL of 1H in H2O-associated to the JEFF-3.1.1 nuclear data
library [3].

A new model for light water, namely the CAB model,
was developed at the atomic center of Bariloche in
Argentina [4]. The originality of this model relies on the
use of molecular dynamic simulations for calculating the
illes.noguere@cea.fr

pen Access article distributed under the terms of the Creative Com
which permits unrestricted use, distribution, and reproduction
density of states of hydrogen in the water molecule. The
objective of the present work is to produce a covariance
matrix between the CAB model parameters and to test its
performance on integral calculations between 20 and 80 °C.

2 Thermal inelastic neutron scattering

A description of the thermal scattering theory can be found
in references [5,6]. In this section, an introductory
background will be given to set the basis for the present
work.

Working in the incoherent approximation, the total
cross section of H2O as a function of the incident neutron
energy En is given by:

s
H2O
T Enð Þ ¼ 2sH

T Enð Þ þ sO
T Enð Þ; ð1Þ

where sO
T is the total cross section of 16O and sH

T is the total
cross section of 1H which is given by:

sH
T Enð Þ ¼ sg Enð Þ þ sn Enð Þ: ð2Þ

For light isotopes, in the thermal energy range, the
capture cross section sg(En) can be approximated as:

sg Enð Þ ¼ sg0

ffiffiffiffiffiffi
E0

En

r
; ð3Þ

where sg0 is the capture cross section measured at the
thermal neutron energy (E0 = 25.3meV).
mons Attribution License (http://creativecommons.org/licenses/by/4.0),
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Table 1. Parameters of the TIP4P/2005f water potential
[10] as used in the CAB model established in reference [4].

Parameter Value

s0 (nm) 3.1644
e0 (kJ/mol) 0.7749
qH (e�) 0.5564
qM (e�) �1.1128
dOH (nm) 0.09419
DOH (kJ/mol) 432.581
bOH (1/nm) 22.87
uOH (°) 107.4
ku (kJ/mol/rad2) 367.81
dOM (nm) 0.15555
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In the low energy range, typically below 5 eV, the
slowing down of neutrons in water is affected by the
chemical bonds between the hydrogen and oxygen atoms.
Such impact is taken into account in the neutronic
calculations by using the double differential scattering
cross section:

sn Enð Þ ¼
Z Z

d2sn

du dE
du dE: ð4Þ

The double differential cross section expresses the
probability that an incident neutron of energy En will be
scattered at a secondary energyE and direction u. IfT is the
temperature of the target and kB is the Boltzmann
constant, the double differential scattering cross section
for 1H in H2O is calculated as [7]:

d2sn

du dE
¼ sb

4pkBT

ffiffiffiffiffiffi
E

En

r
e
�b
2 S abð Þ; ð5Þ

where sb is the bound scattering cross section of hydrogen
and S (a, b) is the so-called thermal self-scattering function
(or alternatively thermal scattering law), defined as a
function of the dimensionless momentum transfer a and
energy transfer b:

a ¼ E þ En � 2
ffiffiffiffiffiffiffiffiffiffi
EEn

p
m

AkBT
; ð6Þ

b ¼ E � En

kBT
; ð7Þ

where m is the cosine of the scattering angle u (m=cos(u))
in the laboratory system andA is the ratio of the scattering
target to the neutron mass.

In practice, the calculation of the scattering law is
performedwith the LEAPRmodule of the NJOYprocessing
system [8], in which the key parameter is the frequency
spectrum r(b) of 1H in H2O. The frequency spectrum
characterizes the excitations states of the material. In the
CAB model, it is introduced in the LEAPR module as a
decomposition of three partial spectra:

r bð Þ ¼
X2
i¼1

vid bið Þ þ vtrt bð Þ þ vcrc bð Þ: ð8Þ

The discrete oscillators are represented by d(bi) for
i =1, 2. They describe the intramolecular modes of
vibration, where bi is the energy and vi the associated
weight. The continuous frequency distribution rc(b)
models the intermolecular modes. The weight correspond-
ing to this partial spectrum is vc. Finally, rt accounts for
the translation of the molecule.
3 The CAB model

The frequency spectrum of 1H in H2O of the CABmodel [4]
was calculated using the molecular dynamic simulation
code GROMACS [9]. The water potential implemented in
the code was the TIP4P/2005f potential [10].
3.1 The parameters of the CAB model

The parameters of the CAB model correspond to the
TIP4P/2005f water potential. This potential is a flexible
potential with four positions: two hydrogen atoms, one
oxygen and one so-called M-site (dummy atom). The
dummy atom is located over the angle bisector formed by
the two hydrogens and the oxygen. Table 1 lists the
TIP4P/2005f water potential parameters used in the CAB
model.

The intermolecular interactions are represented by a
Lennard-Jones potential VLJ between the oxygen atoms:

V LJ rij
� � ¼ 4e0

s0

ri � rj

� �12

� s0

ri � rj

� �6
" #

; ð9Þ

and the Coulomb potential Vc is given by:

V cðrijÞ ¼ k
qiqj
rij

; ð10Þ

where e0 is the depth of the potential well, s0 represents the
distance where the potential is zero, k is the Coulomb
constant, qi is the electrical charge of the particle and rij
stands for the distance between two atoms.

The intramolecular interactions are characterized by a
Morse potential VM. It accounts the stretching of the
hydrogen–oxygen bond as follows:

VM rij
� � ¼ DOH 1� e�bOH rij�dOHð Þh i

: ð11Þ

For thebendingmode, theharmonicanglepotentialVHOH is:

V HOH uij
� � ¼ 1

2
ku uij � u0
� �2

: ð12Þ

In the above equations, DOH is the depth of the
potential well, bOH is the steepness of the well, dOH is the
equilibrium distance between the oxygen and the hydro-
gen, ku the strength constant and u0 is the equilibrium angle
between the hydrogens and oxygen.



Fig. 1. Continuous frequency spectrum of 1H in H2O and
internal vibration modes (E1= 205meV and E2= 415meV) of the
CAB model as a function of the excitation energy at T=294K.

Table 2. CAB model parameters introduced in the
LEAPR module [8] for 1H in HO at 294K [4].

Parameter Value

Translational weight vt 7.918�3

Continuous spectrum weight vc 0.522
Bending mode energy E1 (meV) 205.0
Bending mode weight v1 0.157
Stretching modes energy E2 (meV) 415.0
Stretching mode weight v2 0.313
Diffusion constant c 3.969
Free scattering cross section sH

b (b) 20.478
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3.2 Frequency spectrum of 1H in H2O used in the
CAB model

In the CAB model, the translational mode is modeled with
the Egelstaff-Schofield diffusion model [11]. The continu-
ous frequency spectrum of 1H in H2O is then obtained by
subtracting the Egelstaff-Schofield spectrum to the
generalized frequency spectrum obtained from molecular
dynamic simulations [4].

The continuous frequency spectrum of 1H in H2O as
well as the discrete oscillators modeling the intramolecular
modes at 294K are shown in Figure 1. The continuous
spectrum is dominated by the libration mode (≃70meV).
The structures of small amplitude observed at very low
energy transfer (≃5 and ≃30meV) were observed experi-
mentally [12] and are still visible even with a rigid model
[13]. They should correspond to vibrational modes between
the hydrogen and oxygen atoms of different water
molecules.

The translational weight vt, involved in the
Egelstaff-Schofield diffusion model, was deduced from
experimental measures of Novikov [14] of diffusion masses
for light water at different temperatures. Table 2 summa-
rizes the LEAPR parameters of the CAB model at 294K
and the weights corresponding to each vibration mode.

3.3 The average cosine of the scattering angle
calculated with the CAB model in the laboratory
system

The integration over the secondary energy E of equation (5)
gives the simple differential cross section (or angular
distribution). The average for each incident neutron energy
gives the average cosine m of the scattering angle:

m Enð Þ ¼
R p

0 cosu sinu
R1
0

d2sn
du dE dE

� �
duR p

0 sinu
R1
0

d2sn
du dE dE

� �
du

: ð13Þ

In Figure 2 it is compared the datameasured by Beyster
et al. [15] and the average cosine of the scattering angle
calculated with the CAB model at 294K. An overall good
agreement is obtained between the calculated curve and
the data.

3.4 The H2O total cross section calculated with the
CAB model

The total cross section sH2O
T calculated with the CAB

model at 294K is shown in Figure 3. The theoretical curve
is compared with a set of selected data measured at room
temperature [16–19]. The CAB model correctly reproduces
the measured values over the full energy range. Therefore,
the generation of the covariance matrix will consists of
determining the uncertainties of the CAB model param-
eters without changing their values.

4 Methodology for producing covariance
matrices with the CONRAD code

The covariance matrix between the CAB model param-
eters was analytically calculated using the CONRAD (code
for nuclear reaction analysis and data assimilation) code
[20]. The methodology relies on a generalized least-square
fitting algorithm and on the marginalization technique.

4.1 The generalized least-square method

The generalized least-square method implemented in the
CONRAD code is designed to provide a set of best-estimate
model parameters given a set of experimental data. It is
based on the Bayes theorem [21], which states that the
posterior information of a quantity is proportional to the
prior, times a likelihood function, which yields the
probability to obtain an experimental data set ~y for a
given model parameters ~x.



Fig. 3. Total cross section calculated with the CAB model at 294K compared with experimental data [16–19].

Fig. 2. Average cosine of the scattering angle calculated with the CAB model compared with experimental data at 294K [15].
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In the CONRAD code, the procedure consists of
resolving iteratively by the Newton–Raphson method
the following sets of equations for the model parameter ~x
and covariance matrix Mx [22]:

~xi¼ ~xi�1Mi
x Gi�1

x

� �T
My

� ��1
~y �~t

i�1
� �

; ð14Þ
Mi
x

� ��1¼ Mi�1
x

� ��1
Gi�1

x

� �T
My

� ��1
Gi�1

x ; ð15Þ

where My is the experimental covariance matrix and~t is
the theoretical model. The matrix Gx is the derivative
matrix of the theoretical model with respect to the
parameters ~x:
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Gx ¼

∂t1
∂x1

⋯
∂t1
∂xn

..

. ..
.

∂tk
∂xn

⋯
∂tk
∂x1

0
BBBB@

1
CCCCA: ð16Þ

4.2 The marginalization technique

The marginalization technique was designed to take into
account the uncertainties of systematic origin in the
nuclear data evaluating process. Such type of uncertainties
usually introduce strong correlations between the experi-
mental values.

These parameters, called nuisance parameters, corre-
spond to the aspect of physical realities whose properties
are not of particular interest as such but are fundamental
for assessing reliable model parameters [23].

If ~u ¼ u1; . . . ; umð Þ is the nuisance parameter vector and
Mu stands for the covariance matrix, then the posterior
covariance matrix after the marginalization Mmarg

x is
obtained as [24]:

Mmarg
x ¼ Mx

þ GT
xGx

� ��1
GT

xGuMuG
T
u Gx GT

xGx

� ��1
; ð17Þ

where the matrix Gu is the derivative matrix of the
theoretical model with respect to the nuisance parameters
vector:

Gu ¼

∂t1
∂u1

⋯
∂t1
∂um

..

.
⋱ ..

.

∂tk
∂u1

⋯
∂tk
∂um

0
BBBB@

1
CCCCA: ð18Þ

If we define the extended model parameter vector as

~d ¼ ~x;~u
� �

, then the full covariance matrix S between

~x;~u
� �

is expressed as:

S ¼ Mmarg
x Mx;u

MT
x;u Mu

� �
: ð19Þ

The cross-covariance term Mx,u is calculated by
introducing “variance penalty” terms [25]. The “variance
penalty” is a measure of the contribution of the uncertainty
of the nuisance variables to the variance of the calculated
quantity~t. The cross-covariance term is:

Mx;u ¼ � GT
xGx

� ��1
GT

xGuMu: ð20Þ

The following section explains how the generalized
least-square method and the marginalization technique
were applied to calculate the covariance matrix between
the CAB model parameters.
5 Covariance matrix between the CAB model
parameters

5.1 The CAB model parameter vector

The parameters of the CAB model were explained in
Section 3.1 and are listed in Table 1. The parameter qM
(dummy atom charge) will be omitted in the analysis
because it is redundant with the hydrogen charge qH. The
CAB model parameter vector ~x is:

~x ¼ e0; s0; qH ;DOH;bOH; dOH; ku; uOH; dOMð Þ: ð21Þ
The aim of the present work is not to produce a new set

of best-estimate water potential parameters. That task was
already accomplished in reference [10]. Therefore, as
already indicated in Section 3.4, the objective is to generate
variances and covariances between the CAB model
parameters at 294K without changing their values
(retroactive approach) [26].

5.2 The nuisance parameter vector

For determining the covariances between the CAB model
parameters, we have used the experimental average cosine
of the scattering angle shown in Figure 2, and the total
cross sections presented in Figure 3.

The experimental total cross sections were converted in
transmission coefficient as follows:

T Enð Þ ¼ Ne�nst Enð Þ þB; ð22Þ
where n is the sample areal density in atoms per barns, N
represents the normalization and B stands for a “pseudo”
background correction. Figure 4 compares the theoretical
curves calculated with the CAB model at 294K and the
experimental transmission data reported by Heinloth [17],
Herdade [18] and Dritsa [19]. The total cross section
measured by Zaitsev et al. [16] was not converted to
transmission because the sample thickness used in the
experiment was not given by the author.

The reported cross section uncertainties account for the
statistical and sample areal density uncertainties. The
contribution of the latter ones was subtracted to be
included in the marginalization procedure. The statistical
uncertainties has been taken into account in the fitting
procedure.

Regarding the experimental temperature of the water
sample, no information is available. In the present work, we
have used an uncertainty of ±5K at 294K.

In the CAB model, the weight of the translational
vibration mode vt (Sect. 3.2) and the bound scattering
cross section of 1H (sH

b ) were derive from experimental
data. Thus, they cannot be included in the fitting
procedure like the water potential parameters. A relative
uncertainty on vt of ±10% is assumed because no
information is published. Regarding the sH

b parameter,
the relative uncertainty of ±0.2% recommended by the
Neutron Standard Working Group of IAEA [27] was used:

sH
b ¼ 20:478± 0:041b: ð23Þ



Fig. 4. Transmission coefficient at 294K determined from the data reported in references [17–19].
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Finally, the nuisance parameter vector is:

~u ¼ n;N;B;T ;vt; s
H
b

� �
: ð24Þ

Table 3 summarizes the nuisance parameters with the
uncertainties adopted for each experimental data set.
6 Results

The covariancematrixS between themodel parameterswas
determined with the CONRAD code by using a two-step
calculation scheme. The generalized least-square method
provides the covariance matrix between the CAB model
parametersMx (Eq. (15)). Afterwards, these results are used
in the marginalization technique to calculate the posterior
covariance matrix Mmarg

x (Eq. (17)).
At the beginning of the fitting procedure, it is assumed

that the CABmodel parameters are uncorrelated and have
relative prior uncertainties of 1%. The posterior uncer-
tainties reported in Table 4 are rather low. They lie below
the prior uncertainties. The correlation matrix shows weak
correlations between the parameters.

After the marginalization of the nuisance parameters,
stronger correlations between the model parameters are
calculated. Table 5 summarizes the relative uncertainties
of the CAB model parameters and their correlations.
Compared with the results after the fit, it can be seen that
more realistic uncertainties are achieved.

The uncertainties range between 2 and 6%, excepted for
the parameter e0, which is involved in the expression of the
Lennard–Jones potential between the oxygens. Its relative
uncertainty reaches 14.6%. Such result indicates that the
calculated uncertainties on the CAB model parameters
must be taken with care. If the parameters of the water
potential remain within such 1s uncertainties, then the
forces between the atoms originated by the potentials
would be severely modified. These perturbations would
probably introduce unphysical changes at the level of the
water molecule. Therefore, we have to keep in mind that
the present results are only dedicated to generate usable
uncertainties in applied neutronic field.

7 Uncertainties propagation of the CAB
model parameters

7.1 Covariance matrix of the thermal scattering
function

The thermal scattering function contains a very large
number of values. To solve this difficulty, the S (a, b)
values were averaged in 37 momentum transfer intervals.
The average scattering function Sijðaij;b0Þ, for a given
energy transfer b0, is obtained as follows:

Sij aij;b0

� � ¼ ∫ajai ðSa;b0Þda
∫ajai da

: ð25Þ

Figure 5 shows the symmetric forms of S (a, b0)
and Sða;b0Þ as a function of the momentum transfer for
b0= 1.0 calculated at 294K. Figure 6 shows the relative
uncertainties and the correlation matrix of the multigroup
scattering function for two energy transfers (b0= 1.0 and
10.0). They were obtained from the propagation of the
CAB model parameter uncertainties reported in Table 5.



Table 3. Uncertainties on the nuisance parameters (sample area density, normalization factor, background correction,
temperature) for each experimental data introduced in the CONRAD calculations.

Parameter Zaitsev et al. [16] Heinloth [17] Herdade [18] Dritsa [19] Beyster et al. [15]

n(at)/b – 0.00335±0.00008 0.00834±0.00025 0.02438±0.00007 –

N 1.0±0.045 1.0± 0.01 1.0± 0.01 1.0± 0.01 1.0± 0.05
B – ±0.001 ±0.001 ±0.001 ±0.005
T(K) 294±5 294±5 294±5 294±5 294±5

Table 4. Relative uncertainties and correlation matrix between the CAB model parameters after the fitting procedure.

Parameter Value Relative uncertainties Correlation matrix

s0 (kJ/mol) 0.31644 0.6% 100 �17 25 63 �31 �14 19 �25 19
e0 (nm) 0.7749 0.8% 100 �33 �3 �10 �16 1 �26 �15
qH (e�) 0.5564 0.7% 100 �51 �18 �13 12 �25 15
dOH (nm) 0.09419 0.7% 100 5 �14 �16 �5 5
DOH (kJ/mol) 432.581 0.8% 100 �31 15 �22 �2
bOH (1/nm) 22.87 0.7% 100 �7 �24 4
uOH (°) 107.4 0.9% 100 �4 �9
ku (kJ/mol/rad2) 367.81 0.8% 100 �10
dOM (nm) 0.13288 0.7% 100

Table 5. Relative uncertainties and correlation matrix between the CAB model parameters after the marginalization.

Parameter Value Relative uncertainties Correlation matrix

s0 (nm) 0.31644 2.3% 100 �77 93 69 33 �18 �64 83 �14
e0 (kJ/mol) 0.7749 14.6% 100 �71 �98 �85 53 97 �54 �32
qH (e�) 0.5564 3.2% 100 59 28 �2 �60 81 �18
dOH (nm) 0.09419 6.3% 100 89 �63 �96 44 38
DOH (kJ/mol) 432.581 6.2% 100 �63 �88 6 57
bOH (1/nm) 22.87 4.2% 100 51 �11 �28
uOH (°) 107.4 6.4% 100 �45 �9
ku (kJ/mol/rad2) 367.81 3.8% 100 �14
dOM (nm) 0.13288 2.7% 100
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In both cases the relative uncertainties on the Sijðaij;b0Þ
function range between 10% in the peak of the distribution
up to approximately 30% in the wings.

7.2 Covariance matrix of the 1H in H2O scattering
cross section

The left-hand plot of Figure 7 shows the relative
uncertainties and the correlation matrix of the 1H in H2O
scattering cross section after the uncertainty propagation
of the CAB model parameters at 294K. Figure 8 compares
the theoretical curve with the experimental data intro-
duced in the CONRAD calculations.

Uncertainties and correlations reported in Table 5
provide realistic uncertainties on the scattering cross
section. At the thermal neutron energy (25.3meV), the
relative uncertainty reaches approximately 3.3%. Beyond
1 eV, the uncertainty, mainly driven by the relative
uncertainty of the bound scattering cross section of
hydrogen, is close to 0.9%.

The spurious structures seen between 1 and 5 eV
might be originated from the transition to the short
collision time approximation used in LEAPR to calculate
the TSL.

7.3 Covariance matrix of the average cosine m of the
scattering angle

The right-hand plot of Figure 7 shows the relative
uncertainties and the correlation matrix of the average
cosine of the scattering angle at 294K. At the thermal
energy, the relative uncertainty is approximately 12%.



Fig. 5. Thermal scattering function S (a, b0) and its multigroup representation Sða;b0Þ as a function of the momentum transfer
for b0= 1.0 calculated with the CAB model at 294K.
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The bottom plot of Figure 8 compares the calculated m
with the data used in the CONRAD analysis. The obtained
uncertainties bands overlap the data over the full energy
range.
7.4 Propagation to integral calculations

One of the main goals of the present work is to quantify the
uncertainty due to the TSL of 1H in H2O in integral
calculations. The performances of our covariance matrix
between the CAB model parameters was investigated on
the MISTRAL-1 and MISTRAL-2 configurations carried
out in the EOLE critical facility of CEA Cadarache
(France).
7.4.1 The MISTRAL experimental program

A detailed description of the experiments can be found in
reference [28]. The reactivity excess was measured at “cold”
reactor conditions, from 10 to 80 °C.

The MISTRAL-1 configuration is an UO2 core (3.7%
enriched in 235U), while the MISTRAL-2 configuration is a
MOX core (7.0% enriched in Am-PuO2). Examples of
radial cross section of the cores are shown in Figure 9. In the
first case the criticality is reached by adjusting the boron
concentration in the moderator. In the second case, the
critical size of the core was adequately modified (8.7% fuel
pins enriched in Am-PuO2).
7.4.2 Propagation of the CAB model uncertainties to the
MISTRAL calculations

The Monte-Carlo code TRIPOLI4
®

[29] was used to
calculate the reactivity ofMISTRAL-1 and -2, as a function
of the temperature [30].

When the TSL of the CAB model is introduced in the
JEFF-3.1.1 library [31], the differences Dr between the
calculated and experimental reactivities for MISTRAL-1
(UOX core) at 20 and 80 °C are close to 300 pcm:

Dr 20°Cð Þ ¼ 283± 71 pcm;

Dr 80°Cð Þ ¼ 286± 155 pcm:

For MISTRAl-2 (MOX core), they reaches 900 pcm:

Drð20°CÞ ¼ 900± 110 pcm;

Drð80°CÞ ¼ 869± 203 pcm:

The large discrepancies observed for the MOX core are
due to the contribution of the 241Am capture cross section,
which is significantly underestimated in the JEFF-3.1.1
library.

The quoted uncertainties account for the statistical
uncertainties due to the Monte-Carlo simulations
(±25 pcm) and the uncertainty due to the TSL of 1H
in H2O (Tab. 5). The later contribution was determined by
a direct perturbation of the CAB model parameters.



Fig. 7. Relative uncertainties and correlation matrix of the 1H in H2O scattering cross section (left-hand plot) and of the average
cosine m of the scattering angle (right-hand plot) calculated with the CAB model at 294K with the uncertainties reported in Table 5.

Fig. 6. Relative uncertainties and correlation matrix of the Sða;b0Þ functions for b=1.0 (left-hand plot) and b=10.0 (right-hand
plot) calculated with the CAB model at 294K with the uncertainties reported in Table 5.
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Fig. 8. Comparison of the theoretical scattering cross section (top plot) and of the average cosine m of the scattering angle (bottom
plot) with the experimental data introduced in the CONRAD calculations.
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At room temperature, the low uncertainty of 71pcm
indicates that the uncertainty on the TSL of light water
coming from the CAB model could become a negligible
contribution in many UOX configurations. This assumption
is confirmedby the results reported inTable 6. For a standard
UOXcell, it appears that the uncertainty on the capture cross
section of hydrogen (±150pcm) is evenmore important than
the contribution due to the scattering process.
However, the present results confirms the higher
sensitivity of the MOX cores to the TSL of light water.
This trend is due to the large resonances in the cross
sections of the Pu isotopes. In that case, the uncertainty of
110 pcm obtained at room temperature is no longer
negligible. This is also confirmed in Table 7 by comparing
the various contributions to the final uncertainty on the
reactivity calculated for a MOX cell.



Fig. 9. Radial cross sections of the MISTRAL-1 core (left-hand plot) and the MISTRAL-2 core (right-hand plot) at T=20°C.

Table 6. Example of uncertainties on the reactivity (UOX configuration at room temperature) in pcm due to the nuclear
data. The contribution of 1H in H2O comes from the present work. The other contributions were calculated with the
covariance data base COMAC [32] developed at the CEA of Cadarache.

Isotopes (n,f) Capture (n,n) (n,n0) (n,xn) ntot xfast xth Total
1H in H2O 150 71 166
10B 26 26
16O 97 14 2 98
90Zr 11 72 4 72
91Zr 27 30 2 40
92Zr 27 20 2 33
94Zr 2 8 2 8
96Zr 2 6 6
234U 1 6 2 6
235U 104 174 13 276 142 371
236U 1 1
238U 29 165 83 38 18 32 9 195
Total 108 303 137 39 18 277 9 142 470
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8 Conclusions

The present work presents the methodology for generating
the covariancematrix between the CABmodel parameters,
which describes the neutron scattering with the hydrogen
bounded to the light water molecule. The covariance
matrix has been calculated by using the generalized least-
square and marginalization algorithms implemented in the
CONRAD code.
The obtained uncertainties were propagated to produce
covariance matrices for the thermal scattering function. A
multigroup treatment on the momentum transfer was
adopted to handle the large amount of data contained in
the S(a, b) function.

Covariance matrices for the 1H in H2O scattering cross
section and for the average cosine of the scattering angle
were also produced. The calculated uncertainty bands in
both cases overlap the experimental data selected for the



Table 7. Example of uncertainties on the reactivity (MOX configuration at room temperature) in pcm due to the
nuclear data. The contribution of 1H in H2O comes from the present work. The other contributions were calculated with
the covariance data base COMAC [32] developed at the CEA of Cadarache.

Isotopes (n,f) Capture (n,n) (n,n0) (n,xn) ntot xfast xth Total
1H in H2O 46 110 119
10B 8 8
16O 114 24 4 117
90Zr 11 24 7 27
91Zr 13 16 4 21
92Zr 8 22 4 24
94Zr 2 59 3 59
96Zr 2 13 1 14
235U 2 6 3 1 5 4 9
238U 114 88 80 �60 25 35 12 160
238Pu 1 70 �20 1 9 1 67
239Pu 278 371 26 5 57 0 126 484
240Pu 42 178 �16 �5 1 2 9 182
241Pu 108 96 8 88 58 179
242Pu 3 131 10 2 2 1 131
241Am �3 47 2 29 1 47
Total 322 475 156 �59 25 111 60 126 619
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CONRAD analysis. The present methodology allows
obtaining realistic uncertainties on the cross section. At
the neutron thermal energy, the relative uncertainty is
3.3%.

The contribution of the uncertainty due to the 1H inH2O
thermal scattering data was then evaluated on the
MISTRAL-1 (UOX) and MISTRAL-2 (MOX) integral
experiments carried out in the EOLE facility of CEA
Cadarache. The calculated uncertainty at 20 °C reaches
±71 pcm for theMISTRAL-1 core.At 80 °C, the uncertainty
is almost twice with respect to room temperature. The same
trend was found for the MISTRAL-2 configuration, where
the uncertainty on the reactivity is ±110 pcm at 20 °C. The
present results highlight the quality of the CAB model for
calculating the TSL of light water at room temperature. For
UOXconfigurations,we can expect a negligible contribution
on the final uncertainty in nuclear criticality and safety
studies.

The authors would like to thank P. Tamagno and P. Archier, from
CEA Cadarache, for sharing their calculations on the reactivity
breakdown for the UOX and MOX configurations.
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