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Abstract. Thermal-hydraulic analysis is a key part in support of regulatory work and nuclear power plant design
and operation. In the field of Loss Of Coolant Accident, evolutions of the regulations are discussed in various
countries taking into account the very unlikely character of a double-ended guillotine break and questioning the
necessity to study such an event with Design Basis Conditions assumptions. As a consequence, the consideration
of intermediate size piping rupture becomes more and more important. The paper presents the modeling of the
Test Facility ROSA-2/LSTF in the calculation code CATHARE 2.V2.5. OECD/NEA ROSA-2 Project Test 7
was conducted with the Large Scale Test Facility on June 14, 2012. The experiment simulated the thermal-
hydraulic responses during a PWR 13% cold leg Intermediate Break Loss Of Coolant Accident (IBLOCA). The
break was simulated by a cold leg upwardly mounted long break nozzle. The facility and the experiment
conditions are modeled in CATHARE. The vessel is modeled by using a 3D module. A thermal-hydraulic analysis
is conducted and the obtained results are subsequently compared with the experimental results from ROSA-2/

LSTF Test 7. Evaluation of the differences between experimental and calculated results is discussed.

1 Introduction

The OECD/NEA ROSA-2 Project aimed to investigate key
PWR thermal-hydraulics issues. It consisted in various
experiments at ROSA/LSTF facility [1] operated by the
Japan Atomic Energy Agency (JAEA). Among these
experiments, three were devoted to the Intermediate Break
Loss Of Coolant Accident (IBLOCA). The goal of the
OECD/NEA ROSA-2 Project Test 7 [2] was to simulate the
thermal-hydraulic responses during a PWR 13% cold leg
intermediate break loss of coolant accident. The double-
ended guillotine break (DEGB) of the Emergency Core
Cooling Systems (ECCS) nozzle was simulated by using a
36.0 mm inner-diameter nozzle which was upwardly
mounted on the cold leg.

* e-mail: piotr.mazgaj@itc.pw.edu.pl

The paper shows the comparison of the experimental
results with the calculation results obtained from
CATHARE 2.V2.5 [3].

2 Historical LOCA modeling approaches

In the field of LOCA Studies, the modelization choices may
differ according to the break size and the involved physical
phenomena, especially with respect to the vessel down-
comer nodalization.

2.1 For large break LOCA (LBLOCA)

3D effects in the vessel downcomer during the blowdown
stage of the accident are well known and have been widely
investigated. It is usually recommended to use a 3D
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nodalization to represent the counter-current flow between
the ascending steam exiting the core and the descending
ECCS flow, although a 1D nodalization is considered to be
conservative.

2.2 For small break LOCA (SBLOCA)

The dynamics of the accident is slow and the Peak Cladding
Temperature is usually obtained before or at the very
beginning of the ECCS accumulators injection. In such
situations, 3D phenomena in the vessel downcomer have a
very low influence, and a 1D nodalization of the downcomer
is relevant.

2.3 For intermediate break LOCA (IBLOCA)

The dynamics of the accident is intermediate. The Reactor
Coolant System (RCS) minimum mass inventory and the
Peak Cladding Temperature are usually obtained shortly
after the beginning of the ECCS accumulators injection (as
it is observed during the ROSA test 7). Nevertheless, the
overall reactor behavior during the accumulator injection is
worth being studied with respect to the mass inventory
distribution in the different parts of the vessel. More
particularly, we have focused on the vessel downcomer area
where three-dimensional effects are expected due to the
asymmetric injection of subcooled ECCS water.

In France, the LOCA Intermediate Break Methodology
(for the IBLOCA and SBLOCA break size range),
developed by EDF and AREVA in the frame of the
evolution of the LOCA regulation, retains a 2D nodaliza-
tion of the vessel downcomer (theta, z, with one single mesh
in the radial direction), using the 3D module and capability
of the CATHARE code.

The work presented in this paper contributes to the
understanding of this issue and to the related CATHARE
validation.

3 CATHARE Code

CATHARE 2.V2.5 [3] is a multi-purpose multi-reactor
concept system code that can describe several kinds of
different circuits with various fluids either in single-phase
gas or liquid or in two-fluid conditions possibly with non-
condensable gases. The code is capable of simulating any
kind of reactor concept and any kind of accidental
transient. CATHARE 2 wuses flexible structures for
thermal-hydraulic modeling. The main hydraulic compo-
nents or elements are pipes (1D), volumes (0D), a 3D
module and boundary conditions, connected to each other
by junctions. Apart from the modeling of the hydraulic
components, the code modules can model pumps, turbo-
machines, control valves, T-junctions, sinks, sources, breaks
and many other ones. The basic set of equation is based on a
six-equation two-fluid model (mass, energy and momentum
equations for each phase). Additionally, the code has

possibilities to take into account optional equations for non-
condensable gases and radio-chemical components.

4 ROSA-LSTF modeling

The ROSA-LSTF (Large Scale Test Facility) is located in
Japan and it was constructed to simulate the full-scale
height and 1/48 volumetrically-scaled down reactor of a
Westinghouse four-loop PWR, with thermal power of
3423 MW. It is composed by two primary loops that
correspond to four primary loops of the reference West-
inghouse PWR. Figures 1 and 2 show the schematic view of
the LSTF.

In order to compare the results, two nodalizations of the
ROSA-LSFT vessel were developed with the CATHARE

-@

z
g

Major Components
Stmalaid Cove

Resciot Pressure Vesoel (PY)
Hotleg

ColdLeg.

CromorerLeg

RCS Pump

Pressucizer (PZR)

Sam Generaioe(5G)

Stean Genersior U Tabes
Acrumlaior

Rl Hest Removal Host Excharges(RHHY
PZRSpy Pump

Jo8 Condenser (0

SC Pusive Host Exchanger (SGPH)
Boeak Flow Seorage Tank (5T)
Stercer

PZRSugrLine

PIRSpray Line

2 E e e

©
SESRER2ER

ACK njction e
Feedvter Line

Main Seeam Line

Cosling Waer Lia

Feedwates Pump

ACC Rellel Valve

5GSafey Vabre

Feewater Control Valve

Main Seam Valve

B N2 Sapply Vaire

2 Relif snd Salely Vahes (RSVs)

S RHERERESY

@ Loop A

Fig. 1. General view of LSTF [1].

Pressurizer
10m High

~ Steam

141 U-tubes 1) Generator

Accumulator |

Primary
Coolant
Pump

Pressure
( :lf Vessel

Fig. 2. The view of hot and cold legs in LSTF [2].



P. Mazgaj et al.: EPJ Nuclear Sci. Technol. 2, 1 (2016) 3

Fig. 3. 1D nodalization of ROSA-LSTF. In the 3D nodalization,
the pressure vessel (the nodalization in the red circle) was modeled
using 3D modules from CATHARE code.

Fig. 4. 3D nodalization of the pressure vessel of ROSA-LSTF.

code. The 1D nodalization is depicted in Figure 3. To better
model the phenomena in LSTF, the 3D nodalization of
reactor pressure vessel was introduced, using the 3D module
from the CATHARE code.

The 3D nodalization of the pressure vessel is shown in
Figures 4 and 5. As one can see, the pressure vessel has 26
meshes in vertical direction, six nodes in azimuth and
radially four rings (the core region consists of 9 meshes in
vertical direction, the lower plenum of 6 meshes and the
upper plenum consists of 7 meshes). The most outer ring is
used to model the downcomer, and the three inner rings are
used to model the core (as shown in Fig. 4).

Figure 6 shows the ROSA-LSTF break unit which is
used to model the Double-Ended Guillotine Break (DEGB)
of the ECCS pipe by using a 36.0 mm inner-diameter nozzle
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Fig. 6. ROSA-LSTF break unit [2].

shown below, which was upwardly mounted on the cold leg.
The nozzle flow area corresponds to 13% of the volumetri-
cally-scaled cross-sectional area of the reference PWR. The
break is located in Cold Leg B.

5 Results of the calculations

CATHARE predicts the break flow rate and pressure in
pressurizer rather well as it can be seen in Figures 7-9. In
particular 3D model gives a pressure evolution which is very
close to the experimental one. The major chronological
events are listed in Table 1.

5.1 Downcomer mass inventory

The prediction (Fig. 10) of the overall pressure difference in
the vessel downcomer (representative of the mass inventory)
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Table 1. Chronology of major events.

Event Time [s] =  Time [s] —
Experiment CATHARE 3D
Break valve open 0 0
Initiation of coastdown of 11.5 12
primary coolant pumps
Initiation of HPI system in 26 27
loop with PZR (loop-A)
only
Initiation of core power 30 30
decay
Initiation of ACC system 154 158
in loop-A only
Core reflooding 182 176
Upper plenum filling 195 190
Primary coolant pumps 261 262
stopped
Termination of ACC 350 340

system in loop-A only

is much better using the 3D model, for which the pressure
difference behavior is very close to the experimental one,
whether it is before or after the beginning of the accumulator
injection (around 160s). It can be thus noticed that the
3D effects that are present in IBLOCA modeling are
much better modeled by a 3D nodalization of the pressure
vessel.

Such a large difference between the results coming from
1D and 3D nodalization has an origin in the behavior of the
ECCS water while passing through the pressure vessel
downcomer. Once the level in the downcomer has reached
the cold legs, the 1D modeling cannot predict the counter-
current flow and the mixing between the cold ECCS water
entering the top of the downcomer with the hotter water
present in its lower part. Thus, the ECCS flow is mostly
overpassing the downcomer and directly flows to the break.

100

Normalized Pressure Difference in Whole Downcomer

Normalized Pressure Difference [%)]
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Fig. 10. Pressure difference in whole downcomer.
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Fig. 11. 1D modeling effects during LOCA.
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Fig. 12. The void fraction in vertical direction close in downcomer
at the Cold Leg A (at 350s).

Moreover, as the temperature in the lower part of the
downcomer remains close to the saturation temperature,
the fast RCS depressurization (combined with wall heat
release) induces flashing and steam production. This
irrelevant behavior obtained with the 1D calculation is
depicted in Figure 11, while the calculated void fraction
profile in Figure 12 clearly shows the steam production.

5.2 Overall vessel mass inventories in the 3D
calculation

As the 3D model shows a good downcomer mass inventory
prediction, we may expect also a good prediction of the
mass inventories in the different other parts of the vessel
and of the hot legs. The related pressure differences in
different parts of the Pressure Vessel are shown in
Figures 13-16. The results compare rather well with the
ones of the experiment. In particular, in Figure 14 at 200 s,
it can be pointed out that the beginning of the upper
plenum filling is well predicted by CATHARE.
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Fig. 13. Pressure difference in lower plenum of the pressure vessel.
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Fig. 15. Pressure difference in the core.
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Fig. 16. Pressure difference in Steam Generator A (SGA)
Inlet Plenum.

In Figures 15 and 16, before the accumulator injection
until around 180s, one can observe that the pressure
difference in the core region is underestimated by the 3D
model. This could be explained by an overestimation of the
water retained in the Steam Generator inlet plenum
(possibly due to a more severe counter-current flow
limitation in the calculation). This observation could lead
to a further investigation.

Figure 17 shows the fuel rod surface temperature in the
fuel bundle located 5cm under the top of the core. The
curve is illustrating well the phase of the core reflooding.

5.3 Temperatures in the downcomer

The experimental temperature distribution in Figure 18
illustrates the idea that a 1D modeling of the downcomer is
not accurate enough. One can realize that the schematic

Normalized Fuel Rod Surface Temperature
100 T T

« Experimental results - Test 7
95 == CATHARE-Module 3D

Normalized Temperature [%]

50 !
0 100

200 300 400

Time [s]

500 600

Fig. 17. Fuel rod surface temperature located in the fuel bundle
5 cm under the top of the core.
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Fig. 18. Experimental results of temperature in Cold Leg A
(CLA), Cold Leg B (CLB) and in the downcomer at the entrances
of Cold Legs.
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Fig. 19. The approximate flow of the coolant in the downcomer.

flow in downcomer would be as the one shown in Figure 19.
Colder water is entering the circuit through the Safety
Injection, then is flowing through the downcomer and core.

The temperature of fluids in Cold Leg A (intact leg) is
lower than the temperature of fluids leaving through the
break, located in Cold Leg B (as shown in Fig. 18).

The temperatures in Cold Legs are measured 1.6 m
away from Pressure Vessel center. The temperature in the
downcomer close to the Cold Leg A nozzle follows the Cold
Leg A temperature, whereas the temperatures in Cold Leg
B and in the downcomer close to the Cold Leg B nozzle
follow the saturation temperature.

The 3D CATHARE model temperature predictions
follow the experimental trends, though it can be observed
that the code is underestimating the temperature in Cold
Leg A and in the downcomer at the entrance of Cold Leg A
(shown in Figs. 20 and 21). However, it can be noticed that
the underestimation of the temperature in the downcomer
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Fig. 20. Liquid temperature in Cold Leg A and B, comparison
between experimental and numerical results.

results from the underestimation observed in the cold leg.
Further analysis of the Cold Leg A temperature could be
performed, in connection with the condensation phenome-
na at ECCS injection.

To better visualize the physical conditions in the
downcomer, the temperature distributions at two different
positions (1.8 m and 3.6 m, above the core bottom) were
depicted in Figures 22 and 23. It can be easily noticed that
the 3D model predicts better the temperatures in these
lower parts of the downcomer. After the accumulator
injection (around 160s), one can observe, as in the
experiment, a slight subcooling, suggesting inflow of some
ECCS water Cold Leg A to downcomer, whereas the 1D
model predicts saturated conditions at the same locations.
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Fig. 21. Liquid temperature in the downcomer at the entrances
of the Cold Legs. Comparison between experimental and
numerical results.
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Fig. 23. The temperature in the downcomer at the elevation
of 3.6 m. Comparison between experimental and numerical results.

6 Conclusions

The 3D vessel modeling of the LSTF facility for the
calculation of the OECD/NEA ROSA-2 Project Test No. 7
gives much better results than the 1D modeling while
comparing with experimental data related to the mass
inventory and the temperatures in the vessel downcomer.

The ROSA-2 test No. 7 indicates that it exists strong
3D phenomena during the accumulator injection stage of an
IBLOCA scenario. The calculations performed with the
CATHARE code strongly suggest and justify the use of a
3D nodalization of the vessel downcomer, rather than a 1D
nodalization, for such situations.
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Nomenclature
CL Cold Leg
DEGB Double-Ended Guillotine Break

ECCS Emergency Core Cooling System

HL Hot Leg

IBLOCA Intermediate Break Loss of Coolant Accident
PWR Pressurized Water Reactor

RCS Reactor Coolant System

SI Safety Injection
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