
HAL Id: cea-02304706
https://cea.hal.science/cea-02304706v1

Submitted on 3 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A hierarchical fast direct solver for distributed memory
machines with manycore nodes

Cédric Augonnet, David Goudin, Matthieu Kuhn, Xavier Lacoste, Raymond
Namyst, Pierre Ramet

To cite this version:
Cédric Augonnet, David Goudin, Matthieu Kuhn, Xavier Lacoste, Raymond Namyst, et al.. A hier-
archical fast direct solver for distributed memory machines with manycore nodes. [Research Report]
CEA/DAM; Total E&P; Université de Bordeaux. 2019. �cea-02304706�

https://cea.hal.science/cea-02304706v1
https://hal.archives-ouvertes.fr

A hierarchical fast direct solver for distributed

memory machines with manycore nodes

Augonnet, Cédric1, Goudin, David1, Kuhn, Matthieu1, Lacoste,
Xavier2, Namyst, Raymond3, and Ramet, Pierre3

1CEA/DAM, France
2Total E&P, France

3University of Bordeaux, France

October 3, 2019

Abstract

Compression techniques have revolutionized the Boundary Element
Method used to solve the Maxwell equations in frequency domain. In spite
of the several orders of magnitude gained in terms of computational cost,
and resource consumption, their implementation in a direct solver remains
challenging, especially on distributed memory machines. We present the
design of an efficient and scalable hierarchical fast direct solver capable of
factorizing H-matrices on large scale machines with manycore nodes.

This task-based solver relies on a flexible execution model which fea-
tures an extension of the sequential task flow (STF) paradigm, enabling
seamless expression of complex dependencies between hierarchical data
over distributed memory machines. We demonstrate its efficiency and
its scalability by solving large scale problems over hundred of manycore
nodes, and for example factorize a H-matrix with 4.4 million unknowns
compressed at 99% in less than 40 minutes with about 70% of parallel
efficiency over 24,320 cores.

1 Introduction

To meet the ever-growing demand for improved accuracy and larger problem
sizes in simulations of physical phenomena, numerous research efforts have been
devoted to upgrade numerical schemes, algorithms and parallel implementations
over the past decades. Although the evolution of modern supercomputers has
constantly contributed to address larger problems and heavier computing in-
tensity, the advent of compression techniques allowed to dramatically push the
boundaries in terms of reachable problems in several simulation domains.

In this paper, we focus on a scientific application developed at CEA/DAM
which simulates the scattering of incident radar waves by an object to predict

1

Figure 1: Electric currents at the surface of an UAV at 2.5 GHz

its Radar Cross Section (RCS), which is the ratio between incident energy, and
the energy reflected in a specific direction. As illustrated in Figure 1, which
depicts a testcase from the ISAE’16 Workshop, the electromagnetic currents
are first computed at the surface of the object. The RCS of the object can then
be deduced in each direction and polarization.

The Boundary Element Method (BEM) is used to solve the Maxwell equa-
tions. For a fixed frequency, this leads to solve a dense complex symmetric
(non hermitian) linear system. One right-hand side (RHS) is computed per
observation angle and per polarization. During production runs, typical system
sizes start from 104 and can feature more than 107 unknowns, possibly with
several thousands of RHS per frequency. Due to the large number of RHS, to
the accuracy requirements and to the poor matrix conditioning, a direct method
is used to solve the linear problem (Cholesky decomposition). Since this fac-
torization has a O(n3) complexity for n unknowns and requires O(n2) storage,
the code was originally designed (in the early 90s) to run on large clusters of
multiprocessor nodes.

However, the accuracy requirements of nowadays production runs implied a
heavy redesign of the code. In a previous work, the offloading of computations
over accelerators using a tiled algorithm has been explored [9]. This work,
which combines improvements regarding both numerical solving techniques and
parallel execution models, investigates the use of compression techniques to
drastically reduce the memory footprint as well as the number of operations in
our Maxwell equations BEM solver.

Single-level compression methods usually involve Block Low Rank approxi-
mations. To achieve a higher compression ratio, hierarchical methods such as
H-matrices [22], H2-matrices [23], HSS [42, 41] or HODLR [7] can be used, at
the expense of a significant complexification of the implementation [30, 35]. The
challenge is thus to enable the efficient implementation of hierarchical compres-
sion techniques over current and future supercomputers.

To fully exploit the computational power of modern clusters in the presence

2

of many dependencies between computations, the task paradigm has proved to
be very effective in many simulation domains. Most interestingly, the majority of
existing dense linear algebra solvers already rely on task-based runtime systems
as a way to submit dependency-oriented graphs of numerical kernels over shared
memory architectures.

In this paper, we explore the design of a task-based H-matrix direct solver
over clusters of manycore nodes. To extract maximum parallelism out of the
factorization algorithm, we introduce a recursive task decomposition based on a
hierarchical read/write dependency mechanism which enables a natural imple-
mentation of the algorithm while drastically reducing the number of required
synchronizations compared to the traditional fork-join approach. Moreover, our
task execution model allows for a smooth integration of asynchronous MPI op-
erations, leading to a high communication overlap ratio.

The main contributions of this work are as follows.

• We propose a new runtime mechanism to resolve implicit task dependen-
cies in applications working on hierarchically decomposed data;

• We show how to seamlessly integrate asynchronous MPI operations using
a concept of interruptible tasks;

• We have developed a complete, scalable H-matrix solver on top of these
mechanisms;

• We show that our approach achieves high performance over a cluster of
KNL processors (70% of parallel efficiency on 24,320 cores).

The remainder of the paper is organized as follows. Section 2 gives a back-
ground on task parallelism, solvers, and compression techniques. In Section 3,
we describe the execution model we use to implement a direct H-matrix solver
in Section 4. We evaluate the efficiency of our solver in Section 5.

2 Background

This section first describes how tasks are used to implement parallel solvers on
both shared and distributed memory architectures, showing that mixing tasks
and MPI is still a complex problem. Then, it introduces compression techniques
in the scope of electromagnetism simulations.

2.1 Task based solvers over distributed memory architec-
tures

Cholesky and LU decompositions are often a central methodology in numerical
simulations. These solvers are nowadays commonly implemented with tiled
algorithms over tasks runtime systems [18, 40, 20, 38, 2].

A task-based algorithm performing a Cholesky decomposition is illustrated
in Figure 2. The left part of the figure details the tiled sequential algorithm.

3

Each step k of the factorization relies on 4 kernels. First, the POTRF kernel
factorizes the diagonal block (line 2). The other blocks on column k (called the k-
th panel) are updated with a solve operation, namely TRSM (line 4). Remaining
blocks are updated through SYRK (line 5) operations for diagonal blocks, and
GEMM (line 7) operations for non diagonal blocks. All these operations are
available in classical LAPACK implementations.

1 for (k=0;k<NB; k++){
2 POTRF

(
ARW

kk

)
3 for (j=k+1; j<NB; j++){
4 TRSM

(
AR

kk, A
RW
jk

)
5 SY RK

(
AR

jk, A
RW
jj

)
6 for (i=k+1; i<j ; i++)

7 GEMM
(
AR

jk, A
R
ik, A

RW
ij

)
8 }
9 }

S

S

T

P

P

PT
G

T

S

Figure 2: Cholesky factorization using the STF model

Still on the left part of Figure 2, note that the type of access mode is specified
for each piece of data. The R and RW exponents respectively indicate that the
data is read or modified by the kernel. The principal advantage of the Sequential
Task Flow (STF) paradigm is to leverage these annotations to automatically de-
rive a parallel graph out of such an apparently sequential piece of code. The STF
model extracts parallelism with the following coherency model: modifications
cannot occur until the end of all pending reads (Write After Read, or WAR),
concurrent reads are possible (Read After Read, or RAR), but readers may not
access data while they are modified (Read After Write, or RAW), and different
modifications cannot occur simultaneously (Write After Write, or WAW). Other
advanced types of accesses such as reductions or commutative accesses are also
sometimes possible. The right part of Figure 2 shows the Direct Acyclic Graph
(DAG) obtained with a matrix with 3× 3 sub-blocks. Each vertex corresponds
to a task (labeled after the first letter of the corresponding kernel), and the
edges between the vertices mark the automatically inferred dependencies. It is
therefore natural to parallelize linear solvers thanks to the numerous runtime
systems implementing this STF programming model.

Implementing direct dense linear solvers on both machines with shared and
distributed memory is a well-studied problem [12]. But the simplicity enabled
when using tasks on shared-memory systems is balanced by the difficulty of
extending these solvers to machines with distributed memory. Task-based dis-
tributed dense solvers have been developed [34, 14, 3], but their implementation
is usually a challenge and sometimes rely on domain specific programming envi-
ronments [20, 15, 8]. Introducing compression techniques into distributed solvers
is therefore a delicate problem.

More generally, using tasks in a distributed environment (typically with

4

MPI) is known to be significantly more complicated [36].

P
ro

c.
0

P
ro

c.
1 M

P
I

M
P

I

Figure 3: Separated MPI and tasks phases

P
ro

c.
0

P
ro

c.
1

Figure 4: STF and distributed memory

The simplest approach is to design the code as an MPI application, and to
take advantage of intra-node parallelism with tasks (e.g. using OpenMP). This
methodology is natural when adapting a Full-MPI application to exploit intra-
node parallelism and reduce the overall number of MPI processes to the benefits
of using more threads. Figure 3 for example illustrates such a strategy where
we distinguish intra-node task-based phases and synchronous phases with MPI
operations such as broadcasts, for instance.

However, the easiness of creating a vast amount of concurrency within a
process through tasks is contrasted with the challenge of designing a distributed
application with asynchronous communications that overlaps computation and
communication. Runtime systems [8, 15, 3] and programming environments [36]
can help by automating data transfers in an efficient manner between task-based
applications. On Figure 4, this results in an application that is fully based on
tassks, and which features much more parallelism and less synchronizations
points than on its synchronous counterpart on Figure 3 where communications
are not handled as tasks.

2.2 Compression techniques for electromagnetism

Compression techniques are well known to be effective into the frame of BEM
for Maxwell equations [11]. Considering a m × n sub-block B of the matrix
obtained with BEM, these techniques are based on the observation that the
number of singular values greater than a given threshold ε (also called numerical

5

B ≈ UB × V T
B

r

m

n

m

n

Figure 5: Low-rank approximation of the B block of size (m×n) as the product
of two matrices UB and VB of size (m× r) and (n× r) where r is the numerical
rank of B.

rank at precision ε) is generally much smaller than min(m,n). As illustrated on
Figure 5, such low-rank blocks (also called Rk-matrices) can be approximated
under the outer-product form B ≈ UV t, where U (resp. V) is a m × r (resp.
n× r), with r the numerical rank of B.

2.2.1 Block Low Rank algorithms

A first strategy to introduce compression in solvers is the Block Low Rank
(BLR) approach that consists in potentially compressing blocks of fixed size.
Each sub-block of the matrix corresponds to the interaction between two parts
of the simulated object. A compressibility criterion, also called admissibility
condition, determines whether a block is compressible or not depending on the
distance between the two parts. Non-admissible blocks (e.g. diagonal blocks)
are kept in their dense representation, which we denote as full-rank blocks.
Figure 6 gives an example of such a matrix stored in the Block Low-Rank
format. Besides reducing the overall memory required to numerically solve the
equations, compression techniques also lower its computational cost.

The approximation of a compressible block can be computed for instance
through Singular Value Decomposition (SVD). A more interesting strategy is
to assemble compressible blocks directly in their compressed form through a
specialized algorithm such as Adaptive Cross Approximation (ACA) [10] or one
of its variants.

Compute kernels must also be adapted to support data in a compressed
format. On line 4 of Figure 2, assuming Akk is full-rank and Ajk ≈ UjkV

T
jk, the

TRSM kernel has to perform Vjk = VjkL
−T
kk instead of Ajk = AjkL

−T
kk . It is

worth noting that if Ajk has a rank r, this kernel has a complexity of O
(
rn2
)

instead of O
(
n3
)
, which leads to dramatic performance improvements.

Introducing compression into the GEMM kernel (line 7) is slightly more
complex. For example, with 3 compressible blocks, denoting (A|B) the concate-
nation of blocks A and B, we have:

UijV
T
ij − UjkV

T
jk

(
UikV

T
ik

)T
= (Uij |Ujk)

(
Vij |UikV

T
ikVjk

)T
.

6

Figure 6: Example of a matrix stored in the Block Low-Rank (BLR) format,
where each block can either be full-rank, or compressed as a low-rank block of
the form UV T . Diagonal blocks are always full-rank, but some extra-diagonal
blocks can also be full rank.

This corresponds to a compressed block with a rank of rij + rjk, that can be
recompressed using a QR-SVD or a Rank Revealing QR (RRQR) kernel to
obtain a block with a rank usually close to rij [11]. The QR-SVD algorithm
which we actually implement is detailed in Figure 7.

m

n
r

QR-SVD
m

n
r̃

ABT = QR (A) (QR (B))T

ABT = (QARA) (QBRB)T

ABT = QARAR
T
BQ

T
B

ABT = QASV D
(
RAR

T
B

)
QT

B

ABT = QAUΣV HQT
B

ABT ≈ QAUΣV HQT
B

ABT ≈
(
QAUΣ

) (
QBV

*
)T

Figure 7: The QR-SVD algorithm recompresses a block written under the form
ABT with a rank r into a block with an optimal numerical rank r̃ (for a given
threshold ε). It is implemented using two QR decompositions (GEQRF), one
SVD kernel (GESVD), and two multiplications with the orthogonal matrices
obtained in the QR decompositions (UNMQR). The Σ diagonal matrix is trun-
cated accordingly to ε to keep the r̃ largest eigenvalues in Σ and replace smaller
ones with null values.

One notable difficulty is the number of combinations that must be handled
when designing these compression-enabled GEMM kernels. Besides the pre-
vious example where all blocks are compressible (i.e. approximated under the
form UV T), all configurations require to design totally different algorithms :

• If all blocks are non-compressible, we simply call the GEMM kernel from
the BLAS library.

7

• If we have Aij non-compressible, and that both Ajk and Aik compressible,
we compute a temporary compressed block D such as D = AjkA

T
ik, so

that D = UjkV
T
jk

(
UikV

T
ik

)T
. We can here identify Ud = Ajk and Vd =

UikV
T
ikVjk. Computing Vd only requires calling 2 GEMM kernels, and

does not imply recompression operations. We then compute Aij − UdV
T
d

by using another GEMM kernels.

• When Aij is compressible, and both Ajk and Aik are non-compressible,
the least expensive approach is to explicitely by multiplying D1 = AjkA

T
ik

using a GEMM kernel, computing D2 = UijV
T
ij −D1 with another GEMM

kernel, and to apply a costly truncated-SVD operation on D2 which gives
the updated value of Aij .

While the GEMM kernel is dominating dense solvers, recompression kernels
take most of the time into BLR solvers. A few large SVD kernels are also
very time consuming, but only occur rarely so that they only account for a
small portion of the total computation time. These rare but large kernels can
however have a significant impact on load balancing.

In addition to dense linear algebra, BLR algorithms are also used to reduce
memory footprints and/or computational costs of sparse direct solvers [6, 33].

2.2.2 Hierarchical algorithms

The consideration of H-matrices [22] in place of BLR allows reaching higher
compression ratios. Instead of partitioning the overall matrix with blocks with
a fixed size, a hierarchical partitioning of the unknowns is performed, leading to
a cluster-tree T . The compressibility criterion is then applied on each node of
T to determine if the corresponding block is compressible or not. If the block
is not compressible, the criterion is applied again on the node’s children.

Similarly to the BLR solver which required to adapt kernels to operate on
potentially compressed blocks, anH-matrix solver requires to implement kernels
that operate on blocks which are H-matrices themselves. The general approach
is to design hierarchical kernels as a combination of kernels operating on either
full-rank or low-rank blocks. For example, if H is a triangular hierarchical block,
its Cholesky decomposition can be written recursively:

H-POTRF

 H11

H21 H22

 =

H-POTRF(H11)
H-TRSM(H11,H21)
H-SYRK(H21,H22)
H-POTRF(H22)

In this caseH-POTRF(H11) can either operate on a hierarchical block or on
a full-rank block, but there are for example 27 = 33 combinations of H-GEMM
kernels since each of the 3 blocks can be any either full-rank, low-rank or a
hierarchical block. In addition to the recompression kernels required in the
BLR solvers, some kernels of the hierarchical solvers are also implemented by the
means of format conversion algorithms, such as H-MERGE which converts 4

8

10

10

10

10 512

12 1024

Figure 8: The H-MERGE kernel merges 4 Rk-matrices into a single Rk-matrix.
In this example, the initial storage requirement of the H-matrix is 4×2×512×
10 = 40960 entries, compared to 2× 1024× 12 = 24576 entries after the merge
operation.

low-rank sub-blocks into a single low-rank block [11], as illustrated on Figure 8.
This is for example useful to implement the H-GEMM kernel HC = HC −
HAHT

B with HA and HB hierarchical blocks, and HC a low-rank block, since
we can create HD = HA ∗ HB , convert HD from a hierarchical into a low-rank
block which can be added to HC .

To illustrate that each configuration can be a problem of its own, let us for
instance assume that A is a H-matrix, and that both B and C are Rk-matrices.

The H-GEMM which computes UCV
T
C = UCV

T
C − HA

(
UBV

T
B

)T
is here very

different from the previous example with three H-matrices. We can indeed
implement this kernel by computing UD = HAVB which is a dense block, and
then consider UDU

T
B as a Rk-matrix with the same rank as B. The new value

of UCV
T
C is then obtained by performing a QR-SVD recompression kernel on(

UCV
T
C + UDU

T
B

)
.

Similarly, we meet such a combinatorial challenge when implementing the
H-SYRK, H-TRSM and H-POTRF hierarchical kernels over matrices that
can either be full-rank, Rk-matrices or H-matrices.

3 Proposed execution model

As highlighted in previous Section, we must address two significant issues in
order to design a highly efficient task-based implementation of our H-matrix
solver. The first issue is to avoid over-synchronization when recursively gen-
erating tasks working on hierarchical data. To this end, we propose a new
mechanism to automatically derive task dependencies from sequences of mem-
ory accesses to any level of a hierachical data structure. This techniques enables
our code to manipulate H-matrices in a practical and efficient way. We then
address the problem of “taskifying” MPI communication schemes so as to max-
imize asynchronous communication progress while resolving task dependencies
as soon as possible, by leveraging interruptible tasks to describe complex, multi-
phase MPI communication schemes. Finally, we show how we implemented this
execution model.

9

AH

BRk

CH

(a) Data

SA

TC

GC

GCTC

TB

TCTA PA TCPA

(b) Without H-dependencies

SAPA

TC

GC

GC

TB

TC

TA PA

TC

TC

(c) With H-dependencies

Figure 9: Panel update where AH and CH are H-matrices and BRk is a Rk
matrix (H-POTRF(AH);H-TRSM(AH, BRk);H-TRSM(AH, CH);)

3.1 Hierarchical dependencies

In Section 2.1, we have illustrated that the STF model and its implicit data
dependencies is a very convenient paradigm to implement scalable solvers. Due
to the recursive nature of the algorithms shown in Section 2.2, we now describe
how we extended the coherency model used in the STF paradigm to support
hierarchical data such as H-matrices by the means of implicit hierarchical
dependencies (H-dependencies).

Figure 9 shows the tasks associated when performing three hierarchical op-
erations of a panel update, namely H-POTRF(AH), H-TRSM(AH, BRk) and
H-TRSM(AH, CH), where AH and CH are H-matrices, and BRk is a low-rank
matrix. As depicted by Figure 9a, AH (resp. CH) is divided into 3 (resp. 4)
sub-blocks. In Figure 9b, a traditional approach generating tasks in a nested
way would actually lead to wait until all AH has been updated before providing
it as an input of the H-TRSM kernels. In contrast, Figure 9c shows that it is
possible to unlock the tasks to update CH much sooner, as soon as the first sub-
block of AH has been updated. Such a fine-grain synchronization methodology
is thus required to obtain enough parallelism on hierarchical workloads.

Different strategies are used to implement those hierarchical workloads in
the existing implementations of direct H-matrix solvers. Kriemann et al. [28]
fully reformulate the H-LU algorithm to extract dependencies between Intel
Threading Building Blocks (TBB) [32] tasks in an explicit manner. While
extremely efficient, this requires a full redesign of existing algorithms, and makes
any algorithmic change a significant burden. It is also unclear how practical this
approach would be on a distributed memory machine. Existing direct hierarchi-
cal solvers based on the STF model [30, 19] are much easier to develop and to
maintain. They actually avoid dealing with hierarchical pieces by either writing
kernels that only manipulate H-matrix leaves [19], or by selecting a hierarchi-
cal block depth under which all kernels are written using sequential tasks [30].

10

These static approaches either suffer from a massive synchronization overhead,
or miss numerous parallelization opportunities within recursive workloads.

A powerful approach to combine the easiness of STF and the efficiency of
explicit H-dependencies would be to rely on the STF model directly on hierar-
chical data sets.

A[1:1] A[2:2] A[3:3] A[4:4]

A[1:2] A[3:4]

A[1:4]

Figure 10: Example of a hierarchical piece of data

Illustrating our approach on actualH-matrix examples would be challenging,
so we consider here a simpler but equivalent example on Figure 10 that depicts
an array of 4 elements A[1:4], which can be seen as a hierarchical piece of data
as well. Each piece of data is assigned a parent, which can contain multiple
children. For example, A[1:4] is the parent of A[1:2] and A[3:4]. Accesses to
A[1:2] and A[3:4] are independent, but it is not possible to read A[1:2] while
modifying A[1:4]. Appropriate dependencies must indeed be introduced to fulfill
the coherency model.

Let us assume in Figure 11 that B is a subset of A. If we have a sequence
of 4 tasks that respectively modify A (T1), read B (T2), read A (T3), and
modify A (T4), we must ensure that T2 does not start before the end of task
T1, and we cannot modify A in T4 until B as been read in T2. This is achieved
by introducing appropriate data dependencies, here denoted as E1 and E2 to
specify that the execution order of tasks accessing B have to synchronize with
tasks accessing A and vice versa. Note that the dependencies between T1 and
T3, and between T3 and T4 are already fulfilled by the STF memory coherency
model.

Interestingly, the semantic of those extra data-dependencies is equivalent to
RAW, WAR or WAW constraints. A consistent execution between tasks T1 and
T2 can for instance be obtained by actually submitting an empty task, namely
E1(AR, BW) in the Figure, accessing A in read mode and B in write mode.

A

B

T1(AW)

T2(BR)

T4(AW)T3(AR)

E1(A
R, BW) E2(B

W , AR)

Figure 11: Inserting empty tasks E1 and E2 to enforce dependencies for task
sequence T1;T2;T3;T4 where B ⊂ A

11

R
E
A
D

WRITEW

R

(a) T1

(
AR

[1:2]
, AW

[4:4]

)
: Independant accesses

R
E
A
D

WRITER W

R

(b) T2

(
AR

[2:2]

)
: RAR access

W
R
IT
E

W

(c) T3

(
AW

[1:4]

)
: Upward WAW and

WAR constraints

W
R
IT
E

WRITE READ

W R

W

(d) T4

(
AR

[2:2]

)
: Downward RAW con-

straint

Figure 12: Automatic insertion of dependencies for task sequence

T1

(
AR

[1:2], A
W
[4:4]

)
;T2

(
AR

[2:2]

)
;T3

(
AW

[1:4]

)
;T4

(
AR

[2:2]

)

Indeed, attempting to access A in read mode into E1 synchronizes with the
write access on A performed by T1. Jointly, reading B in T2 can only occur
after the write action on B is performed into E1. Hence, we have T2 executing
after E1, and E1 executing after T1, leading to T2 executing after T1. Similarly,
the execution order between tasks T2 and T4 can be ensured by the insertion of
the empty task E2(BW , AR) with the appropriate access modes on data A and
B.

More elaborated implementations are possible, but this simple data depen-
dency mechanism makes it possible to enforce consistent hierarchical data ac-
cesses, on top of an existing coherency model solely designed for independant
data. Inserting a dependency between A and B in OpenMP for example only
requires to submit an empty task with the depend(inout:A,B) clause.

Our approach consists in determining automatically, given a hierarchy of
data and a set of tasks, which dependencies must be inserted in the task graph
to keep data sequentially consistent. To this end, our implementation maintains
a state for each piece of data that is updated at submission time. We first save
the last access mode associated with a piece of data: a write access mode for
example indicates that the node belongs to a subtree where there is a pending
write access. We also have two flags indicating whether there has been a read
(resp. write) access on the node to enforce future RAW and WAW (resp. RAR,

12

W
R

IT
E

R
E

A
D

R
E

A
D

A

A′

A′′ W

R

W

R

R

W

Figure 13: RAW dependencies, A′′ ⊂ A′ ⊂ A

WAR) constraints.
Figure 12 illustrates the protocol which allows consistent accesses to the

hierarchical data shown in Figure 10. The workload depicted in this example
consists of a sequence of four tasks :

T1

(
AR

[1:2], A
W
[4:4]

)
;T2

(
AR

[2:2]

)
;T3

(
AW

[1:4]

)
;T4

(
AR

[2:2]

)
.

Each sub-figure therefore corresponds to the data status after submitting re-
spectively T1, T2, T3 and T4. Figure 12b gives the states after submitting T1,
which independently modifies A[4:4] and reads A[1:2]. A[4:4] is marked in write
mode, and its write access flag is enabled. A[1:2] and the corresponding sub-tree
is marked in read mode, and A[1:2] has a read access flag. Note that A[1:1] and
A[2:2] have a read mode, but no read flag since there was no task accessing them.

No extra dependencies must be inserted when submitting T2 which only
creates a RAR dependency. Still, a read access flag is set on A[2:2] to protect it
against from write accesses.

All accesses to subsets of A[1:4] must be finished before T3 modifies it. In
Figure 12c, we thus introduce dependencies with previous nodes with a flag
indicating there was a prior access. Since future accesses on these inner nodes
will have to be synchronized with A[1:4], we can unset existing access read and
write flags. The entire tree is however denoted as in write mode.

The state obtained after submitting T4 shown on Figure 12d illustrates how
we handle a read access on a data subset which belongs to a tree that has a
write mode. To make sure T3 is over when we access again subsets of A[1:4] (i.e.
A[1:1],A[2:2] and A[3:4]), dependencies are inserted between the root of the subtree
and all of these nodes. Note that we could have marked protected A[3:3] and
A[4:4] instead of A[3:4], but this would introduce more synchronization points.
Our algorithm therefore tries to introduce as few dependencies as possible to
maintain data coherency with a minimal synchronization overhead.

Figure 13 illustrates that there are corner cases which must be carefully
addressed in this algorithm. In this example, where A′′ ⊂ A′ ⊂ A, if a read
access on A′ (middle) follows a write access on A′′ (left), we actually keep the
write flag on A′′ to denote that future accesses on a sub-tree containing A′′ will
have to synchronize on it as well. For example, on the right side of Figure 13, a
dependency must be inserted between A and A′′, even though A′ and A′′ were
in a sub-tree that is marked in read mode. This allows to implement the RAW

13

constraint efficiently without introducing a superfluous dependency between A′

and A, for example.
Our protocol does not access the entire data tree for every data access, and

we implemented it with a logarithmic complexity, with respect to the number
of nodes in the tree. As a result, the overhead of this protocol is negligible in
our execution traces.

3.2 Extending our model for distributed memory with
preemptive tasks

Provided we have implicit data-driven dependencies, it is natural to consider
our distributed application as a large task graph. When extending STF to
a distributed-memory machine, each piece of data is assigned to a process,
denoted as the data owner. Assuming A and B have two distinct owners in
Figure 14, the implicit dependency between T1 and T2 would translate into an
MPI communication to send A to the owner of B. From the perspective of the
task-based application, this is achieved by submitting pair of send and recv

tasks which would be interleaved with the rest of the application.
Implementing this transfer by the means of tasks performing blocking MPI

calls (e.g. MPI_Send) would result in wasting computing resources while waiting
for communications. Besides, execution order might affect program correctness :
a process could for example send A1 and A2, while another would receive A2

and A1, resulting in a deadlock if these are blocking MPI calls.
An intuitive solution is to issue non-blocking MPI operations, and to check

periodically whether they have completed or not, without blocking the processor
in between.

Shared memory

T
1 (A R

W

)

T
2 (A R

, B W

)

⇔

Distributed memory

T
1 (A R

W

)

send(A R
)

recv(A R
W

)

T
2 (A R

, B W

)

Figure 14: Translating dependencies into communications

Given a pure STF approach, we could try to implement the receive operation
in Figure 14 with a simple MPI_Irecv task which would submit a callback task
with an MPI_Test, that would recursively submit another callback until the
test passes. This approach unfortunately fails because the callback tasks would
likely be issued after T2 has been submitted, so that the implicit dependencies
based on task ordering would fail to unlock T2 only once A has been received.

Instead of submitting multiple tasks, we can consider a single interruptible
task which would explicitly relinquish the processor until the operation has
completed, similarly to the taskyield OpenMP directive.

14

1 #pragma omp task l a s t p r i v a t e (s i z e , bu f f e r)
2 {
3 MPI Request req ;
4 MPI Irecv(& s i z e , s izeof (s i z e) , s rc , tag , &req) ;
5 while (! MPI Test(&req)) {
6 #pragma omp ta s ky i e l d
7 }
8 bu f f e r = mal loc (s i z e) ;
9 MPI Irecv (bu f f e r , s i z e , s rc , tag , &req) ;

10 while (! MPI Test(&req)) {
11 #pragma omp ta s ky i e l d
12 }
13 }

Figure 15: Receiving data of unknown size with an interruptible task split in
multiple steps using OpenMP

Such interruptible tasks are especially interesting when exchanging com-
pressed matrices, because their size (and sometimes their structure) may be
unknown on the receive side. Interruptions make it possible to split tasks into
multiple steps to carry out complex data transfers. Figure 15 illustrates how
to asynchronously receive a buffer whose size is unknown on the receive side
using OpenMP.

A practical issue is that this approach assumes a thread-safe MPI imple-
mentation, which is unfortunately often not available on production machines.
We thus need to add a notion of affinity to ensure that this task will only be
executed by the master thread, and that it will be bound to it. It can also
be difficult to ensure that this MPI_Test is issued often enough, especially if
there is a severe workload and/or many simultaneous MPI transfers. In the
next section, we will show that a task pre-emption mechanism can easily be
integrated into a task-based application, and that it is useful to implement our
distributed direct H-matrix solver.

3.3 Implementation of the execution model

Due to the lack of a thread-safe MPI implementation on our target platform, and
for the sake of flexibility, we have developed a lightweight runtime system which
implements the aforementioned execution model. It uses OpenMP internally as
a portable threading layer, even though we could rely on other thread libraries
such as Pthreads or Argobots [37]. Since there is currently no efficient
way to pause/restart OpenMP tasks when waiting on an MPI operation, or to
restrict MPI-related tasks to a specific processor affinity, we use a minimalistic
task implementation which enforces the STF programming model. Provided a
thread-multiple MPI, and a few additions to the OpenMP task model, such as
those already proposed by OmpSs [36], we could have used OpenMP tasks as
well.

Figure 16 illustrates our programming API, which is based on the task API

15

used in Quark [4]. The irecv_func function shows the actual task implementa-
tion which will be detailed later on, while irecv_async reveals the task submis-
sion. In this example which asynchronously receives a piece of data, a rwlock_t

structure is used to specify data access and its corresponding mode on line 42.
Task arguments are stacked on lines 39-41 and retrieved on lines 10. Interest-
ingly, such code could be generated automatically from a code with a semantic
close to OpenMP tasks.

Specifying data accesses at task submission makes it possible to infer depen-
dencies. Each piece of data is thus associated to a rwlock_t structure which
lists all tasks trying to access this piece of data. When a task is submitted, it
is appended to the different locks, and a per-task reference count indicates the
number of pending data dependencies. Accessed data are unlocked when a task
ends. Multiple readers can be unlocked at the same time, but a single writer is
unlocked. Tasks with no dependency left (i.e. with a null reference count) are
put in the list(s) of ready tasks, from which threads continuously pick up work.

As described in Section 3.1, we extend this STF paradigm for hierarchical
data sets. We first let the user describe data hierarchy, by specifying which
rwlock_t structure is the father of another rwlock_t structure (or by defining
which are the children of a rwlock_t structure). We then enforce the algorithms
depicted in Figure 12 to automatically determine which data dependencies must
be inserted automatically. These dependencies are implemented by the means
of empty tasks.

The Nanos runtime system used in OmpSs introduces a pause/restore mech-
anism which allows it to explicitly preempt and resume the execution of a task,
and to let a service thread carry out those MPI transfers efficiently [36]. This
is unfortunately not part of the OpenMP standard, so we cannot rely on it di-
rectly. In our application, we rely on simple language constructs to implement
preemptive tasks.

This is illustrated in Figures 16 which shows a task-based implementation of
the MPI_Recv primitive. This implementation allows to receive data of unknown
size.

Function irecv_async submits a task which executes function irecv_func

when lock is accessible in read-write mode. This last function allows to receive
a message of unknown size in two communication steps: a first one for the
size of the buffer, and a second one for the buffer. The step field (line 6)
is automatically initialized to 0. The first phase of irecv_func on lines 7-
14 consists in reading arguments that were packed at submission time into a
locally allocated structure accessible through the priv field of the task, and
submitting a first actual MPI transfer using MPI_Irecv (line 12) to receive the
size of the buffer. Note that there is no break statement between lines 14 and
15, so that we enter in the second phase (lines 15-23) immediately. This second
phase consists in testing whether the MPI transfer has finished or not, or to
explicitly put the task aside otherwise (lines 18-19). Since the value of the step

field (line 6) is kept, when a thread executes the task again, it directly jumps
to line 15 to perform this test again with a limited overhead. When the test
finally succeeds, the memory of the buffer to be received is allocated (line 21).

16

1 void i r e c v f un c (t a s k t ∗ t)
2 {
3 struct s t o r e d a r g s { s i z e t ∗ s i z e ; void ∗∗data ;
4 int s r c ; int tag ;
5 MPI Request req ;} ∗a ;
6 switch (t−>s tep) {
7 case 0 :
8 a = mal loc (s izeof (struct s t o r e d a r g s)) ;
9 t−>pr iv = a ;

10 unpack args (t ,&a−>src ,&a−>tag ,
11 &a−>data ,&a−>s i z e ,NULL) ;
12 MPI Irecv (a−>s i z e , s izeof (s i z e t) ,
13 a−>src , a−>tag ,&a−>req) ;
14 t−>s tep++;
15 case 1 :
16 a = t−>pr iv ;
17 i f (! MPI Test(&a−>req)) {
18 t−>keep in queue = 1 ;
19 return ;
20 }
21 ∗a−>data = mal loc (∗a−>s i z e) ;
22 MPI Irecv (∗a−>data ,∗ a−>s i z e , a−>src , a−>tag ,&a−>req) ;
23 t−>s tep++;
24 case 2 :
25 a = t−>pr iv ;
26 i f (! MPI Test(&a−>req)) {
27 t−>keep in queue = 1 ;
28 return ;
29 }
30 t−>keep in queue = 0 ;
31 f r e e (a) ;
32 }
33 }
34
35 void i r e c v a syn c (int src , int tag , void ∗∗data ,
36 s i z e t ∗ s i z e , rw lock t ∗ l o ck)
37 {
38 add task (i r e cv func ,
39 ARG, &src , s izeof (int) , ARG, &tag , s izeof (int) ,
40 ARG, &data , s izeof (void ∗∗) ,
41 ARG, &s i z e , s izeof (s i z e t ∗) ,
42 RWLOCK, &lock , RW, NULL) ;
43 }

Figure 16: Example of a non-blocking MPI transfer implemented using a pre-
emptive task

17

Then, the MPI transfer to receive the buffer is posted (line 22), and the task
goes to the third phase. Similarly to the beginning of phase 2, this last phase
first checks if the previous MPI_Irecv has finished (line 26), putting the task
aside otherwise (lines 27-28). When the test succeeds, resources are liberated
and the task finishes its execution normally so the lock accessed in read-write
mode (line 42) is released. The corresponding isend_func can be implemented
in a similar way.

Note that the use of an interruptible task here allows to write this code in the
same way we would have written it based on blocking MPI calls, but in a fully
asynchronous manner. Both steps could be merged into a single transfer, but
the receiving process would have to handle large messages whose sizes are not
known in advance: this would result in relying on unexpected messages which
are challenging for MPI implementations.

Such pieces of code could be compiler-generated, but this illustrates how
it is possible to implement task pre-emption using simple language constructs
by introducing a mere step field and keep_in_queue flag into the task, and
allowing the application to explicitly put a task back into the list(s) of ready
tasks. If keep_in_queue flag is not set, a handler is automatically called to
release task resources and unlock RW-dependencies.

To reduce the amount of ready tasks with an MPI operation to complete, we
also added a request server : when a task creates an MPI request, a reference
to the request and to the corresponding task is saved in the server, and the
task is removed from the ready list(s). The server, which is implemented by the
means of a preemptive task as well, periodically tests the completion of all MPI
requests at the same time using MPI_Testany. Tasks whose request has been
completed are put back into the ready list(s). This mechanism significantly
reduces the number of calls to the MPI stack, and limits the number of ready
tasks waiting for the completion of an MPI operation.

4 Implementation of an H-matrix direct solver

This section describes the implementation of the H-matrix direct solver in use
in our application. The first part describes the shared memory implementation
which adopts the STF paradigm extended with a coherency model for hierarchi-
cal data as described in Section 3.1. The second part shows how the distributed
memory version of this solver was written using a 2D block-cyclic distribution
scheme and by relying on the interruptible tasks we presented in Section 3.2 to
implement the transfer of H-matrix blocks over MPI.

4.1 Design in shared-memory

Similarly to other task-based dense solvers, we have adopted a tiled algorithm
which is well known for exhibiting a lot of parallelism. The matrix is partitioned
into blocks of fixed size. Each block is associated with a rwlock_t structure, as

18

defined in Section 3.3. The task-based tiled Cholesky factorization implemen-
tation is given by Figure 2.

Likewise, the implementation of a BLR solver is achieved using the algo-
rithms previously described in Section 2.2 to take into account the possibility
that some blocks are compressed. Interestingly, the design of these kernels and
the shape of the blocks are independent from the synchronization mechanisms
already used to implement the Tiled algorithm.

Introducing hierarchically compressed blocks puts more challenges because
there are many different ways to carry out synchronization between kernels.
Similarly to the BLR solver, one possible approach would be to implement
the numerous hierarchical kernels sequentially. Obtaining a sufficient amount
of parallelism on manycore architectures would require the use of small block
sizes, which may significantly degrade compression rates.

Due to the hierarchical nature of H-matrices, it is natural to design those
kernels in a recursive fashion. In practice, our task engine enables recursive
tasks by allowing task submission directly from another task using a rwlock_t

structure (fork), and to actively wait the completion of these children tasks
using an explicit synchronization function (join).

While this simple task recursion implementation provides us with a signif-
icant amount of parallelism, we have however shown on Figure 9 that such a
fork-join synchronization paradigm does not allow to efficiently pipeline mul-
tiple kernels that access the same pieces of data. We therefore leveraged the
hierarchical data coherency model introduced in Section 3.1 to describe each
H-matrix block as a quad-tree of rwlock_t where each sub-H-matrix is a node
of the tree.

By assigning tasks with an appropriate priority to favor the critical path, we
automatically obtain a state-of-the-art task ordering denoted as dynamic look-
ahead by Kurzak and Dongarra [29], regardless of the complexity introduced by
compression techniques.

4.2 Extension to distributed memory

Our strategy to extend our direct hierarchical solver over MPI was to rely on
the techniques classically used for task-based dense linear solvers, and to allow
manipulating compressed blocks.

0
1
2
0
1

4
5
3
4

2
0
1

3
4 1

Figure 17: 2D block-cyclic distribution (3x2 processes)

Figure 17 therefore illustrates the 2D block-cyclic distribution used in our

19

code to distribute H-matrices across the machine. This distribution is not only
known to distribute the load evenly on dense problems [12], but also to limit
the number of nodes involved in each communication. For example, after the
first block is computed on node 0, it must only be sent to nodes 1 and 2 which
own the other blocks in the first column. More generally, each communication
phase only involves O(

√
p) among p processes. These traditional results on

dense linear algebra are also observed on H-matrices as shown in Section 5.
Once data have been distributed this way, each hierarchical block is asso-

ciated to a process which owns it. All block updates are carried out by the
respective owner : implementing a distributed version of our solver therefore
consists in using the hierarchical kernels already implemented on shared mem-
ory, and to exchange hierarchically compressed blocks over MPI when a kernel
needs to access a block that was modified remotely.

Even if the structure of a H-matrix can be determined as soon as the mesh
is partitioned, the numerical rank of each compressible block is unknown until
the matrix has been assembled, and keeps evolving throughout the factoriza-
tion because the numerical rank of the blocks may evolve when updating them.
Compared to existing distributed memory task-based dense solvers, one diffi-
culty when exchanging suchH-matrix is therefore that their size (and potentially
their structure) are generally not known on the receive side. However, the in-
terruptible tasks we have introduced in Section 3.2 make it straightforward to
exchange H-matrix blocks. Sending and receiving a H-matrix block is indeed
decomposed into a task with multiple steps. A first step consists in exchanging
the structure of the block, along with the numerical ranks of each leaf in the
block. On the receive side, the space required to store the block is allocated
accordingly. The second send consists in exchanging the actual data content of
the H-matrix blocks (i.e. U and V).

Given such point-to-point H-matrix transfers, it becomes natural to imple-
ment advanced communications schemes, such as asynchronous broadcasts (e.g.
MPI_Ibcast) of H-matrix blocks. Broadcasting a piece of data over a set of pro-
cesses is indeed achieved by building a spanning tree of the set, with the root
process as the root of the tree, and to transmit data throughout this spanning
tree. In practice, each process of the tree but its root must receive data from an-
other process by posting a hmat_irecv task, and transmit it using hmat_isend

tasks to at most two processes if we have a binary tree. Note that this approach
is simple enough to allow for optimizations such as building the spanning tree
with respect to the machine topology to avoid transfers back and forth large
scale machines while broadcasting such complex pieces of data.

A significant advantage of our approach is that we can leverageH-dependencies
to broadcast hierarchical blocks. Similarly to fine-grain task dependencies which
provided us with more parallelism than a fork-join approach in Figure 9, we can
efficiently interleave the execution of interdependent remote hierarchical kernels
thanks to hierarchical broadcasts (H-broadcasts). For example in Fig-
ure 18, we have a node that computes the Cholesky decomposition H-POTRF
of a hierarchical block A, and a node that computes BA−1 where A is the out-
put of H-POTRF(A). A possible implementation would be to submit a task

20

A00

A10 A11

B00

B10

B01

B11

P T S P

A
0
0

A
1
0

A
1
1

T G T

T G T

H-POTRF(Aw)

H-BCAST(Ar)
Process 0

Process 1H-BCAST(Aw)

H-TRSM(Ar, Bw)

Figure 18: Hierarchical kernels interleaved using hierarchical broadcasts. A
is sent piece-wise, which allows to start H-TRSM before the end of kernel
H-POTRF.

BCAST(A) that broadcasts A after the completion of H-POTRF(A), but it
is interesting to note that only A00 is required to start updating B00 and B10.
By transparently decomposing BCAST(A) into multiple independent tasks to
broadcast A00, A10 and A11 as soon as they are ready, we thus obtain a signifi-
cant performance boost.

5 Evaluation

We now evaluate the performance of our direct H-matrix solver. The experi-
ments were carried on the Tera1000 supercomputer which composed of two
separate machines. 1/ Tera1000-1 that is based on 2,125 nodes interconnected
with an Infiniband FDR network. Each node has 32 Intel Haswell cores. We
use Intel 17.0.4.196 compilers, and OpenMPI 1.8.8. 2/ Tera1000-2 that
is based on 8,000 Intel Knights Landing (KNL) boards configured in cache
mode and quadrant clustering. It relies on a Bull InterConnect (BXI)
network. We use Intel 18.0.3.222 compilers, and OpenMPI 2.0.4.

To maximize the benefits of our shared-memory implementation, we use a
single MPI process per node, and we spawn one thread for each physical core
(except in Figure 20). All threads were statically bound using the HWLOC
library [17], which is paramount on KNL. Our code was linked against Intel
MKL. The execution traces were recorded using SCORE-P, and visualized us-
ing VAMPIR. Black parts of the traces correspond to H-POTRF kernels, grey
parts to all other kernels (e.g., H-TRSM, H-SYRK, H-GEMM and others),
and idle time is in white. We first show the benefits of H-dependencies on
shared memory architectures, and then study how both H-dependencies and H-
broadcasts enhance scalability on distributed memory. We eventually consider
the performance obtained on actual industrial testcases. Note that the results
obtained using compression techniques were assessed by comparing them against
the output of the solver without compression whenever possible. Besides, all
implemented optimizations do not degrade accuracy.

On the shared memory side, Figure 19 shows two execution traces that
highlight the impact of the H-dependencies on a sphere testcase with 103,000

21

1 2 3

82 seconds

(a) Without H-dependencies

1 2 3

54 seconds

(b) With H-dependencies

Figure 19: Impact of H-dependencies on 1 KNL (TERA1000-2) on a problem
with 103,000 unknowns

unknowns within a single KNL node. While idle time results from inefficient
synchronizations on Figure 19a, aggressively unlocking dependencies allows to
interleave interdependant kernels in Figure 19b. The second labeledH-POTRF
operation therefore occurs sooner, after 19 seconds instead of 35 seconds. Like-
wise, the overall factorization time is reduced from 82 seconds to 54 seconds.
Since both implementations however use the same kernels with different syn-
chronization methodology, we naturally obtain the same performance on a single
core (2,620 seconds). We can thus compare the speedup obtained within a KNL
in Figure 20. We obtain a parallel efficiency of 78.2% instead of 49.9% on 64
cores. It is also worth noting that this is very challenging testcase because there
is only 56MB of data per core in average when using 64 threads.

 64

 128

 256

 512

 1024

 2048

 1 2 4 8 16 32 64

Ti
m

e
(s

)

Number of threads

No H-deps
H-deps

Ideal

 10

 20

 30

 40

 50

 60

 10 20 30 40 50 60

Sp
ee

d
u

p

Number of threads

Ideal
H-deps

No H-deps

Figure 20: Strong scalability within shared memory on 1 KNL node
(TERA1000-2)

On the distributed memory side, Figure 22 shows the strong scalability of
a sphere testcase with 867000 unknowns on several nodes of TERA1000-1. In
addition to the ideal scaling line, three other lines depict the time performances
of the solver using 64 cores (2 nodes) to 3520 cores (110 nodes). Each of these

22

0s 5s 10s 15s

1

2 3

4

(a) Without H-broadcasts: step 2 depends on step 1

1

2 3

4

(b) With H-broadcasts: steps 1 and 2 are interleaved

Figure 21: Impact of H-broadcasts on 2 KNLs (TERA1000-2)(zoom on first
the 15 seconds)

 64

 128

 256

 512

 1024

 2048

 4096

 64 128 256 512 1024 2048 4096

Ti
m

e
(s

)

Number of cores

Fork Join
H-deps.

H-deps. + H-BCAST
ideal

Figure 22: Strong scalability for a testcase with 867,000 unknowns on the
Tera1000-1 machine

lines correspond to a different configuration of the solver. As can be seen, using
hierarchical dependencies allows to improve both the time performances and
the scalability of our solver over the initial fork-join version. Indeed, on 42
nodes, the time to factorize the matrix drops from 281 seconds to 225 seconds,
leading to a relative efficiencies of 69% for the fork-join version and 77% for the
hierarchical dependencies version. Moreover, adding the hierarchical broadcasts
presented into Section 4.2 to the hierarchical dependencies further improves
times and scalability: on 72 nodes, the factorization time is improved from 179
to 157 seconds, leading to a relative efficiency of 65% instead of 57%. On 110
nodes, the efficiencies of the three versions degrade to 37%, respectively 42%

23

and 51% for the fork-join, respectively hierachical dependencies and hierarchical
broadcasts, but the volume of computation on this amount of nodes is very low
(at most of 0.8 GB of data per node).

The traces in Figure 21 show the impact of H-broadcasts during the first
15 seconds of the factorization step on 2 KNLs for a sphere geometry with
588,000 unknowns. In Figure 21a, the first H-POTRF (labeled as 1) is as
efficient as the step 1 of Figure 19b when taking advantage of H-dependencies
on shared memory within a single KNL. However, the kernels on the second
process labeled with number 2 have to wait for the completion of the entire
H-POTRF kernel labeled 1 on the first process before its output is broadcasted.
In Figure 21b, we can see that, thanks to the H-broadcasts, the broadcasts of
input data for the H-TRSM operations start before the end of the H-POTRF
labeled 1 on the first process, allowing the operations to begin earlier. As
a result, the execution of the second H-POTRF labeled as 3 on the second
process occurs approximatively at 5 seconds of execution time, while it starts
at around 7.5 seconds without H-broadcasts.

Table 1: Comparision of the memory footprints with 1D and 2D block-cyclic
data distributions on 20 nodes of TERA1000-1 (sphere with 837,000 unknowns
testcase)

Distribution
Per-process data footprints

Min. Max.
1× 20 3,176 MB 4,526 MB
20× 1 3,225 MB 4,488 MB
4× 5 3,572 MB 4,054 MB

Table 2: Comparision of amount of data transfers and performance with 1D and
2D block-cyclic data distributions on 20 nodes of TERA1000-1 (sphere with
837,000 unknowns testcase)

Distribution
Communication volumes

Time
Total (Count) Per-process Max. (Count)

1× 20 1,788 GB (199,614) 52.9 GB (6,046) 559.2 s
20× 1 1,937 GB (203,528) 58.3 GB (6,152) 576.7 s
4× 5 688 GB (74,366) 14.7 GB (1,654) 439.8 s

Tables 1 and 2 respectively show the advantages of a 2D block-cyclic dis-
tribution over 1D distributions in terms of memory footprints and regarding
the amount of data exchanges. As stated in Section 4.2, the amount of data
exchanges is reduced by a factor of 4, which allows for a greater scalability.
Moreover, there is less than 15% of imbalance (with respect to data footprints)
when using a 4×5 distribution, compared to 43% with a 1×20 distribution. Due
to a better load balancing, and to a reduction of network solicitation, we thus
obtain an improvement of 25% of execution times compared to 1D distributions.

24

 256

 512

 1024

 2048

 4096

 8192

 2 4 8 16 32 64 128 256 512

Ti
m

e
(s

)

Number of KNLs (64 cores per KNL)

837k

1.6M

2.2M

4.4M

Figure 23: Strong scalability for sphere geometries up to 4.4 million unknowns
over KNLs (TERA1000-2)

Figure 23 demonstrates the strong scalability capabilities of our solver over
our KNL-based machine. Each curve gives the time required to factorize the
matrix obtained with spheres of different sizes, from 837 thousands to 4.4 mil-
lions unknowns. In spite of the trivial geometry, the use of a fixed discretization
of 10 points per wave-length makes this benchmark ensures that we consider
realistic workloads with plausible compression rates around 99%.

For all problems, we observe that the cumulated elapsed CPU time is al-
most constant when varying the amount of processing ressources. For instance,
the resolution of the testcase with 1.6 million unknowns either takes 5,360s
on 12 nodes (768 cores), or 1,174s on 56 nodes (3,584 cores). This respec-
tively corresponds to a cumulated CPU time of 768× 5, 360s = 1,143 hours and
3, 584× 1, 174s = 1,168 hours. This corresponds to 97.8% of parallel efficiency
even if there only remains 3 GB of data per KNL (out of 192 GB available),
or 54MB per core when solving this problem over 56 nodes. The lines attached
to the curves on Figure 23 indicate what would be the duration of the problem
with a constant cumulated CPU time (e.g. with a perfect scaling), compared
to the time required on the smallest number of nodes on which the problem
fits. Table 3 shows we obtain similar results on the problem with 4.4 million
unknowns, and highlights the gains resulting from our optimizations.

Figure 24 depicts the strong scalability obtained on a machine based on
Intel Haswell processors, instead of Intel KNL boards. We observe a be-
haviour that is very similar to the scalability in Figure 23. Since the TERA1000-
1 machine is significantly smaller than TERA1000-2, we thus limited our exper-
iments to the smallest testcases, up to 6,720 cores. This illustrates the suitability
of our approach on classical CPU architectures.

Our distributed direct H-matrix solver is also effective on challenging indus-

25

 128

 256

 512

 1024

 2048

 4096

 2 4 8 16 32 64 128 256

Ti
m

e
(s

)

Number of nodes (32 cores per node)

837k

1.6M

Figure 24: Strong scalability for sphere geometries up to 1.6 million unknowns
over Haswell processors (TERA1000-1)

(a) Without H-dependencies: 325 seconds

(b) With H-dependencies: 235 seconds

(c) With H-dependencies and H-broadcast: 200 seconds

Figure 25: Execution traces of the UAV testcase depending on the synchroniza-
tion methodology on 6 KNLs (TERA1000-2)

26

Table 3: Parallel efficiency with 4.4 million unknowns on TERA1000-2 (refer-
ence time measured on 56 KNLs)

#KNLs 56 110 182 272 380

No H-deps
time 11,989 s 6,338 s 4,250 s 3,255 s 2,785 s

efficiency 100% 96% 87% 76% 63%

H-deps
time 10,233 s 5,338 s 3,562 s 2,676 s 2,188 s

efficiency 100% 97.5% 88.4% 78.7% 68.9%
memory per node 26 GB 13 GB 7.9 GB 5.3 GB 3.8 GB

trial problems. Figure 25 shows the traces obtained when executing the UAV
testcase with 823K unknowns (which output was presented on Figure 1) on
6 × 64 = 384 cores. Introducing H-dependencies reduces the execution time
from 325s to 235s, as illustrated by the visible diminution of the amount of
idle time lost in superfluous or inefficient synchronizations in Figure 25b. Cou-
pling H-dependencies with H-broadcasts reduces this value to 200s. We thus
observe a 1.6× improvement of the makespan of the factorization step of this
testcase, without changing the amount of computation, but only optimizing its
parallelization methodology.

As another example, simulating a 1.7 GHz antenna on a launcher of the
CNES (testcase from the ISAE Workshop’14) is done in only 25 minutes using
30 KNLs to solve a problem with 1.65 million unknowns compressed at 98.5%.
Likewise, we can compute the RCS of the UAV shown in Figure 1 at 10 GHz
in 53 minutes over 72 KNLs for a problem with 4.84 millions unknowns. We
here obtain a factorized system with a compression rate of 98.7%, or 1.2 TB
of memory. In comparision, this would take more than 2.5 days to solve the
same problem on a single KNL node, without a distributed memory H-matrix
solver, which is by far less convenient to solve our industrial problems. Likewise,
solving the largest problem in Figure 23 would likely require about a week of
computation on a single node, assuming we could fit the overall 2 TB of memory
required to solve the problem, for example using out-of-core techniques.

6 Related work

Task parallelism have become increasingly popular in the last decade, and many
task-based runtime systems have been brought to the community [26]. The Se-
quential Task Flow programming model, which automatically infers dependen-
cies according to data accesses, has been implemented in runtime systems such
as Quark, StarPU, StarSs, and in standardized environments such as OpenMP.
Both the OmpSs and StarPU runtime systems also serve as a target to im-
plement H-matrix solvers using the STF model. StarPU makes it possible to
manipulate hierarchical data by applying filters, which can be invoked asyn-
chronously [39]. In their implementation of a H-matrix solver on top of StarPU,
however, Lizé et al. [30] still select a depth in the hierarchy under which data are

27

accessed sequentially to avoid manipulating hierarchical data. OmpSs provides
weak dependencies to let users lazily lock all children of a hierarchical piece
of data. In [19], Carratalá-Sáez et al. explicitly state that their implementa-
tion of H-matrix cannot cope with the whole data hierarchy, and therefore only
accessed the H-matrix leaves.

Contrary to the aforementioned solvers, our H-matrix solver fully takes ad-
vantage of implicit dependencies between hierarchical pieces of data. Kriemann
et al. [28] reach almost perfect scalability on shared memory, but manually
unfold the DAG of Intel TBB tasks [32], which limits the extensibility and
maintainability of their approach compared to H-dependencies.

The interruptible task mechanism we have used is similar to the pausing API
provided by Nanos in OmpSs [36], but our approach neither requires a specific
non-standard OpenMP implementation nor a thread-multiple MPI implemen-
tation. Instead, existing systems can leverage our coherency protocol to easily
support hierarchical data on top of the STF model. To the best of our knowl-
edge, there has been no other demonstration that combining interruptible tasks
with hierarchical data dependency management significantly helps to scale on
distributed memory systems.

Designing a fast scalable parallel solver based on compression techniques is
a current hot topic into the field of numerical simulations. In particular, re-
cent studies addressed computational kernels and both shared and distributed
memory parallelism. Compression algorithms are often key to get better per-
formances. Alternatives to QR-SVD algorithms, e.g. Rank Revealing QR [33]
or randomized sampling [24], are investigated. Concurrently, other studies have
shown that batched algorithms improve performances over manycore architec-
tures for small matrices computations [31, 21, 16, 1]. Being focused on paral-
lelism, our work is orthogonal to these studies, but the flexibility of our propo-
sition makes it possible to easily integrate such advanced kernels.

Regarding distributed memory, iterative solvers embedding compression tech-
niques are commonly found in the literature (e.g. HACApK [27] or hmglib [25]).
Their parallel performances mainly rely on the parallelization of the H-matrix
vector product. Building a distributed direct hierarchical solver is more dif-
ficult due to the variety of required kernels and the hierarchical nature of
the data on which they operate. The closest dense direct hierarchical solver
in terms of distributed memory parallelism is the compression component of
STRUMPACK [35]. The efficiency of their approach has been proved on large
problems, running on up to 8,000 cores. However, it must be noted that their
compression technique is based on an HSS representation, which differs from
H-matrix. Moreover, on the parallel aspects, this solver is (for now) not mul-
tithreaded and the communication schemes are synchronous. Their work could
directly take benefits of both H-dependencies and taskified MPI asynchronous
operations to get efficient shared memory parallelism and to overlap communi-
cations and computations.

28

7 Conclusion and Future Work

Designing a scalable, efficient H-matrix solver requires to cope with complex,
hierarchical dependencies between tasks in order to unleash the maximum degree
of parallelism. Expressing such dependencies in a practical way, compatible with
the use of MPI communications, is a key to enable applications to be extended
with various numerical optimizations.

In this paper, we propose to leverage two runtime system extensions, namely
automatic inference of hierarchical data dependencies and interruptible tasks,
to achieve these goals. We have developed a complete H-matrix direct solver
using MPI and our task-based runtime system. Our experiments show that our
approach is up to 1.6 times faster than the traditional fork-join method, and
achieves 70% of parallel efficiency on a cluster of 24K cores.

This work enables several promising research directions. In particular, we
intend to implement multiple kernel variants to enable dynamic kernel selection.
Data locality could be further improved by introducing per-core task queues [13].
Having efficient synchronization techniques will help in offloading kernels for H-
matrices over accelerators such as GPUs: advanced runtime system mechanisms
will be required to leverage the batching techniques employed by Akbudak et
al. [5] beyond a single level of compression. Our approach also provides a nice
framework to implement dynamic load balancing of tasks across multiple nodes.
Last but not least, our approach could apply to other applications, such as
AMR-based solvers.

References

[1] Abdelfattah, A., Haidar, A., Tomov, S., and Dongarra, J. Novel
hpc techniques to batch execution of many variable size blas computations
on gpus. In Proceedings of the International Conference on Supercomputing
(2017), ACM, p. 5.

[2] Agullo, E., Augonnet, C., Dongarra, J., Ltaief, H., Namyst, R.,
Thibault, S., and Tomov, S. A hybridization methodology for high-
performance linear algebra software for gpus. In GPU Computing Gems
Jade Edition. Elsevier, 2012, pp. 473–484.

[3] Agullo, E., Aumage, O., Faverge, M., Furmento, N., Pruvost,
F., Sergent, M., and Thibault, S. P. Achieving high performance on
supercomputers with a sequential task-based programming model. IEEE
Transactions on Parallel and Distributed Systems (2017).

[4] Agullo, E., Demmel, J., Dongarra, J., Hadri, B., Kurzak, J.,
Langou, J., Ltaief, H., Luszczek, P., and Tomov, S. Numerical
linear algebra on emerging architectures: The plasma and magma projects.
In Journal of Physics: Conference Series (2009), vol. 180, IOP Publishing,
p. 012037.

29

[5] Akbudak, K., Ltaief, H., Mikhalev, A., and Keyes, D. Tile low rank
cholesky factorization for climate/weather modeling applications on many-
core architectures. In High Performance Computing (Cham, 2017), J. M.
Kunkel, R. Yokota, P. Balaji, and D. Keyes, Eds., Springer International
Publishing, pp. 22–40.

[6] Amestoy, P. R., Buttari, A., L’Excellent, J.-Y., and Mary, T.
Performance and scalability of the block low-rank multifrontal factorization
on multicore architectures. ACM Trans. Math. Softw. 45, 1 (Feb. 2019),
2:1–2:26.

[7] Aminfar, A., Ambikasaran, S., and Darve, E. A fast block low-
rank dense solver with applications to finite-element matrices. Journal of
Computational Physics 304 (2016), 170 – 188.

[8] Augonnet, C., Aumage, O., Furmento, N., Namyst, R., and
Thibault, S. Starpu-mpi: Task programming over clusters of machines en-
hanced with accelerators. In European MPI Users’ Group Meeting (2012),
Springer, pp. 298–299.

[9] Augonnet, C., Goudin, D., Pujols, A., and Sesques, M. Accelerat-
ing a massively parallel numerical simulation in electromagnetism using a
cluster of gpus. In PPAM (2013).

[10] Bebendorf, M. Approximation of boundary element matrices. Nu-
merische Mathematik 86, 4 (2000), 565–589.

[11] Bebendorf, M. Hierarchical Matrices - A Means to Efficiently Solve El-
liptic Boundary Value Problems, vol. 63 of Lecture Notes in Computational
Science and Engineering. Springer, 2008.

[12] Blackford, L. S., Choi, J., Cleary, A., D’Azevedo, E., Demmel,
J., Dhillon, I., Dongarra, J., Hammarling, S., Henry, G., Pe-
titet, A., Stanley, K., Walker, D., and Whaley, R. C. ScaLA-
PACK Users’ Guide. Society for Industrial and Applied Mathematics,
Philadelphia, PA, 1997.

[13] Blumofe, R. D., Joerg, C. F., Kuszmaul, B. C., Leiserson, C. E.,
Randall, K. H., and Zhou, Y. Cilk: An efficient multithreaded runtime
system. Journal of parallel and distributed computing 37, 1 (1996), 55–69.

[14] Bosilca, G., Bouteiller, A., Danalis, A., Faverge, M., Haidar,
A., Herault, T., Kurzak, J., Langou, J., Lemarinier, P., Ltaief,
H., et al. Flexible development of dense linear algebra algorithms on
massively parallel architectures with dplasma. In 2011 IEEE International
Symposium on Parallel and Distributed Processing Workshops and Phd Fo-
rum (2011), IEEE, pp. 1432–1441.

30

[15] Bosilca, G., Bouteiller, A., Danalis, A., Faverge, M., Hérault,
T., and Dongarra, J. J. Parsec: Exploiting heterogeneity to enhance
scalability. Computing in Science & Engineering 15, 6 (2013), 36–45.

[16] Boukaram, W. H., Turkiyyah, G., Ltaief, H., and Keyes, D. E.
Batched QR and SVD algorithms on gpus with applications in hierarchical
matrix compression. Parallel Computing 74 (2018), 19–33.

[17] Broquedis, F., Clet-Ortega, J., Moreaud, S., Furmento, N.,
Goglin, B., Mercier, G., Thibault, S., and Namyst, R. hwloc:
A generic framework for managing hardware affinities in hpc applications.
In 2010 18th Euromicro Conference on Parallel, Distributed and Network-
based Processing (2010), IEEE, pp. 180–186.

[18] Buttari, A., Langou, J., Kurzak, J., and Dongarra, J. A class of
parallel tiled linear algebra algorithms for multicore architectures. Parallel
Comput. 35, 1 (Jan. 2009), 38–53.

[19] Carratalá-Sáez, R., Christophersen, S., Aliaga, J. I., Beltran,
V., Börm, S., and Quintana-Ort́ı, E. S. Exploiting nested task-
parallelism in the h-lu factorization. Journal of Computational Science
(2019).

[20] Chan, E., Van Zee, F. G., Bientinesi, P., Quintana-Orti, E. S.,
Quintana-Orti, G., and Van de Geijn, R. Supermatrix: a multi-
threaded runtime scheduling system for algorithms-by-blocks. In Proceed-
ings of the 13th ACM SIGPLAN Symposium on Principles and practice of
parallel programming (2008), ACM, pp. 123–132.

[21] Charara, A., Keyes, D. E., and Ltaief, H. Tile low-rank GEMM
using batched operations on gpus. In Euro-Par 2018: Parallel Process-
ing - 24th International Conference on Parallel and Distributed Comput-
ing, Turin, Italy, August 27-31, 2018, Proceedings (2018), M. Aldinucci,
L. Padovani, and M. Torquati, Eds., vol. 11014 of Lecture Notes in Com-
puter Science, Springer, pp. 811–825.

[22] Hackbusch, W. A sparse matrix arithmetic based on h-matrices. part i:
Introduction to h-matrices. Computing 62, 2 (May 1999), 89–108.

[23] Hackbusch, W., Khoromskij, B., and A. Sauter, S. On H2-Matrices.
08 2000, pp. 9–29.

[24] Halko, N., Martinsson, P.-G., and Tropp, J. A. Finding structure
with randomness: Probabilistic algorithms for constructing approximate
matrix decompositions. SIAM review 53, 2 (2011), 217–288.

[25] Harbrecht, H., and Zaspel, P. A scalable h-matrix approach for
the solution of boundary integral equations on multi-gpu clusters. CoRR
abs/1806.11558 (2018).

31

[26] Hoque, R., and Shamis, P. Distributed task-based runtime systems-
current state and micro-benchmark performance. In 2018 IEEE 20th In-
ternational Conference on High Performance Computing and Communi-
cations; IEEE 16th International Conference on Smart City; IEEE 4th
International Conference on Data Science and Systems (HPCC/SmartCi-
ty/DSS) (2018), IEEE, pp. 934–941.

[27] Ida, A., Iwashita, T., Mifune, T., and Takahashi, Y. Parallel hierar-
chical matrices with adaptive cross approximation on symmetric multipro-
cessing clusters. Journal of information processing 22, 4 (2014), 642–650.

[28] Kriemann, R. H-lu factorization on many-core systems. Comput. Vis.
Sci. 16, 3 (June 2013), 105–117.

[29] Kurzak, J., and Dongarra, J. Implementing linear algebra routines
on multi-core processors with pipelining and a look ahead. In International
Workshop on Applied Parallel Computing (2006), Springer, pp. 147–156.

[30] Lizé, B. Fast direct solver for the boundary element method in electromag-
netism and acoustics : H-Matrices. Parallelism and industrial applications.
Theses, Université Paris-Nord - Paris XIII, June 2014.

[31] Masliah, I., Abdelfattah, A., Haidar, A., Tomov, S., Baboulin,
M., Falcou, J., and Dongarra, J. High-performance matrix-matrix
multiplications of very small matrices. In European Conference on Parallel
Processing (2016), Springer, pp. 659–671.

[32] Pheatt, C. Intel® threading building blocks. J. Comput. Sci. Coll.
23, 4 (Apr. 2008), 298–298.

[33] Pichon, G., Darve, E., Faverge, M., Ramet, P., and Roman, J.
Sparse supernodal solver using block low-rank compression: Design, per-
formance and analysis. Journal of Computational Science 27 (2018), 255
– 270.

[34] Quintana-Ort́ı, G., Igual, F. D., Quintana-Ort́ı, E. S., and
Van de Geijn, R. A. Solving dense linear systems on platforms with
multiple hardware accelerators. In ACM Sigplan Notices (2009), vol. 44,
ACM, pp. 121–130.

[35] Rouet, F.-H., Li, X. S., Ghysels, P., and Napov, A. A distributed-
memory package for dense hierarchically semi-separable matrix computa-
tions using randomization. ACM Trans. Math. Softw. 42, 4 (June 2016),
27:1–27:35.

[36] Sala, K., Teruel, X., Perez, J. M., Peña, A. J., Beltran, V., and
Labarta, J. Integrating blocking and non-blocking mpi primitives with
task-based programming models. Parallel Computing (2018).

32

[37] Seo, S., Amer, A., Balaji, P., Bordage, C., Bosilca, G., Brooks,
A., Carns, P., Castelló, A., Genet, D., Herault, T., Iwasaki, S.,
Jindal, P., Kalé, L. V., Krishnamoorthy, S., Lifflander, J., Lu,
H., Meneses, E., Snir, M., Sun, Y., Taura, K., and Beckman, P.
Argobots: A lightweight low-level threading and tasking framework. IEEE
Transactions on Parallel and Distributed Systems 29, 3 (March 2018), 512–
526.

[38] Song, F., YarKhan, A., and Dongarra, J. Dynamic task scheduling
for linear algebra algorithms on distributed-memory multicore systems. In
Proceedings of the Conference on High Performance Computing Network-
ing, Storage and Analysis (New York, NY, USA, 2009), SC ’09, ACM,
pp. 19:1–19:11.

[39] Thibault, S. On Runtime Systems for Task-based Programming on Het-
erogeneous Platforms. Habilitation à diriger des recherches, Université de
Bordeaux, Dec. 2018.

[40] Tomov, S., Dongarra, J., and Baboulin, M. Towards dense linear
algebra for hybrid GPU accelerated manycore systems. Parallel Computing
36, 5-6 (June 2010), 232–240.

[41] Xia, J., Chandrasekaran, S., Gu, M., and Li, X. Superfast mul-
tifrontal method for large structured linear systems of equations. SIAM
Journal on Matrix Analysis and Applications 31, 3 (2010), 1382–1411.

[42] Xia, J., Chandrasekaran, S., Gu, M., and Li, X. S. Fast algorithms
for hierarchically semiseparable matrices. Numerical Linear Algebra with
Applications 17, 6 (2010), 953–976.

33

	Introduction
	Background
	Task based solvers over distributed memory architectures
	 Compression techniques for electromagnetism
	Block Low Rank algorithms
	Hierarchical algorithms

	Proposed execution model
	Hierarchical dependencies
	Extending our model for distributed memory with preemptive tasks
	Implementation of the execution model

	Implementation of an H-matrix direct solver
	Design in shared-memory
	Extension to distributed memory

	Evaluation
	Related work
	Conclusion and Future Work

