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Abstract.Nuclear data evaluation files in the ENDF6 format provide mean values and associated uncertainties
for physical quantities relevant in nuclear physics. Uncertainties are denoted asD in the format description, and
are commonly understood as standard deviations. Uncertainties can be completed by covariance matrices. The
evaluations do not provide any indication on the probability density function to be used when sampling. Three
constraints must be observed: themean value, the standard deviation and the positivity of the physical quantity.
MENDEL code generally uses positively truncated Gaussian distribution laws for small relative standard
deviations and a lognormal law for larger uncertainty levels (>50%). Indeed, the use of truncated Gaussian laws
can modify the mean and standard deviation value. In this paper, we will make explicit the error in the mean
value and the standard deviation when using different types of distribution laws.We also employ the principle of
maximum entropy as a criterion to choose among the truncated Gaussian, the fitted Gaussian and the lognormal
distribution. Remarkably, the difference in terms of entropy between the candidate distribution laws is a
function of the relative standard deviation only. The obtained results provide therefore general guidance for the
choice among these distributions.
1 Introduction

Nuclear data evaluation files in the ENDF6 format [1]
provide mean values and associated uncertainties for
physical quantities relevant in nuclear physics. These
uncertainties are denoted asD in the format description for
most of the nuclear data parameter types, and are
understood as standard deviations. Uncertainties can be
completed (for microscopic cross sections, for example) by
covariance matrices.

For uncertainty propagation based on random sam-
pling, one needs to know the probability density function
associated with each random variable. Current nuclear
data evaluation files [2–4] do not provide any indication
which probability density function to use, and users have
to choose a distribution law. This is the case for all
uncertain data propagated in fuel cycle code systems, such
as independent fission yields, radioactive decay constants,
radioactive decay energies, radioactive decay branching
ratios and multigroup microscopic cross sections. For some
data, in particular independent neutron fission yields and
some microscopic cross sections, the relative standard
deviation can be high (more than 50%), and Gaussian
ebastien.lahaye@cea.fr
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laws naturally lead to negative occurrences, which is not
acceptable for those physical quantities.

Three constraints must therefore be respected when
sampling:

–

m
in
positivity of the physical quantity;

–
 its mean value;

–
 and its standard deviation.

Often the positively truncated Gaussian law is used,
which takes into account positivity but introduces a bias in
the mean value and the standard deviation. Furthermore,
it is not symmetric around the mean value.

MENDEL [5], is the new generation of the CEA code
system for nuclear fuel cycle studies. Its depletion solver is
provided to the transport code systems APOLLO3® [6]
and TRIPOLI-4® [7]. MENDEL is the successor of
DARWIN/PEPIN2 [8].

Uncertainty quantification in MENDEL is based on a
propagation method using a Monte Carlo approach by
correlated sampling [9], and sampling is done by the CEA
uncertainty platform URANIE [10,11]. Nuclear data
uncertainties are propagated to physical quantities of
interest (such as decay heat or concentrations) [12].

Until now, the choice of distribution law inMENDEL is
done in the following way:

–
 positively truncatedGaussian law if the relative standard
deviation is less than 50%;
ons Attribution License (http://creativecommons.org/licenses/by/4.0),
any medium, provided the original work is properly cited.
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Fig. 1. Probability of negative occurrences for non truncated
Gaussian distributions.
lognormal law if the relative standard deviation is more
than 50%.

This choice is based on physical reasons, as truncated
Gaussian distributions modify the mean value and the
standard deviation values for large relative uncertainties.
The switching point between the Gaussian and the
lognormal distributions is a pragmatic choice. This paper
aims to give a formal justification for this choice.

The structure of this paper is as follows. First, we will
investigate the introduced bias in both the mean value and
the standard deviation by a truncation of the Gaussian
distribution. We will then describe how to modify the
Gaussian law parameters in order to obtain after trunca-
tion the mean value and the standard deviation as specified
in evaluation files.

In the second part, we employ the principle of maximum
entropy [13,14] to choose between different distribution
laws. We will show that the choice of the distribution law
depends on the relative standard deviation.

We limit our study in this paper to the distribution
laws themselves, without propagation in numerical code
systems.
2 Maximum entropy method

For a continuous probability density function p(x) defined
on I, we introduce the differential entropy defined as:

hðpÞ ¼ �∫IpðxÞlnpðxÞdx ð1Þ
We define p(x)lnp(x)= 0 when p(x)= 0 (due to

lim
p→ 0þ

p ln p ¼ 0).

This entropy function appears in statistical physics and
thermodynamics where higher entropy is associated with
states closer to equilibrium.

The maximum entropy principle [14] states that for a
given set of constraints (for example knownmean value and
standard deviation), probability distribution with the
largest entropy should be chosen.

For given constraints, the law with the largest entropy
is the one that contains the least amount of information
about the physical quantity. For example, the maximum
entropy principle will lead to the following choices:

–
 a uniform law if the constraints are minimal andmaximal
values;
–
 and a Gaussian law if the constraints are a given mean
value and a standard deviation.

3 Candidate distribution laws

Candidate distribution laws must respect the three
following criteria:

–
 positivity of the realizations: P(X< 0)=0 (id est
I=R+), as nuclear data are positive;
–
 they must match the mean value m (within a given
tolerance) as specified in the evaluation file;
–
 they must match the standard deviation s (within a
given tolerance) as specified in the evaluation file.
3.1 Gaussian distribution

Let G(m,s) be the non-truncated Gaussian distribution
with mean value m and standard deviation s. Its
probability distribution function reads:

gðxÞ ¼ 1

s
ffiffiffiffiffiffi
2p

p exp � 1

2

x� m

s

� �2� �
: ð2Þ

3.1.1 Entropy

The Gaussian distribution maximizes the differential
entropy among all distribution laws for given mean value
and standard deviation. TheGaussian distribution entropy
is given by:

hðgÞ ¼ ln
s

m

ffiffiffiffiffiffiffiffi
2pe

p� �
þ lnm: ð3Þ

3.1.2 Positivity

A Gaussian distribution yields negative values with the
probability:

PðX < 0Þ ¼ 1

2
1� erf

m

s
ffiffiffi
2

p
� �� �

: ð4Þ

This negative occurrence probability is given as a
function of the relative standard deviation in Figure 1.

Due to this negative occurrence probability, which is
non-negligible when s

m
is large, it is necessary to use other

distribution laws to enforce the positivity constraint.

3.2 Positively truncated Gaussian distribution
3.2.1 Distribution law

We define a Gaussian distribution with mean value m and
standard deviation s, and then set the probability density
to zero for negative values. The resulting distribution �
after normalization � is called a positively truncated
Gaussian distribution.
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Fig. 2. Relative error on mean value.

S. Lahaye: EPJ Nuclear Sci. Technol. 4, 38 (2018) 3
Draws can be realized by sampling from the original
Gaussian distribution and rejecting all negative values. Its
probability density function reads:

pðxÞ ¼
1

bs
ffiffiffiffiffiffi
2p

p exp � 1

2

x� m

s

� �2� �
; x � 0

0 ; x < 0:

8<
: ð5Þ

The constant b is defined so that ∫ℝp(x)dx=1, which
means:

b ¼ 1

2
1þ erf

m

s
ffiffiffi
2

p
� �� �

:

If we substitute d ¼ s

m
, we get the form:

b ¼ 1

2
1þ erf

1

d
ffiffiffi
2

p
� �� �

: ð6Þ

The positively truncated Gaussian law will be denoted
by PG(m,s).

3.2.2 Entropy

The differential entropy can be computed as a sum of ln m
and a function of d:

hðpÞ¼ 1

2
1� 1

d

1

b
ffiffiffiffiffiffi
2p

p exp
�1

2d2

� �� �
þ ln db

ffiffiffiffiffiffi
2p

p� �
þ lnm: ð7Þ

3.2.3 Errors on moments

With this distribution, we modify the distribution
moments, particularly for large relative uncertainties.

The truncated Gaussian distribution mean value is
equal to:

E½p� ¼ mþ
ffiffiffi
2

p

r
sexp � 1

2
m
s

� �2� �
1þ erf m

s
ffiffi
2

p
� � : ð8Þ

And the truncated Gaussian distribution variance is
equal to:

VarðpÞ ¼ s2 þE½p� m� E½p�ð Þ: ð9Þ
We obtain the following relative error on the expected
value, which is a function of the relative standard deviation
of the original input data (i.e. non-truncated Gaussian
distribution m and s parameters):

E½p� � m

m
¼ d

ffiffiffi
2

p

r exp � 1

2

1

d

� �2
 !

1þ erf
1

d
ffiffiffi
2

p
� � : ð10Þ

This bias is represented in Figure 2 as a function of the
parameter d.

The relative error of the standard deviation is also a
function of d only:

VarðpÞ � s2

s2
¼ �

exp � 1

2d2

� �
b
ffiffiffiffiffiffi
2p

p 1

d
þ
exp � 1

2d2

� �
b
ffiffiffiffiffiffi
2p

p

2
664

3
775: ð11Þ

This bias is represented in Figure 3 as a function of the
parameter d.

The squared relative discrepancy between the relative
standard deviations of the Gaussian distribution and the
truncated Gaussian distribution is given in equation (12).

VarðpÞ
E½ p�2
d2

�1 ¼

1

d2
1þ 1

d2
þ
exp � 1

2d2

� �
db

ffiffiffiffiffiffi
2p

p

2
664

3
775

1

d
þ
exp � 1

2d2

� �
b
ffiffiffiffiffiffi
2p

p

0
BB@

1
CCA

2
� 1þ d2

d2
: ð12Þ

The relative standard deviation discrepancy is repre-
sented in Figure 4. When choosing this truncated law, we
obtain the numerical values for the errors shown in Table 1.

We can conclude that if the truncation is totally
acceptableupto25%uncertainty, itbegins tobeproblematic
for a 50% uncertainty, and is totally unacceptable for 100%
uncertainty.
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Table 1. Relative error between moments of the approx-
imative law and expected moments.

Target
rel. unc.

Rel. error
on mean

Rel. error
on std dev.

Abs. error on
rel std dev.

10% <1 10�10 <1 10�10 <1 10�10

25% 3.4 10�5 5.4 10�4 3.8 10�5

50% 2.7% 11% 4.0%
100% 28.8% 37.0% 62%
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These formal results confirm the need to switch to
another law, which has already been introduced heuristi-
cally in the URANIE/MENDEL sampling scheme.

3.3 Gaussian distribution with correct mean
and variance

3.3.1 Distribution law

We consider a random variable in an evaluated nuclear
data file characterized by a mean value m and a standard
deviation s. We define a truncated Gaussian law
q ¼ PGð~m; ~sÞ so that its mean value equals m and its
standard deviation equals s.

qðxÞ ¼
1

~b~s
ffiffiffiffiffiffi
2p

p exp � 1

2

x� ~m

~s

� �2
 !

; x � 0

0 ; x < 0:

8>><
>>: ð13Þ

Please note the changed notation compared to equation
(5). The variables ~m, ~s here corresponds to m, s there.

The following specification of ~b ensures the proper
normalization of the distribution:

~b ¼ 1

2
1þ erf

1
~s
~m

ffiffiffi
2

p
0
@

1
A

0
@

1
A: ð14Þ

3.3.2 Coefficient determination

We obtain from equation (8):

m ¼ ~m þ ~s

ffiffiffi
2

p

r exp � 1

2

~m

~s

� �2
" #

1þ erf
~m

~s
ffiffiffi
2

p
� � : ð15Þ



Table 2. Gaussian distribution parameters for correct
mean and standard deviation.

Truncated
Gaussian

Modified Gaussian law

s

m
~s

m

~m

m

~s

~m

0.00 0.00 1 0.00
0.05 0.05 1 0.05
0.1 0.1 1 0.1
0.15 0.15 1 0.15
0.2 0.20000 1 0.200001
0.25 0.25007 0.99997 0.25008
0.3 0.30080 0.99952 0.30095
0.35 0.35378 0.99734 0.35472
0.4 0.41117 0.99094 0.41493
0.45 0.47535 0.97655 0.48676
0.5 0.54897 0.94864 0.57869
0.55 0.63526 0.89895 0.70666
0.6 0.73845 0.81469 0.90641
0.65 0.86452 0.67510 1.28059
0.7 1.02249 0.44452 2.30020
0.75 1.22698 0.057029 21.5150
0.8 1.50413 �0.62242 �2.41659
0.85 1.90733 �1.91541 �0.99578
0.9 2.57152 �4.80274 �0.53543
0.95 4.01884 �14.2486 �0.28205
1 7.68560 �57.0684 �0.13467
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And from equation (9):

s2 ¼ ~s2 þ m ~m � mð Þ:
Leading to:

~m ¼ m2 þ s2 � ~s2

m
ð16Þ

which leads to (17) by substituting ~m as given in (16) in
(15):

s2 ¼ ~s2 � m

ffiffiffi
2

p

r ~sexp � 1

2

m2 þ s2 � ~s2

m~s

� �2
 !

1þ erf
m2 þ s2 � ~s2

m~s
ffiffiffi
2

p
� � : ð17Þ

Equation (17) contains one unknown variable ~s , but its
complexity does not enable a formal analytical solution.

Hence, we compute the solutions for several values of
(m,s) tuples numerically.

To do so, we introduce a pseudo relative standard
deviation ~s

m
in equation (17).

With X ¼ d ¼ s
m
and ~X ¼ ~s

m
we obtain:

X2 ¼ ~X
2 � ~X

ffiffiffi
2

p

r exp � 1

2

1þX2 � ~X
2

~X

 !2
2
4

3
5

1þ erf
1þX2 � ~X

2

~X
ffiffiffi
2

p
 ! : ð18Þ

The distribution parameters are summarized in Table 2
for different values of X ¼ s

m
.

Problematic values, i.e. negative and unreasonably
large values, appear in bold letters.

The reader should note that ~m and ~s are not the mean
value and standard deviation of the truncated Gaussian
distribution, which are respectively equal to m and s. A
negative value of ~m means that more than half of the
distribution is truncated and the mode is positioned at
zero, which may not be desirable.

For this reason, it is reasonable to not use the truncated
Gaussian distribution for relative standard deviations
larger than 75%.

3.3.3 Entropy

The differential entropy of the fitted Gaussian distribution
is computed in the same way as in equation (7).

3.4 Lognormal distribution

3.4.1 Distribution law

The probability density function of a lognormal distribu-
tion characterized by parameters m and s reads:

lðxÞ ¼ 1

xs
ffiffiffiffiffiffi
2p

p exp � 1

2

lnx�m

s

� �2
 !

: ð19Þ
3.4.2 Coefficient determination

The mean value of a lognormal distribution is equal to:

E½q� ¼ m ¼ exp mþ s2

2

� �
: ð20Þ

The variance of a lognormal distribution is equal to:

VarðqÞ ¼ s2 ¼ es
2 � 1

� �
e2mþs2 : ð21Þ

which leads to:

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln 1þ s

m

� �2
 !vuut : ð22Þ

m ¼ lnm� 1

2
ln 1þ s

m

� �2
 !

: ð23Þ



Table 3. Entropy values for several laws.

s/m h(PG(m,s)) h PGð~m; ~sÞð Þ h(LN(m,s))

0.05 �1.5768 �1.5768 �1.5787
0.10 �0.8836 �0.8836 �0.8911
0.15 �0.4782 �0.4782 �0.4949
0.20 �0.1905 �0.1905 �0.2200
0.25 0.0323 0.0326 �0.0129
0.30 0.2120 0.2145 0.1502
0.35 0.3573 0.3668 0.2822
0.40 0.4744 0.4956 0.3909
0.45 0.5692 0.6044 0.4814
0.50 0.6475 0.6955 0.5574
0.55 0.7140 0.7709 0.6214
0.60 0.7721 0.8323 0.6755
0.65 0.8240 0.8815 0.7213
0.70 0.8714 0.9198 0.7599
0.75 0.9153 0.9489 0.7924
0.80 0.9565 0.9701 0.8197
0.85 0.9955 0.9847 0.8424
0.90 1.0326 0.9938 0.8613
0.95 1.0682 0.9986 0.8767
1.00 1.1024 1.0001 0.8891
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3.4.3 Entropy

The differential entropy of the lognormal distribution
reads:

hðqÞ ¼ 1

2
þ ln s

ffiffiffiffiffiffi
2p

p� �
þm

hðqÞ ¼ 1

2
1þ ln 2pln 1þ s

m

� �2
 ! !

� ln 1þ s

m

� �2
 !" #

þlnm

hðqÞ ¼ 1

2
1þ ln

2pln 1þ d2
� �

1þ d2

� �	 

þ lnm: ð24Þ
4 Choice of the law

4.1 Entropy principle

The different distribution laws will now be compared based
on their differential entropies.

We show in Table 3 the entropy values for the
truncated Gaussian law PG(m,s), the fitted truncated
Gaussian law PGð~m; ~sÞ � constistant with the mean value
and the standard deviation provided in the evaluated
nuclear data file � and the log-normal law LN(m,s). The
values were obtained form=1. The differences between the
entropies are independent from the choice of m.

Inspecting equations (7) and (24) shows that the
difference between the truncated Gaussian law and the
lognormal law is independent of m.

Even though the mode value ~m of the fitted Gaussian
distribution which has to be used in equation (7) differs
from m, the difference to the lognormal distribution or the
truncated Gaussian distribution is still a function of
the relative standard deviation d only. Equation (7) for the
fitted Gaussian law reads:

hðpÞ ¼ 1

2
1� 1

~d

1
~b

ffiffiffiffiffiffi
2p

p
exp

�1

2~d
2

� �� �
þ ln ~d~b

ffiffiffiffiffiffi
2p

p� �
þ ln~m:

In fact, ~d is a function of d only as ~d ¼ ~s

~m
¼ ~s

m

m

~m
and:

~s

–

m
depends of d only as it is the solution of equation (18);

~m ~s
� �2
–
 and
m
¼ 1þ d2 þ

m
is also a function of d only.

In conclusion, the difference between the fitted
truncated Gaussian law entropy and another candidate

law entropy will be a function of d plus ln~m � lnm ¼ ln
~m

m
,

which is also a function of d only.
Consequently, the difference in differential entropies is

a function of the relative standard deviation only.
Despite entropy considerations, large discrepancies

between the mode and the mean value are not desirable,
which is an argument against the fitted truncated Gaussian
in case of large relative uncertainties.

Using the entropy principle, we can see in Table 3
that � between those three laws � the modified Gaussian
law is optimal, when the relative standard deviation is less
than 80%.

When relative standard deviation is bigger than 80%,
the truncated Gaussian distribution entropy is optimal.
Nevertheless, for truncated Gaussian with high level of
uncertainties, users need to take into account the huge
discrepancy between objective and effective moments.
Truncated Gaussian laws is not to be used in this context.

The comparison of the candidate laws for several values
of s

m
in Figures 5 and 6 shows the similarity of the truncated

Gaussian distribution and the Gaussian distribution in the
case of small relative uncertainties. The fitted truncated
Gaussian distribution is the first distribution to diverge
from the Gaussian distribution, and resembles the
lognormal distribution for large relative uncertainties
(100% uncertainty, right part of Fig. 6).

4.2 Mode and mean

For a non-truncated Gaussian, mean value and mode are
equal.

For the truncated Gaussian law (resp. the fitted
truncated Gaussian law), the parameter m (resp. ~m)
indicates the distribution mode. In general, it is preferable
to use distributions where the mode does not differ too
much from the mean value.



Fig. 5. Candidate law probability density function for relative standard deviation of 25% (left) and 50% (right).

Fig. 6. Candidate law probability density function for relative standard deviation of 75% (left) and 100% (right).
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If we want to limit to 10% the discrepancy between
mode and mean value when using fitted truncated

Gaussian distribution, we cannot employ it for
~m

m
> 0:90.

According to Table 2, this constraint is equivalent to:
s

m
� 1

2
:

5 Conclusion

The Gaussian distribution is not adequate for positive
physical quantities, especially for large relative uncertain-
ties, as it leads to excessive amount of negative occurrences.

For this reason, we investigated several positive
distribution: the truncated Gaussian distribution, the
fitted truncated Gaussian distribution and the lognormal
distribution. All three laws exhibit zero probability density
for negative values.

First, we studied the impact on the mean value and the
standard deviation of the use of the truncated Gaussian
distribution. We then compared the three distributions in
terms of differential entropy. Despite the fact that the
differential entropy is not scale invariant, the difference
between two differential entropies is a function of the
relative standard deviation only.

Both the maximum entropy principle and physical
considerations have been considered in this work.

In summary, we suggest the following distribution
recipe for choosing among the three distributions, depend-
ing on the relative standard deviation:
–
 for small values of relative uncertainties s
m
< 1

4

� �
, the

mean and standard deviation of the three laws are nearly
identical. The differential entropy is slightly better for
Gaussian laws. Hence, users can choose indifferently
between the truncated Gaussian law PG(m,s) and the
fitted truncated Gaussian law PGð~m; ~sÞ;
–
 for intermediate values of relative uncertainties, id est
1
4 � s

m
< 1

2

� �
, the principle of maximum entropy and

favors the fitted truncated Gaussian law PGð~m; ~sÞ;� �

–
 for large values of relative uncertainties s

m
≥ 1

2 ,
positiveness of the mode and accuracy of the moments
impose the choice of a lognormal law.

In conclusion we propose the following two laws:

pðxÞ¼

0 ; x < 0

1

bs
ffiffiffiffiffiffi
2p

p exp �ðx� mÞ2
2s2

 !
; 0 � s

m
<

1

4
x � 0

1 ffiffiffiffiffiffip exp
�ðx� ~mÞ2

2

 !
;
1 � s

<
1
; x � 0

8>>>>>>>>>>>>>>>>>><
>
 ~b~s 2p 2~s 4 m 2

1

xs
ffiffiffiffiffiffi
2p

p exp �ðlnx�mÞ2
2s2

 !
;

s

m
� 1

2
; x � 0

>>>>>>>>>>>>>>>>>:
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or

pðxÞ¼

0 ; x < 0

1

~b~s
ffiffiffiffiffiffi
2p

p exp
�ðx� ~mÞ2

2~s2

 !
; 0 � s

m
<

1

2
; x � 0

1

xs
ffiffiffiffiffiffi
2p

p exp �ðlnx�mÞ2
2s2

 !
;

s

m
� 1

2
; x � 0

8>>>>>><
>>>>>>:

Future work can be the study of other distribution laws,
such as asymmetric Gaussian and mixed Gaussian laws
[15]. Prospectives are the use of the proposed distribution
laws in uncertainty quantification problems and the
uncertainty propagation in nuclear reactor fuel cycle
studies.
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