
HAL Id: cea-02301892
https://cea.hal.science/cea-02301892

Submitted on 30 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Tame your annotations with MetAcsl: Specifying,
Testing and Proving High-Level Properties

Virgile Robles, Nikolai Kosmatov, Virgile Prévosto, Louis Rilling, Pascale Le
Gall

To cite this version:
Virgile Robles, Nikolai Kosmatov, Virgile Prévosto, Louis Rilling, Pascale Le Gall. Tame your an-
notations with MetAcsl: Specifying, Testing and Proving High-Level Properties. International Con-
ference on Tests and Proofs (TAP), Oct 2019, Porto, Portugal. �10.1007/978-3-030-31157-5_11�.
�cea-02301892�

https://cea.hal.science/cea-02301892
https://hal.archives-ouvertes.fr


Tame your annotations with MetAcsl:
Specifying, Testing and Proving High-Level

Properties

Virgile Robles1[0000−0002−5838−134X], Nikolai Kosmatov1,2[0000−0003−1557−2813],
Virgile Prevosto1[0000−0002−7203−0968], Louis Rilling3[0000−0003−4520−6646], and

Pascale Le Gall4[0000−0002−8955−6835]

1 Institut LIST, CEA, Université Paris-Saclay, Palaiseau, France
firstname.lastname@cea.fr

2 Thales Research & Technology, Palaiseau, France
3 DGA, France, louis.rilling@irisa.fr

4 Laboratoire de Mathématiques et Informatique pour la Complexité et les Systèmes
CentraleSupélec, Université Paris-Saclay, Gif-Sur-Yvette, France

pascale.legall@centralesupelec.fr

Abstract. A common way to specify software properties is to associate a
contract to each function, allowing the use of various techniques to assess
(e.g. to prove or to test) that the implementation is valid with respect
to these contracts. However, in practice, high-level properties are not
always easily expressible through function contracts. Furthermore, such
properties may span across multiple functions, making the specification
task tedious, and its assessment difficult and error-prone, especially on
large code bases. To address these issues, we propose a new specification
mechanism called meta-properties. Meta-properties are enhanced global
invariants specified for a set of functions, capable of expressing predicates
on values of variables as well as memory related conditions (such as sep-
aration) and read or write access constraints. This paper gives a detailed
presentation of meta-properties and their support in a dedicated Frama-
C plugin MetAcsl, and shows that they are automatically amenable to
both deductive verification and testing. This is demonstrated by applying
these techniques on two illustrative case studies.

1 Introduction

Function contracts are a common way of specifying the functional behavior of
a program in a modular manner. In this setting, each function of the program
is annotated with both preconditions (properties expected to be ensured by the
caller of the function) and postconditions (properties that must be ensured after
the function returns). Various assessment techniques exist to check the validity
of a function implementation with respect to its contract.

This is the case in the Frama-C [1] framework, built for the analysis of C
programs. Frama-C allows the user to specify function contracts in its companion
specification language ACSL [2] and to express first-order properties on program



2

variables. A variety of plugins can be used to assess the validity of the C program
with respect to these contracts, for example via static (deductive) verification or
dynamic verification (runtime assertion checking).

Motivation However, some categories of properties over a C program are not
easily expressible via function contracts. In particular, some properties, which we
may call global properties, are spanning across multiple functions. For instance,
we might want to ensure that all accesses to some data are guarded by a proper
authentification mechanism. Writing contracts for each function encompassed
by a global property is tedious and error-prone, especially on large code bases.
In the end, there is no guarantee other than manual verification that the set of
provided contracts correctly and completely expresses the global property: in the
example above, checking that all accesses are indeed guarded by an appropriate
annotation would quickly become very difficult. In this situation, even when
all contracts are verified, it cannot be directly deduced with a high level of
confidence that the global property is indeed true.

This can become even harder when the contract clauses related to the global
property are mixed with other, usual clauses: when updating the contract of a
function, it becomes very easy to invalidate the global property since there is
no explicit link between this property and the associated contract clauses. This
need for global properties arises in two different case studies we tackled, each one
involving both safety and security properties over a whole library of functions.

To address these issues, we propose a new specification mechanism within
Frama-C calledmeta-properties (whose main ideas were briefly presented in [3]),
which provides the verification engineer with a means to easily specify global
properties on a C program. An automated translation of meta-properties into
ACSL annotations allows using existing analysis plugins for the assessment.

This paper provides a rigorous description of the notion of meta-property
and its instantiation mechanism, along with multiple extensions that were im-
plemented in the MetAcsl plugin, and an evaluation of assessment techniques
for meta-properties using static and dynamic verification.

Contributions More precisely, the contributions of this paper include :

– a proper formalization of the notion of meta-property and its translation
into ACSL (Sections 2 and 3),

– several extensions to basic meta-properties allowing the user to write more
expressive properties on a larger class of programs (Section 4),

– a detailed description of a previous case study regarding confidentiality (in-
troduced in [3]), and a new case study about smart houses, that are both
specified using meta-properties (Section 5),

– a demonstration that meta-properties are amenable to a new assessment
method, runtime verification (Section 6), and

– an evaluation of two assessment techniques—deductive verification and run-
time assertion checking—on the two case studies (Section 6).



3

With respect to the previous tool demo paper [3] (which gave an informal
presentation of meta-properties and briefly illustrated their usage for deductive
verification only), the present paper gives a complete formal description of meta-
properties, illustrated by several examples, provides more detail on several recent
extensions, the proposed transformation-based approach and the considered case
studies, and demonstrates the capacity of the proposed approach to be combined
with both deductive verification and runtime assertion checking.

2 Specification of Meta-Properties

Meta-properties are a way of expressing a category of high-level, global program
properties. It basically consists of a local property, a notion of scope (a set
of target functions) indicating which parts of the program have to respect the
property, and a notion of context determining what kinds of situations (e.g.
which instructions) in the target functions must be constrained by the property.
This section formalizes and illustrates this notion.

2.1 Definition of a Meta-Property

We assume that we are working on a complete C program, where all functions are
defined in one of the source files composing the program. Moreover, statements
have been normalized such that each instruction modifies at most one single
memory location. In Frama-C, this normalization phase is enforced by the kernel.

In this setting, let F denote the set of all functions defined in the program
under analysis. We define as usual the control-flow graph (CFG) of each function
as a directed graph (V,E) where each vertex v ∈ V is a single C instruction and
an edge e ∈ E from v1 to v2 indicates that after executing v1 the program
may execute v2 (conditional statements may have two successors, while normal
instructions, such as assignments, have exactly one).

A meta-property is then defined as a triple (F, C, P ) where :

– F ⊆ F is the target set, delimiting the scope of the meta-property.
– C is a called a context. It is defined as a pair (M, θ) whereM is a (potentially

empty) set of names that we call meta-variables and θ is a contextualization
mapping. Given a C function f having a CFG (V,E), θ associates f with a
set whose elements are pairs (e,m) where e ∈ E and m is an environment
mapping which maps each name of M to an ACSL term. Informally, the
contextualization mapping defines a criterion for selecting a set of locations
in a C function and may associate additional information to these locations,
by setting values (ACSL terms) for some special variables, that we call meta-
variables. Section 2.3 presents examples of contexts with their corresponding
meta-variables, and Figure 2 gives a full example of one of them.

– P is an ACSL predicate over a subset of G∪M, where G is the set of variables
defined in the global scope of the program. Given a location-environment
pair (e,m) returned by θ, we can construct an ACSL property, denoted Pm,
where every meta-variable v is replaced by m(v).



4

1 int A, B, C;
2 int level , secret_size; // level is the current confidentiality level
3 int* secret; // a secret array with secret_size elements
4
5 void main(); // main entry point
6 void def_level(int val); // set confidentiality level
7 void backdoor_root (); // backdoor that can always access secret
8 int read_secret(unsigned n); // return secret only if level is sufficient
9 /*@

10 //A always remains equal to B in function main
11 meta \prop , \name(AB_same), \targets ({main}), \context(\strong_invariant),
12 A == B;
13 //The level can only be modified in def_level or backdoor_root
14 meta \prop , \name(modif_level),
15 \targets(\diff(\ALL , {def_level , backdoor_root })),
16 \context(\writing), \separated(\written , &level);
17 //The secret can only be read if level is at least ROOT_LEVEL
18 meta \prop , \name(can_read_secret), \targets(\ALL), \context(\reading),
19 \separated(\read , &secret [0 .. secret_size - 1]) ∨ level ≥ ROOT_LEVEL;
20 // Function backdoor_root is never called
21 meta \prop , \name(no_backdoor), \targets(\ALL), \context(\calling),
22 \separated(\called , backdoor_door); */

Fig. 1: Examples of meta-properties and contexts

Given the target set F , the context C = (M, θ) and the property P , the
meta-property (F, C, P ) is interpreted as:

∀f ∈ F, ∀(e,m) ∈ θ(f), Pm holds on e.

In other words, for every function of F and for every point in this function
selected by θ, P must hold at this point when its meta-variables have been
instantiated according to the environment mapping.

One simple example of meta-property, with no meta-variable, is the specifi-
cation of a predicate P as a strong invariant : Msi(P ) = (F , (∅, θsi), P ) where
θsi returns every edge of the CFG with a trivial environment mapping.

2.2 ACSL Syntax and First Examples

To specify meta-properties in Frama-C, we propose an extension of ACSL for
explicitly providing each element of the triple (F, C, P ). It is mandatory to name
the property. This allows traceability between the meta-property and the gen-
erated ACSL assertions. Figure 1 gives a few examples of meta-properties that
are detailed below. Concretely, a meta-property is defined as follows:

1 /*@ meta \prop , \name (...) , \targets (...) , \context (...) , P; */

The target set is provided using the usual set syntax of ACSL. It can be
explicit ({f1, . . . , fn}), or use set operators such as \union or \inter. We also
added the \diff operator for set difference, which does not exist in ACSL.

Since the goal for meta-properties is to be able to easily and automatically
specify properties on large code bases, giving the explicit set of targets is rarely
a practical solution. Instead we provide a special variable \ALL which refers to



5

F (the set of all functions in the program), and is very convenient, along with
the \diff operation, to specify target sets of the form “all functions except...”.

As an additional way to ease the delimitation of the targets, we provide two
constructs \callees and \callers. \callees(f) is the set containing f and
all functions (transitively) called by f. \callers(f) is the dual set containing
f and all functions that (transitively) call f. It is especially useful when dealing
with programs with clearly defined entry points.1

The combination of these simple constructs allows for a convenient way to
specify the scope of a meta-property without having to rewrite the target set
when new functions are added to the implementation.

2.3 Available Contexts

We define several contexts that the user can use when writing a meta-property,
by indicating the context name in the \context(...) field. It turns out that
these few and simple contexts, combined with the expressiveness of ACSL itself,
are enough to write quite interesting properties.

Weak Invariant, Pre/Post-condition The \precond context returns only the
starting edge of the CFG with no meta-variable, while \postcond does the same
with the ending edges, and \weak_invariant combines both.

Strong Invariant As mentioned earlier, the \strong_invariant context simply
provides a contextualization mapping returning every edge of the CFG of a
given function without defining any meta-variables. However, it is sometimes
necessary even for a strong invariant to be temporarily broken. Equality between
two variables (e.g. AB_same in Figure 1) is an example of that, as there is no
way to change the value of the two variables in a single instruction. To overcome
this issue, we add a lenient modifier that can be applied on a block of code to
exclude the edges inside it from the scope of strong invariants.

Upon Writing the \writing context is the pair ({\written}, θw), where θw
returns all edges of the CFG of a given function leading to an instruction that
writes into the memory (through e.g. the assignment of a variable) with an
environment that maps \written to the address modified by that instruction.
The action of mapping θw is illustrated in Figure 2.

Since \written is a meta-variable of this context, it can then be used by
the predicate P to form a useful meta-property. A simple example would be
to forbid any local modification of some global variable, as shown by meta-
property modif_level on Line 14 of Figure 1. It states that for any function
that is not def_level or backdoor_root, whenever some memory location is
modified locally, it must be unrelated to the global variable level. In ACSL,
the \separated(p1,p2) predicate states that the memory locations referred to
1 This feature relies on the Frama-C plugin Callgraph, which makes gross over-
approximations of these sets in the presence of indirect calls (i.e. function pointers).



6

1 int* G;
2
3 /*@ assigns
4 T[0 .. 40];
5 */
6 void bar(int* T);
7 //bar is declared
8 //but not defined
9

10 void foo(int* p) {
11 int i = *p;
12 while(--i) {
13 *p = i;
14 bar(G);
15 }
16 }

Begin

int i = *p;

i = i - 1;

i != 0 ?

*p = i;

bar(G);

End

{\written 7→ &i}

{\written 7→ p}

{\written 7→ G+(0 .. 40)}

Fig. 2: Illustration of the contextualization mapping θw (for \writing context)
for function foo. Red arrows indicate the edges returned by θw (leading to writ-
ing operations), and the corresponding environment mapping is shown by a label
on such an edge (indicating that meta-variable \written is mapped to the (po-
tentially) modified variable(s)).

by given (sets of) pointers p1,p2 are physically disjoint (or separated). Since
we consider only local modification, a call to def_level inside another function
not allowed to modify level does not violate modif_level, even if def_level
itself modifies level. Thus, modif_level can be seen as enforcing the proper
encapsulation of level.

Upon Reading The \reading context is identical to the \writing context except
that it selects all edges leading to an instruction that reads from the memory
and associates a meta-variable \read with the addresses being read by the in-
struction. It is illustrated by property can_read_secret in Figure 1.

Upon Calling In a similar fashion, the \calling context selects all edges pre-
ceding a function call and maps a meta-variables \called with the function (or
function pointer) that is being called. It is used in the no_backdoor property.

3 Instantiation of Meta-Properties

Several existing Frama-C plugins provide useful and efficient analysis of ACSL-
annotated C code, such as deductive verification [4] or runtime assertion check-
ing [5]. Following the usual Frama-C approach of tool collaboration, we wish
to take benefit of existing analyzers without re-implementing them for meta-
properties. To do that, we designed a way to transform meta-properties into plain
ACSL annotations while keeping links between the original meta-properties and



7

1 meta \prop ,
2 \name(G_is_constant),
3 \targets ({foo}),
4 \context(\writing),
5 \separated(\written , G);

1 void foo(int* p) {
2 int i = *p;
3 while (1) {
4 /*@assert \sep(&i, G);*/
5 i = i - 1;
6 if(i 6= 0) break;
7 /*@assert \sep(p, G);*/
8 *p = i;
9 // Invalid assertion

10 /*@assert \sep(G+(0..40) , G);*/
11 bar(p);
12 }
13 }

Fig. 3: A meta-property and its instantiation for function foo of Figure 2

their ACSL translation. Hence, the existing tools can understand and analyze
the translation and their results for the translated ACSL annotations can then
be interpreted in terms of meta-properties.

Since meta-properties have more expressive power than ACSL, it is often im-
possible to transform a meta-property into a single ACSL annotation. In some
cases, a meta-property is translated into function contract clauses (e.g. for weak
invariants) but in most cases it has to be captured by assertions inserted directly
into the body of a function. More precisely, we use the the ACSL annotation
/*@ assert P; */, which means that P must hold at the particular point where
the assertion is inserted. This allows a verification process that sticks closely to
the definition of a meta-property (F, C, P ): for each function f in F , once the set
of edges of f defined by C is determined, it suffices to assert that for each edge/en-
vironment pair (e,m), Pm (P with meta-variables substituted with their values
in m) must be valid in the context of e. The transformation process materializes
this assertion by inserting a concrete ACSL annotation /*@ assert Pm; */ at
the point between two instructions corresponding to the edge e. Note however
that Pm must be correctly typed at this point, as discussed in Section 4.1. This
assert is called an instantiation of the meta-property. Translation of a meta-
property then consists in instantiating it for each edge/environment pair, as
illustrated by Figure 3, showing a simple Upon Writing meta-property and its
translation for function foo of Figure 2. Note that, as most Frama-C plugins, we
rely on the presence of an assigns clause specifying the side effects of a function
whose body is unknown (as function bar in Figure 2).

This translation technique can be performed automatically and is correct by
definition with respect to the semantics given to meta-properties: there is a one-
to-one mapping between CFG edges and assertions in the instrumentation. We
implemented it in the MetAcsl plugin of Frama-C.

Performance considerations While the proposed technique is simple, it entails
that a meta-property is instantiated for each selected edge in each target func-
tion. Thus, the number of instantiations can quickly become high enough (for
example when using the Strong Invariant context) to become a problem for the



8

Frama-C plugins that are expected to analyse the translated program, resulting
in potentially long analysis times or loss of precision in the results.

However, we have observed that when a meta-property has been instantiated,
there are a lot of cases where the resulting assertion is trivial to prove or disprove.
For example if P is \separated(\written, &A) and Pm is \separated(&B, &A)
where A and B are different variables (thus separated by definition), this instan-
tiation is trivially valid and its actual insertion can be skipped.

Thus, MetAcsl performs a simplification phase for assertions where simple
patterns such as the one mentioned above are recognized and replaced by their
truth value, which is then propagated through the property. Hence, the instan-
tiations left in the code are those that could not be simplified, and for which
other plugins should attempt a more thorough verification. The quantitative
evaluation of this simplification is discussed in Section 5.

4 Extensions of Meta-Properties

The basic definition of meta-properties presented in Section 2 enables the spec-
ification of many useful properties, as seen in the examples. However, the case
studies (described in Section 5) showed that it had several limitations, in both
expressiveness and adaptability to the structure of programs. To address these
limitations, we introduce some extensions to meta-properties.

4.1 Typing Issues

A context is defined as a pair (M, θ) whereM is the set of meta-variables, i.e.
names that are mapped to different ACSL terms at each point defined by θ.
Each meta-variable can then be used in the property P to refer to those terms.

However, notice that while each mapped ACSL term has a well-defined type,
the meta-variable itself does not. Or rather, its type is the union of types of
the mapped terms. Yet, this set of types is not known in advance when writing
a meta-property. Thus, nothing can be assumed for example about the type
of \written when specifying a meta-property in the Upon Writing context,
except that it is always a pointer type (since it refers to the set of addresses
that are modified). Any other assumption would create a risk of typing error.
For example, assuming there exists a C structure struct S with an x field,
the presence of \written->x == 0 in P would make any instance of the meta-
property related to an assignment to a location of another type ill-defined, while
\separated(\written, &global_variable) would not, since the \separated
predicate only requires its parameters to be of pointer types.

While this suffices to express interesting properties such as separation, it
does not allow reasoning about the value of the meta-variable. To address this
issue, we introduce a construct to make assumptions about the type of a meta-
variable while having a safeguard in case these assumptions were wrong. More
precisely, we add two functions \tguard and \fguard that take an unsafe pred-
icate (where a typing error might happen), behave as the identity if there is no



9

error, and return respectively \true and \false otherwise. This allows the user
to specify the previous example as \tguard(\written->x == 0). If a particular
instance of \written is of the expected type struct S then its field is checked,
else the property defaults to \true (i.e. we are only interested in modifications
on locations of that type). Had \fguard been chosen instead of \tguard, any
instantiation of that meta-property on a type that is not struct S would have
defaulted to \false, effectively forbidding write operations to those types.

Intuitively, these functions should be used to guard any predicate that may be
invalid for some instantiation of the meta-property. The default value to choose
should reflect if these failures are expected in some cases or not: in our example,
\tguard allowed and ignored failures while \fguard did not.

4.2 Labels in Meta-Properties

While meta-properties allow specifying a property when some event defined by
the context happens (e.g. a memory operation) and the safeguarding constructs
enable that property to talk about the values of the meta-variables, sometimes
we need to talk about the effect of the memory operation on these values.

For example, one may want to globally guarantee that some initially null
global variable G is initialized only once to a strictly positive value. However it
is not possible to specify this without a mean to refer to G before and after each
modification, which would be needed to characterize our notion of initialization.

In ACSL, one can use the \at(expression, label) construct to refer to
the value of an expression at a specific point of the program identified by a label.
An expression used without \at refers to its value at the point where it appears
(which can be used explicitly with the Here label). There also exists two built-
in labels Pre and Post referring respectively to the state before and after the
current function.2 Furthermore, any previously defined C label can be used as
a label in \at. The \at construct can naturally be used in P , with labels Pre,
Post and Here keeping their meanings.

To tackle the aforementioned problem, we define two additional labels that
are specific to meta-properties and their context: Before and After that are
used to refer to the states before and after the statements considered by the
context, if any. These special labels may be mapped to actual ACSL labels by
the contextualization mapping of a context when it makes sense to do so.

For example, the \precond does not define them. The \writing context maps
Before to Here (since by definition the edge returned by the context precedes
a statement modifying the memory) and After to a C label inserted after the
statement modifying the memory.

With these labels, we can now write our previously problematic initialization
meta-property:

1 meta \prop , \name(G_unique_initialization),
2 \targets(\ALL), \context(\writing),
3 \separated(\written , &G) ∨ (\at(G, Before) == 0 ∧ \at(G, After) > 0);

2 Technically, Post can only be used in assigns statements or contract post-
conditions.



10

which means that each instruction either does not modify G or modifies it such
that its value is 0 before the modification and strictly positive after it.

4.3 Referring to Non-Global Values

As meta-properties are global properties that are not declared in the scope of any
particular function, they can only refer to global variables and meta-variables.
This is a strong limitation to the kind of properties that can be written, as some
programs have few interesting objects declared in the global scope and typically
pass them as arguments. To tackle this issue, we came up with two different
mechanisms: the \formal construct and the notion of local binding.

Referring to function parameters If there is an object present in every target
function of a meta-property, but as a consistently named function parameter
(which is called a formal) instead of a global variable, we introduce the \formal
keyword to refer to such a parameter in the property P of a meta-property.
When \formal(some_param) appears in a meta-property, each instantiation
of the meta-property triggers the check that some_param is indeed a formal
of the current target function. If it is, the \formal call is safely replaced by
some_param. Otherwise, a typing error is triggered at the point where it is used.

1 meta \prop , \name(),
2 \targets(\ALL),

\context(\calling),
3 \tguard(
4 \separated(\called ,

\formal(pre_process))
5 ∨ \separated(do_not_call ,

\formal(pre_process))
6 );

Thus, \formal is best used when
combined with the safeguarding con-
structs \tguard and \fguard (Sec-
tion 4.1), since it allows the specifica-
tion engineer to assume that a formal
is consistently defined in every tar-
get function and use it in a property,
but to safely default to a conservative
property if this assumption is wrong.
For example, the above property specifies that if a function in the programs
takes a function pointer pre_process as a parameter, then it can only be called
if it is distinct from a do_not_call function. If this parameter does not exist in
a function, then the property defaults to \true since there is nothing to verify.

Referring to bound names If it is not possible to rely on a consistent naming
of formals across functions, we introduce a notion of binding to overcome this
difficulty with some help from the user.

We introduce two special functions, \bind and \bound. The first one is to
be used outside of a meta-property, in the body of a C function, to bind a name
to the value of a C expression at that point. This name can then be used in
a meta-property to formulate an interesting property about the value it refers
to. A name can actually be bound multiple times to different value at different
points of a program, meaning that the name inside a meta-property refers to the
whole set of associated values. The whole process is illustrated in Figure 4. Notice
that the bound values are constant but may be pointers referring to changing



11

memory. We are then specifying a property across all the memory states of the
different instantiations, which makes \bound a meta-variable.

1 int lock;
2 int* create_cell () {
3 char* c = malloc (1);
4 //@ meta \bind(c, cells);
5 return c;
6 }
7 int safe_modify_cell
8 (int* cell , int val) {
9 if(!lock) {

10 lock = 1;
11 *cell = val;
12 lock = 0;
13 return 0;
14 }
15 else return -1;
16 }
17 void unsafe_modify_cell
18 (int* cl, int val) {
19 *cll = val;
20 }
21
22 /*@ // Pointers returned by create_cell
23 //are not modified if the lock is on
24 meta \prop ,
25 \name(cell_modif_is_critical),
26 \targets(\ALL), \context(\writing),
27 \separated(\written , \bound(cells))

∨ lock;
28 */

Fig. 4: Bindings usage example

To actually instantiate (as de-
scribed in Section 3) a meta-property
with bindings, the program must be
further instrumented using ghost code.

Ghost variables are declared for
specification purposes only and can-
not be used by the original C code,
while ghost statements may only
modify ghost variables. Thus, ghost
code altogether cannot modify the
original behavior of the code but may
facilitate verification.

For each bound name, we allo-
cate an associated ghost global array
whose role is to store the set of asso-
ciated values. Consequently, each in-
stance of \bind(v, n) is replaced by
a ghost instruction adding v to the ar-
ray n_set associated to n and every
instance of a predicate P (n) involving
a bound name is replaced by a quanti-
fied predicate ∀v ∈ n_set, P (v). This
is illustrated in Figure 5, which is the

translation of Figure 4. Notice that the type of the array is inferred from the
\bind calls. As such, it is the responsibility of the user to ensure that every
bound value is of the same type and to use the bound name appropriately.

5 Case studies and their Specification

We applied our technique to two different case studies for the purpose of evalu-
ating its relevance on actual code and properties. First, we describe the content
of these case studies and how useful properties about them are specified using
meta-properties.3 Then in Section 6, various assessment techniques are used to
check the validity of the implementation with respect to these meta-properties.

5.1 Confidentiality

The first case study, which was submitted by an industrial partner, deals with a
confidentiality-oriented page management system. We assume a system where a
confidentiality level is associated to each memory page. Two different pages may
have the same level but the set of confidentiality levels must be totally ordered.4

3 The case studies and their specifications are available at https://huit.re/metatap.
4 We assume a total order for simplicity, but it would also work with a partial one.

https://huit.re/metatap


12

1 int lock;
2 //@ ghost char* cells_set = NULL;
3 //@ ghost size_t cells_set_size = 0;
4 int* create_cell () {
5 char* c = malloc (1);
6 //@ ghost add_to_array(cells_set , c);
7 return c;
8 }
9 int safe_modify_cell(int* cell , int val) {

10 if(!lock) {
11 /*@ assert ∀ size_t i; i < cells_set_size ⇒
12 \separated (&lock , cells_set[i]) ∨ !lock; */
13 *cell = val;
14 lock = 1;
15 //@ assert ∀ i; ... \separated(cell , cells_set[i]) ∨ !lock;
16 *cell = val;
17 //@ assert ∀ i; ... \separated (&lock , cells_set[i]) ∨ !lock;
18 lock = 0;
19 return 0;
20 }
21 else return -1;
22 }
23 void unsafe_modify_cell(int* cl, int val) {
24 //@ assert ∀ i; ... \separated(cl, cells_set[i]) ∨ !lock;
25 *cl = val;
26 }

Fig. 5: Translation of Figure 4

We call agent any entity (a process, for example) which may happen to read or
write from such pages, and give to each agent a confidentiality level as well.

The two basic guarantees that such a system should offer are:

C1: An agent can never read from a page with a confidentiality level higher than
its own (to preserve the confidentiality of the data written on the page),

C2: An agent can never write to a page with a level lower than its own (to
prevent the agent’s data from being read by lower agents in the future).

Notice that these properties ensure confidentiality but not integrity, which is
not considered here but could be similarly specified.

We wrote a simple implementation of this case study, where the system is
modelled by a stateful API of functions to allocate, free, write to or read from
pages. The confidentiality level of the calling agent is represented by a global
variable, which is assumed to be securely modified when the context changes.

There are several other properties needed for C1 and C2 to be useful in
ensuring confidentiality:

C3: The confidentiality level of an allocated page remains constant,
C4: The allocation status of a page can only be modified by the allocation and

de-allocation functions,
C5: Non allocated pages are neither accessed nor modified,
C6: Non allocated pages do not retain old data.

We also consider an extension of this system introducing encryption as a
means to decrease the confidentiality level of a page. Two functions to encrypt
and decrypt a page are added to the API with a key based on the confidentiality
level of the caller, and we weaken C3 into:



13

1 //Never read from a higher confidentiality page
2 meta \prop , \name(C_1), \targets(\ALL),
3 \context(\reading),
4 forall_page(p,
5 page_allocated(p) ∧ user_level < page_level(p) ⇒
6 \separated(page_data(p), \read)
7 );
8 //The confidentiality of an allocated page is constant outside of encryption
9 meta \prop , \name(C_3 ’), \targets(\diff(\ALL , {page_encrypt , page_decrypt })),

10 \context(\writing),
11 forall_page(p,
12 page_allocated(p) ⇒ \separated (&p->confidentiality_level , \written)
13 );
14
15 //The content of a free page is always null
16 meta \prop , \name(C_6), \targets(\ALL),
17 \context(\strong_invariant),
18 forall_page(p, !page_allocated(p) ⇒ clean_page(p));

Fig. 6: Specification of some confidentiality properties using meta-properties

C ′3: The confidentiality level of an allocated page remains constant, except in
encryption/decryption functions.

All of these properties can be expressed using meta-properties, as illustrated
in Figure 6 where properties C1, C ′3 and C6 are specified. The forall_page
predicate is a formula-shortening macro which quantifies over the globally-stored
array of pages (both free and allocated).

5.2 Smart house

The second case study models a smart house command system on which we tried
to specify and verify interesting safety and security properties.

The house is modelled as a set of rooms, each containing a door that can be
locked or unlocked by authorized users, a window that can be opened or closed
and an AC system that can be enabled or disabled. There is also an alarm that
can be triggered by anyone in case of emergency.

We assume each room contains a terminal authenticating users and relaying
their instructions to a central command system. The system is again modelled
as a stateful API, this time with a single entry point where instructions from
terminals are received and processed. We also add some administration functions
that should not be called by terminals.

Some desirable properties that we specified for this system are:

S1: Every door is unlocked when the alarm is ringing,
S2: The AC system cannot be enabled when the window in the room is open,
S3: A door can only be unlocked by authorized users,
S4: The alarm cannot be silenced by users,

Their formalization into meta-properties is represented in Figure 7. Notice
the use of both the \formal construct (Section 4.3) to refer to the parameters



14

1 #define USER_SET (\callees(receive_command))
2 /*@
3 meta \prop , \name(S_2), \targets(\ALL),
4 \context(\strong_invariant),
5 forall_room(r,
6 r->window_state == 0
7 ⇒ r->ac_state == AC_DISABLED
8 );
9

10 meta \prop , \name(S_3),
11 \targets(USER_SET),
12 \context(\writing),
13 forall_room(r,
14 \at(r->door_lock_state , Before) 6= 0
15 ∧ \at(r->door_lock_state , After) == 0
16 ∧ \fguard(user_permissions[\formal(uid)] < r->clearance_needed)
17 ⇒ \separated(\written , &r->door_lock_state)
18 );
19
20 meta \prop , \name(S_4), \targets(USER_SET),
21 \context(\writing),
22 \at(alarm_status , Before) == ALARM_NONE
23 ∨ \at(alarm_status , After) 6= ALARM_NONE
24 ∨ \separated(\written , &alarm_status);
25 */

Fig. 7: Specification of some smarthouse-related properties using meta-properties

of the different functions (combined with \fguard to default to a false predicate
if there is no such parameter), as well as the \at construct with labels Before
and After (Section 4.2) in S3 to express the fact that a door is locked before
an instruction and unlocked after it, needed to express the notion of unlocking.
Finally, notice the use of the \callees function in USER_SET to refer to the set
of every function called by the single entry point (receive_command), in order
to exclude the administration functions (if they are indeed not called) from the
scope of the meta-properties.

6 Assessment of the Case Studies

Having two case studies specified with meta-properties, we want to evaluate the
ability to assess them with the usual Frama-C tools, after translating meta-
properties into native ACSL with MetAcsl. To that end, we wrote a correct C
implementation of the different functions for both the confidentiality and smart
house case studies. Then, to increase the number of benchmarks, we used a
Frama-C plugin5 to generate mutations of this correct implementation, pro-
viding a set of modified implementations, potentially invalid with respect to the
meta-properties. In this way, we obtain respectively 126 and 69 mutants for the
confidentiality and the smarthouse case study. The mutations consist in the re-
placement of binary operators, the negation of conditions and the modification of

5 See https://github.com/gpetiot/Frama-C-Mutation.

https://github.com/gpetiot/Frama-C-Mutation


15

Number of: functions meta- generated gen. asserts invalid mutants/
properties asserts with simplif. total mutants

Confidentiality 11 11 408 273 42/126
Smarthouse 14 7 156 87 19/69

Fig. 8: Statistics about the MetAcsl instrumentation on case studies

Case study Confidentiality Smarthouse
Assessment type Wp E-ACSL Wp E-ACSL
False Positives 0 29 0 6
False Negatives 0 0 0 0
Interrupted (RTE) N/A 19 N/A 11

Fig. 9: Assessment of automatic approaches, relative to a manual verification

numerical values. They simulate frequent programming errors in the code. The
specification for the mutants remains the same as for the initial implementation.

For each mutant, we manually check if the introduced mutation violates one
of the meta-properties of the case study. If so, the mutant is considered in-
valid. The proportion of invalid mutants is reported in Figure 8 along with some
quantitative information about the case studies and their instrumentation by
MetAcsl. Here we can observe that the simplification phase described in Sec-
tion 3 significantly reduces the number of generated assertions, thus easing the
job of the tools that are subsequently run on the resulting translated programs.6

For each benchmark (initial version or one of the mutants, including all valid
and invalid mutants), we first apply MetAcsl to generate an instrumented C
program. We wish then to investigate whether, thanks to the instrumentation
with MetAcsl, different Frama-C tools are able to assess the validity of the
benchmarks with respect to the meta-properties.

We test two existing assessment techniques, namely deductive verification
with the Wp plugin and runtime verification with the E-ACSL plugin. For
both plugins, Figure 9 indicates the number of false positives (cases where the
mutant is invalid but no violation was detected) and false negatives (cases where
the mutant is valid, but flagged as violating a meta-property; this can happen
in case of proof failure or faulty translation). We detail both techniques in the
rest of the section.

6.1 Deductive Verification

Deductive verification allows users to formally prove that the implementation of
a function is correct with respect to its specification. If a function is specified
by annotations (a contract, invariants and/or assertions), then logical formulas
encoding the semantics of these annotations and known as proof obligations

6 For example, simplification saves 8 seconds on the deductive verification of the cor-
rect confidentiality implementation (for a total of 24 seconds).



16

(POs) can be generated and given to automated theorem provers. If all POs
are validated, the body of the function fulfills its specification. This technique is
implemented by Frama-C plugin Wp.

We attempt to run Wp on each benchmark. While a proof success is defini-
tive, a proof failure may have different causes: the property to be proved may
be false, there could be insufficient assumptions available to the prover or it
could simply exceed the capacity of the prover in its allocated time. Thus if
every proof failure is classified as a judgement of invalidity, false negatives are
to be expected. To mitigate this phenomenon, we first manually annotated the
case studies with partial function contracts for the correct implementations to
be successfully proved.

The results are encouraging. Every valid mutant was successfully proved as
valid, and the proof failed for each invalid mutant (see Figure 9)7, thus confirm-
ing the correctness of the transformation. These results demonstrate that the
spec-to-spec translation with MetAcsl creates a convenient, fully automatic
toolchain for deductive verification of global properties in Frama-C. As usual
for deductive verification, some additional annotations were necessary to prove
the different functions (respectively 40 and 5 lines of specification were needed,
loops being the main point of effort) but their number was much smaller than the
number of relevant assertions automatically generated from the meta-properties.

6.2 Runtime Verification on Test Cases

We now wish to study if it is also possible to verify meta-properties at runtime—
without any additional annotations—thanks to the E-ACSL [5] plugin for run-
time assertion checking. It automatically translates an ACSL-annotated C pro-
gram into another program that fails at runtime if an annotation is violated.

Since our two case studies are APIs without any main function, we wrote
small test suites of complete programs that can be actually compiled and ex-
ecuted. In both cases, they contain simple functional tests and do not aim at
covering every possible usage case. They feature sequences of respectively 40 and
20 calls to the APIs.

We then applied runtime assertion checking to the execution of every instru-
mented benchmark on all tests of both test suite. The results (Figure 9) are also
promising and allowed us to identify several issues and future work directions.

The additional row refers to cases where the generated binary detected a
violation of a safety property 8, thus stopping the execution and preventing us
to know if a meta-property violation would have been detected or not. In the
future, it would be desirable to filter out safety-violating mutants, and only keep
mutations simply modifying the semantics of the code.

There are no false negatives, confirming that the instrumentation of both
MetAcsl and E-ACSL does not introduce any bug. There is a significant
7 The last row is not relevant for deductive verification, see Section 6.2.
8 E-ACSL add checks to ensure that no runtime error (segfaults, overflow, ...) will
occur and stops the program upon violation.



17

number of false positives (incorrect mutants for which no test failed). There are
several reasons for this. First, our initial test suites are not complete and some
mutants are not killed by these tests. In the future, we plan to address this by
using the StaDy [6] plugin, which combines static and dynamic verification and
allows the automatic generation of test cases that can exhibit counter-examples
for invalid properties. The second reason is that E-ACSL only supports a sub-
set of ACSL: some properties involving complex constructions such as the \at
keyword are simply ignored by E-ACSL, thus they cannot possibly be violated
at runtime. This support should be improved in the future.

This study demonstrates that it is easy to check meta-properties at runtime
without extra annotation effort thanks to the combination of MetAcsl and
E-ACSL, as long as the specified properties are supported by the tools. This
is especially useful for properties that are not easily tractable with deductive
verification: for example, a property using bindings (Section 4.3) might be very
difficult to verify using Wp without writing extensive function contracts, while
it can be immediately tested with E-ACSL.

7 Related Work

ACSL is a specification language inspired by previous efforts such as JML [7],
a behavioural interface specification language for Java. JML has similar limita-
tions regarding the expression of global properties on a software module, and
we believe that our approach could be useful in this context as well. However a
subset of meta-properties is already expressible in JML, such as weak invariants
(using JML class invariants). Another high-level specification feature of JML is
the notion of constraint, which allows the specification of a property relating the
states before and after every method of a class, or a given set of methods (similar
to our notion of target set).

The idea of extending a contract-based specification language to support
high-level properties has been explored before. For example, Cheon and Peru-
mandla [8] extended JML, allowing the specification of protocols, i.e. properties
related to the order of call sequences. Protocols could be specified using the
\calling context of meta-properties and ghost code to model an automaton,
but may not be as usable as the simple syntax provided by this work. Another
such example is the work of Trentelman and Huisman [9], which extends JML
to enable the expression of temporal properties. Meta-properties can express a
subset of temporal properties with the extension detailed in Section 4.2, but this
is not the aim of the tool (the Frama-C plugins Aoraï [10] and CaFE [11] are
already devoted to this task).

Within Frama-C, extending ACSL by writing a plugin that translates the
extension back into normal ACSL has been used previously for the support of
relational properties with Rpp [12] or temporal logic with Aorai [10].

The proposed transformation technique is related to the work of Pavlova
et al. [13] as they generate annotations whose verification implies the validity
of a high-level property as well. However, their specified properties are in the
form of pre-/post-conditions on a well-defined set of core functions that are then



18

propagated throughout the code, while we define properties that are not always
pertaining to some core functions and use a simpler propagation method.

The general idea of defining a high-level concept in the global scope and
then weaving it into the implementation is analogous to the Aspect-Oriented
Programming (AOP) [14] paradigm, as meta-properties can be seen as cross-
cutting concerns on the specification side rather than the implementation side.
Contexts can then be related to pointcuts, which in AOP are a set of control
flow points where the code needed by the concern should be added.

8 Conclusion and Future Work

We proposed in this paper a complete description of a new specification mech-
anism for high-level properties in Frama-C. Meta-properties provide a useful
extension to function contracts, offering the possibility to express a variety of
high-level safety- and security-related properties, and reducing the risk of errors
inherent to the manual specification of such properties, especially when updating
the program specification or code. Today, meta-properties are capable to express
the different types of high-level properties that motivated this work (e.g. isola-
tion properties for verification of a hypervisor, confidentiality-oriented security
properties, various global invariants, etc.).

The extensions to meta-properties we presented are helpful for expressing
richer properties (e.g. referring to different states) on a larger class of C programs
(by allowing the properties to refer to objects that are not necessarily in the
global scope), as demonstrated for the specification of the two case studies.

We provided an automatic transformation-based method to enable the as-
sessment of the meta-properties and showed that the result can successfully be
assessed by existing deductive verification and runtime assertion checking tech-
niques. This enables both users ready to put some effort into the specification
of their program and users with a complete test suite, to assess the validity of
their program with strong levels of confidence.

Finally, we emphasize that our goal is to propose a pragmatic class of prop-
erties amenable to a high level of automation; we do not claim they offer more
expressiveness than other classes of properties on the logical level.

Future Work We plan to perform a formalization and a formal soundness proof
for our transformation technique, thereby allowing MetAcsl to be reliably used
for critical code verification. There is a plan to tackle existing industrial case
studies to demonstrate the ability of meta-properties to specify programs that are
not necessarily verification-friendly. Finally, we wish to refine the transformation
technique in order to allow the proof of the generated specification to scale better
when the number of meta-properties or the size of the code increases.
Acknowledgment This work was partially supported by the project VESSEDIA, which has received

funding from the EU Horizon 2020 research and innovation programme under grant agreement No

731453. This work was also partially supported by ANR (grant ANR-18-CE25-0015-01). The work

of the first author was partially funded by a Ph.D. grant of the French Ministry of Defense. Many

thanks to the anonymous referees for their helpful comments.



19

References

[1] F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, and B. Yakobowski.
“Frama-C: A software analysis perspective”. In: Formal Aspects of Com-
puting (2015), pp. 573–609.

[2] P. Baudin, P. Cuoq, J.-C. Filiâtre, C. Marché, B. Monate, Y. Moy, and V.
Prevosto. ACSL: ANSI/ISO C Specification Language. https://frama-
c.com/acsl.html. 2018.

[3] V. Robles, N. Kosmatov, V. Prevosto, L. Rilling, and P. Le Gall. “MetAcsl:
Specification and Verification of High-Level Properties”. In: Tools and Al-
gorithms for the Construction and Analysis of Systems. 2019, pp. 358–
364.

[4] P. Baudin, F. Bobot, L. Correnson, and Z. Dargaye. WP plugin manual.
http://frama-c.com/wp.html. 2010.

[5] J. Signoles, N. Kosmatov, and K. Vorobyov. “E-ACSL, a Runtime Ver-
ification Tool for Safety and Security of C Programs (tool paper)”. In:
International Workshop on Competitions, Usability, Benchmarks, Evalua-
tion, and Standardisation for Runtime Verification Tools. 2017, pp. 164–
173.

[6] G. Petiot, N. Kosmatov, B. Botella, A. Giorgetti, and J. Julliand. “How
testing helps to diagnose proof failures”. In: Formal Aspects of Computing
(2018), pp. 629–657.

[7] G. T. Leavens, A. L. Baker, and C. Ruby. “JML: A Notation for Detailed
Design”. In: Behavioral Specifications of Businesses and Systems. 1999,
pp. 175–188.

[8] Y. Cheon and A. Perumandla. “Specifying and Checking Method Call Se-
quences in JML”. In: International Conference on Software Engineering
Research and Practice. 2005, pp. 511–516.

[9] K. Trentelman and M. Huisman. “Extending JML Specifications with Tem-
poral Logic”. In: International Conference on Algebraic Methodology and
Software Technology. AMAST. 2002, pp. 334–348.

[10] N. Stouls and J. Groslambert. Vérification de propriétés LTL sur des pro-
grammes C par génération d’annotations. Research Report (French). 2011.

[11] S. de Oliveira, V. Prevosto, and S. Bensalem. “CaFE: a model-checker
collaboratif”. In: Approches Formelles dans l’Assistance au Developpement
Logiciel. 2017.

[12] L. Blatter, N. Kosmatov, P. Le Gall, V. Prevosto, and G. Petiot. “Static
and Dynamic Verification of Relational Properties on Self-composed C
Code”. In: International Conference on Tests and Proofs. 2018.

[13] M. Pavlova, G. Barthe, L. Burdy, M. Huisman, and J. Lanet. “Enforcing
High-Level Security Properties for Applets”. In: International Conference
on Smart Card Research and Advanced Applications. 2004, pp. 1–16.

[14] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J. Lo-
ingtier, and J. Irwin. “Aspect-Oriented Programming”. In: European Con-
ference on Object-Oriented Programming. 1997, pp. 220–242.

https://frama-c.com/acsl.html
https://frama-c.com/acsl.html
http://frama-c.com/wp.html

	Tame your annotations with MetAcsl: Specifying, Testing and Proving High-Level Properties

