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Metal-free acceptorless decarbonylation of formic acid enabled by 

a liquid chemical looping strategy 

Arnaud Imberdis, Guillaume Lefèvre and Thibault Cantat*[a] 

 

Abstract: The selective decarbonylation of formic acid was achieved 

under metal-free conditions. Using a liquid chemical looping strategy, 

the thermodynamically favored dehydrogenation of formic acid was 

shutdown, yielding a pure stream of CO, with no H2 or CO2 

contamination.  The transformation involves a two-step sequence 

where methanol is used as a recyclable looping agent to yield 

methylformate, which is subsequently decomposed to carbon 

monoxide using alkoxides as catalysts. 

Among C1 chemicals, formic acid (HCOOH, FA) is the focus 

of renewed interests as it is an important product in catalytic 

transformations related to the storage of sustainable energies. 

Recent efforts have indeed showed that HCOOH is a key 

intermediate in the hydrogenation of CO2 to methanol and 

methane.[1] In addition, formic acid can be produced from the 

(photo)electrolysis of CO2 or the hydrogenation of CO2 and 

carbonates.[2a–c] Despite its simple formulation, FA can undergo 

different decomposition reactions, depending on the reaction 

conditions and the presence of catalysts. While homogeneous 

catalysts have appeared that can disproportionate FA to methanol, 

the main decomposition path involves the dehydrogenation of 

HCOOH to H2 and CO2.[3a–e] In fact, the reversible hydrogenation 

of CO2 (and bicarbonates) to formates has led to the concept of a 

hydrogen battery, for the storage of H2 in a liquid form.[4] 

From a thermodynamic standpoint, FA could also 

decompose to CO and H2O, with a Gibbs free energy of –

12.4 kJ·mol–1 at 298 °C (Scheme 1).[5] This decarbonylation 

reaction is less favoured than the classical dehydrogenation 

(ΔG°= –32.9 kJ·mol–1 at 298 °C);[5] yet, it would provide a 

convenient flow of CO, from a renewable feedstock. Utilized in 

large scale in the Fischer-Tropsch and Cativa processes,[6] as well 

as in hydroformylation reactions, carbon monoxide is currently 

produced from fossil sources, for example primarily from methane 

steam reforming (SMR) or autothermal reformer (ATR).[7] 

Alternatively, the Reverse Water Gas Shift (RWGS) reaction can 

convert CO2 and H2 to a mixture of CO, H2O, CO2 and H2, at 

equilibrium.[8] Overall, these methods suffer from severe 

disadvantages, such as the need for further purification of the gas 

stream, to separate CO. In this context, the production of CO from 

FA would afford an attractive way to produce a stream of pure CO, 

in a controlled way, from a sustainable and storable precursor.[9] 

Examples of the in situ decomposition of formic acid to 

promote for example formal carbonylation or 

hydroxycarbonylation have been reported.[10] Only several 

methods have been developed to promote the acceptorless 

decarbonylation of FA, which relied on the use of stoichiometric 

amounts of sulfuric or phosphoric acids[11] or on thermolytic 

conditions.[12] Catalytic strategies are scarce. They involve 

zeolite-based catalysts able to decompose FA at high 

temperatures (> 150 °C), to remove water, and exhibit modest 

activities with turnover frequencies up to 39 h-1.[13] Very recently, 

while exploring the alkoxycarbonylation of alkenes with FA, Beller 

et al. discovered that palladium complexes, supported by 

chelating bis-phosphines decorated with pyridine bases, could 

catalyze the acceptorless decarbonylation of FA.[14] Because the 

dehydrogenation of HCOOH is facile, both thermodynamically 

and kinetically, the authors noted the concomitant release of at 

least 10% CO2 and H2. In the pursuit of a practical system able to 

selectively decarbonylate FA, we sought a metal-free method. 

Under organocatalytic conditions, the dehydrogenation of 

HCOOH is indeed difficult and only a handful of catalysts have 

been shown to decompose FA to CO2 and H2.[15] Herein, we report 

a system, combining a chemical looping and an organocatalytic 

transformation, for the decomposition of FA to CO and H2O, 

without formation of H2, at low temperature (<75 °C). 

 

Scheme 1. Routes for the production and decomposition of formic acid. 

 

Scheme 2. Principle of a liquid chemical looping for the metal-free 

decarbonylation of formic acid, with the associated Gibbs free energies using 

methanol and ethanol as looping reagents. 

From a mechanistic standpoint, the decarbonylation of FA 

must involve a C–H activation step that results in the formal 

deprotonation of the C–H group, to reduce the carbon atom. 
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Computationally, the corresponding proton has a pKa of ca. 31.[16] 

The direct decarbonylation of HCOOH with an organic Brønsted 

base is hence illusory, in the presence of the more acidic O–H 

functionalities of FA (pKa = 3.7) or water. To circumvent this 

limitation, we envisioned a chemical looping strategy. Chemical 

looping is a powerful and practical approach where a 

transformation is divided into several sub-reactions to separate 

gases, prevent deleterious equilibria, and/or avoid incompatible 

substrates. It has been applied, using solid looping agents, in a 

variety of processes including the RWGS reaction, the (super-)dry 

reforming of methane and CO2 capture from combustion.[17] An 

esterification reaction is well-suited to separate the acidic O–H 

functionalities from the C–H bond in Eqn. (3) because it would 

yield an alkylformate derivative with a Gibbs free energy 

intermediate between FA and CO + H2O (Scheme 2). An alcohol 

was hence chosen to set up the chemical looping depicted in 

Scheme 2. It relies on the esterification of formic acid with an 

alcohol and isolation of the corresponding alkylformate by 

distillation (steps 1-2 in Scheme 2). The subsequent catalytic 

decarbonylation of the alkylformate would afford a stream of CO, 

while regenerating the alcohol. The choice of the best-suited 

looping agent is discussed at the end on this communication as it 

relies both on the physico-chemical properties of the 

alcohol/alkylformate couple and on the reactivity of the 

alkylformate in the decarbonylation step. 

Interestingly, several metal catalysts have been reported for 

the acceptorless decarbonylation of alkylformates, based on 

copper[18a], ruthenium[18b], rhodium[18c], osmium[18d] and 

palladium[18e] complexes able to oxidatively add to the formate C–

H bond. Organic alternatives exist, which involve guanidines[19], 

amines or phosphines.[20] All these catalysts nevertheless operate 

at elevated temperatures, above 140 °C. Reasoning that an 

alkoxide base (pKa = 29-32 in DMSO)[21] would be basic enough 

to deprotonate a C–H bond of a formate group, the fate of a DMF 

solution of methylformate (MF) was investigated, in the presence 

of 5.0 mol% potassium methoxide (MeOK). In a sealed NMR tube, 

a rapid decomposition of 56 % MF was noted, after 3 h at 19 °C 

in DMF (Entry 6, Table 1). The concomitant formation of methanol 

was observed by 1H and 13C NMR spectroscopy, while the 

production of CO was identified in the gas phase, using GC. 

Importantly, no H2 nor CO2 could be detected by GC, in the gas 

phase. A conversion of 85 % was reached at 75 °C, while no 

reaction occurred in the absence of the catalyst. Encouraged by 

this success, the influence of the nature of the catalyst, the solvent 

and the alkylformate were investigated (Table 1). Given the low 

exergonicity of the decarbonylation of MF (ΔG°298K= –2.9 kJ·mol–

1), the reaction operates under an equilibrium and, in a sealed 

NMR tube, a maximum conversion of 60 % was evaluated for the 

decomposition of MF vs 90 % at 75 °C, in agreement with an 

endothermic reaction (ΔH°298K= +36.9 kJ·mol–1). A screening of 

solvents revealed that the decarbonylation of MF was efficient in 

polar, aprotic solvents having large dissociation constants, such 

as DMF (ε=36.7) and NMP (ε=32.2), with a conversion to CO and 

methanol of 56 and 58 %, respectively, after 3 h at 19 °C (see SI, 

Table S1). Importantly, the decarbonylation was completely shut 

down in methanol and in neat conditions, thereby showing the 

potential poisoning or deactivation of the catalyst by both the 

product and the substrate. 

 

Table 1. Scope of the reaction for the decarbonylation of alkyl formate[a] 

 
Entry R R’XM T (°C) Time (h) Conv (%)[c] 

1 

Me 

None 30 
 

20 <5 

2 MeOLi 30 8 54 

3 MeONa 19 3 <5 

4 MeONa/18C6 19 3 56 

5 MeONa 30 3 46 

6 MeOK 19 (75) 3 56 (85) 

7 MeOK/18C6 19 3 47 

8 MeOK/222 19 3 49 

9 MeORb 19 3 44 

10 EtOK 19 3 45 

11 tBuOK 30 3 59 

12 Me2NLi 19 20 42 

13 TBDNa 30 3 56 

14 TBDK 19 4 50 

15 
Et 

MeOK 19 (75) 2 24 (77) 

16 EtOK 19 1 51 

17 nBu tBuOK 30 (75) 3 60 (81) 

18 Bz MeOK 19 (75) 3 69 (94) 

[a] Reaction conditions: 1 mmol MF, 50 µmol catalyst (5 mol%), 500 µL DMF. 

[b] Screening of the solvent (see details in the supporting information). 

[c] Determined by 1H NMR of the crude reaction mixture.  

While MeOLi and MeONa were found inactive at 19 °C, these 

catalysts decompose MF to CO and methanol at 30 °C and a 

longer reaction time was required in the presence of the lithium 

derivative (8 vs 3 h) (Entries 2, 3 and 5 in Table 1). The rubidium 

salt MeORb exhibited a catalytic activity close to MeOK (Entry 9 

in Table 1). As alkali cations have been shown to influence the 

performances of catalytic systems by coordination to oxygen-rich 

substrates, the coordination sphere of the potassium cation in 

MeOK was modulated by the addition of exogenous chelating 

ligands. Addition of 5.0 mol% of the 18–C–6 crown ether or the 

2,2,2-cryptand had no impact on the catalytic performances of 

MeOK, suggesting an innocent role of K+. The difference in 

reactivity between MeOK and its lithium and sodium congeners 

hence likely stems from the tighter ion pairs formed between the 

MeO– anion and the hard Li+ and Na+ cations. This trend is 

reflected in the shortening of O–M bond length in the alkali oxides 

M2O from 2.9, 2.8, 2.4 to 2.0 Å across the series Rb, K, Na, Li.[22] 

This interpretation is supported by the comparable catalytic 

activities of MeOK and MeONa/18–C–6 at 19 °C (Entries 4 and 6 

in Table 1). It is notable that bases stronger than MeOK, such as 

EtOK, t-BuOK and nitrogen-containing bases (TBDK), exhibited 



          

 

 

 

 

catalytic performances similar to MeOK; similarly, Me2NLi 

behaved like MeOLi.  
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Figure 1. Plot of the volume of CO produced upon decarbonylation of methyl 
formate in an open system using different initial loadings of MeOH (red: 0 mol% 
MeOH, green: 5 mol% MeOH, blue: 10 mol% MeOH) and evolution of the rate 
constant with respect to the initial concentration of MeOK and MeOH. 

Bulkier ethyl and n-butyl formates were found 

to be less reactive than MF and required stronger 

bases as catalysts (entries 15-17). In contrast, 

94 % of the more activated benzyl formate was 

decomposed at 75 °C. It is noteworthy that all the 

results displayed in Table 1 involved very mild 

temperatures (19°C or 30°C). 

To suppress the thermodynamic constraint 

associated with pressure buildup in a closed 

vessel, the decomposition of MF was carried out in 

an open system and monitored using a eudometer 

(Figure 1). Using the reaction conditions of Entry 6, 

Table 1, CO was generated in 82 % yield after only 

50 min at 19 °C (red plot in Figure 1). The setup 

enabled a kinetic study, establishing that the rate 

law is first order in catalyst and has a -1 order in 

MeOH while the order for MF is non-integer (SI). 

These data confirm that both MF and MeOH have 

a detrimental effect on the reactivity of the catalyst 

and, to better apprehend this behavior, DFT 

calculations were carried out on the mechanism of 

the decarbonylation reaction.  

The MeO– catalyst is a base strong enough to 

interact with MF and, although the deprotonation of 

the C–H bond is slightly uphill (G = +5.1 kcal.mol-

1), CO release occurs readily via a low lying 

transition state (TS2, G = +8.1 kcal.mol-1) (Scheme 3, green 

surface). Interestingly, the methanol by-product forms a strong H-

bond with MeO- and the separation of the free MeO– base from 

methanol requires +7.3 kcal.mol-1. As a result, the energy span 

governing the activity of the MeO– catalyst reaches 15.4 kcal.mol-

1. 

As the reaction proceeds, the accumulation of methanol can be 

accounted for, mechanistically, by exploring the catalytic behavior 

of the H-bonded [MeO-…HOMe] pair (blue surface in Scheme 3). 

The decreased basicity of the catalyst results in a destabilization 

of the two transitions states responsible for the deprotonation of 

the C-H bond in MF and the release of CO from the CH3OC(O)– 

anion (e.g. TS2, G = +14.5 kcal.mol-1). As a consequence, in the 

presence of methanol, the reaction span increases to 19.8 

kcal.mol-1, thereby explaining the deleterious influence of the 

reaction product on the catalyst activity. In addition, the presence 

of a large excess MF results in the trapping of the MeO– catalyst 

to form a HC(OMe)2O– anion (with a Gibbs free energy of  

–3.7 kcal.mol-1), thereby slowing down the rate of the 

decarbonylation. 

 

Based on these key findings, an optimized system was found for 

the decarbonylation of formic acid, using the chemical looping 

depicted in Scheme 2. MeOH/MF was selected as the best 

looping system, because both MeOH and MF are liquids under 

ambient conditions and MF presents a high CO content of 47 wt%. 

Using a two-chamber system depicted in Scheme 4, a solution of 

MeOK in DMF (0.07 mol/L) was connected to a vessel containing 

pure MF. The device was equipped with a condenser and 

immersed in a 75°C oil bath. Thanks to the low boiling-points of 

MF and MeOH of 32 and 61 °C, respectively, the accumulation of 

the reagents and products in the solution containing the catalyst 

(chamber B in Scheme 4) is avoided and methanol is collected in 

the reservoir vessel (chamber A). Using this setup, an excellent 

TON of 5000 was measured, with a TOF up to 81 h-1 at 75 °C. 

Overall, 10 mL MF were successfully decarbonylated in 92 % 

yield to afford 3.7 L CO, after 40 h (Scheme 4). 6.1 mL of 

Scheme 3. Decarbonylation of methyl formate catalyzed by MeO-.Gibbs free energies in  

kcal.mol-1 computed at the M062x/6-311++G**/PCM level of theory. 



          

 

 

 

 

methanol were recovered, with a purity of 96 % (along with 4 % 

unreacted MF). To demonstrate the liquid chemical looping 

depicted in Scheme 2, the regeneration of MF was carried out by 

esterification of the produced methanol with HCOOH at 32 °C. 

Continuous distillation of MF enabled the isolation of the 

alkylformate in 86 % yield after 5 h, thanks to the absence of 

azeotrope between MF and formic acid, water or methanol.  

 

 
 All together, the decarbonylation of formic acid to CO and water 

was achieved in 79 % yield at low temperature (75 °C), using 

metal-free catalysts, for the first time (Scheme 5). No H2 nor CO2 

contamination of the gas stream was detected by GC, although 

the dehydrogenation of formic acid is thermodynamically 

preferred. 

 

Scheme 5. Global process (YG = global yield of the process) 

Recently, several surrogates of CO have been designed to 

generate low pressures of CO for synthesis at the laboratory scale, 

for instance using two-chamber systems (e.g. COgen).[23] 

Similarly, we were able to perform the gram-scale 

aminocarbonylation of 4-bromoanisole with morpholine, using CO 

produced from MF (Scheme 6).[24] The absence of H2 

circumvented the dehalogenation of the arylbromide in this 

palladium-catalyzed reaction. Interestingly, the possibility to 

generate high pressures of CO (up to 26 bars), allowed the iron-

catalyzed carbonylation of the N–CH3 bond in N,N-dimethylaniline 

in 73 % yield under 9 bars of CO, using a double autoclave 

system (see SI, Scheme 6).[25] While chemical loopings are 

common strategies in the realm of heterogenous catalysis, the 

present work hence exemplifies how liquid chemical loopings can 

unlock thermodynamically unfavored transformations, at low 

temperatures, without the need for sophisticated metal catalysts. 

 

 

Scheme 6. Tandem carbonylation reactions enabling the preparation of amides 

with CO generated from MF. 
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