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ABSTRACT

The interstellar medium (ISM) is a complex nonlinear system governed by the interplay between gravity and magneto-hydrodynamics,
as well as radiative, thermodynamical, and chemical processes. Our understanding of it mostly progresses through observations and
numerical simulations, and a quantitative comparison between these two approaches requires a generic and comprehensive statistical
description of the emerging structures. The goal of this paper is to build such a description, with the purpose of permitting an efficient
comparison that is independent of any specific prior or model. We started from the wavelet scattering transform (WST), a low-variance
statistical description of non-Gaussian processes, which was developed in data science and encodes long-range interactions through
a hierarchical multiscale approach based on the wavelet transform. We performed a reduction of the WST through a fit of its angular
dependencies. This allowed us to gather most of the information it contains into a few components whose physical meanings are
identified and describe for instance isotropic and anisotropic behaviours. The result of this paper is the reduced wavelet scattering
transform (RWST), a statistical description with a small number of coefficients that characterizes complex structures arising from
nonlinear phenomena, in particular interstellar magnetohydrodynamical (MHD) turbulence, independently of any specific priors. The
RWST coefficients encode moments of order up to four, have reduced variances, and quantify the couplings between scales. To show
the efficiency and generality of this description, we applied it successfully to the following three kinds of processes that are a priori very
different: fractional Brownian motions, MHD simulations, and Herschel observations of the dust thermal continuum in a molecular
cloud. With fewer than 100 RWST coefficients when probing six scales and eight angles on 256 by 256 maps, we were able to perform
quantitative comparisons, infer relevant physical properties, and produce realistic synthetic fields.

Key words. magnetohydrodynamics (MHD) – turbulence – methods: statistical – methods: data analysis – ISM: general –
ISM: structure

1. Introduction

The interstellar medium (ISM) serves as a good example of how
complex natural physical systems can be. Its physics involve a
highly nonlinear interplay of gravity and magnetohydrodynam-
ics (MHD), as well as radiative, thermodynamical, and chemical
processes (Draine 2011). This complexity precludes the advent
of a comprehensive model of the ISM, whose understanding
mostly progresses empirically through observations, numerical
simulations, and phenomenological models. Those approaches
each benefit from continually improving observational capabili-
ties (see, e.g. Schinnerer et al. 2013; Pabst et al. 2017; Pety et al.
2017; Cormier et al. 2018) and computational power (see, e.g.
Gent et al. 2013; Hennebelle 2018; Hopkins et al. 2018). A key
point of ISM studies therefore lies in the quantitative compar-
ison between observational and simulated data, which has to
be done statistically. To perform such a comparison, however,
requires to properly characterise non-Gaussian processes with
long-range correlations that are a consequence of the complex
nonlinear physics at play. This must also be done using statistical

descriptions that keep a reasonably low dimensionality in order
to be of sensible use (Donoho 2000).

In recent years, the complex physics of the ISM has also
become closely related to observational cosmology since some
cosmological signals of interest are much smaller than the emis-
sion from Galactic foregrounds. An example of this is the
search for B-modes of polarisation in the cosmic microwave
background (CMB). A potential detection of this signal would
constrain inflation models in the very early Universe. How-
ever, it cannot be conclusive unless the submillimetre polarised
thermal emission from Galactic dust is properly accounted for
(BICEP2/Keck Array and Planck Collaborations 2015). This,
in turn, requires a statistical model of this foreground emis-
sion in order to optimise component separation methods and
reliably quantify uncertainties affecting the expected primordial
signal (Planck Collaboration IV 2019). Such models exist, but
only as phenomenological ones (Vansyngel et al. 2017), which
are hampered by simplifying assumptions, for example that the
random (turbulent) component of the Galactic magnetic field
may be described as a Gaussian process. The development of a
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comprehensive statistical model of the ISM is therefore not
only a goal for Galactic astrophysics. There are also important
implications in cosmology.

It is often possible to find specific statistical estimators to test
a given phenomenological model and estimate its parameters.
In this class of estimators, one may think of diagnostics of the
intermittent dissipation of turbulence in the probability distri-
bution functions (PDFs) of velocity fluctuations at small scales
(Frisch 1995; Falgarone et al. 2009), of the evolutionary state of
molecular clouds based on column-density PDFs (Kainulainen
et al. 2009), of the relative contributions of solenoidal and com-
pressive modes of turbulence from spectro-imaging moment
maps (Orkisz et al. 2017), and of the relative orientation of inter-
stellar filaments and magnetic fields with dedicated histograms
(Planck Collaboration Int. XXXV 2016) or more evolved tools
(Jow et al. 2018). These tailored statistical descriptions allow
us to characterise some specific non-Gaussian features, but they
are of limited scope when no prior model is available.

Other statistical descriptions are not specifically designed
to test a phenomenological model, but rather to characterise
the morphology of the observed fields1. In this category, we
find descriptions in terms of filaments, sheets, and voids based
on Morse theory (Sousbie 2011), hierarchical structure analy-
ses using dendrograms (Houlahan & Scalo 1992; Rosolowsky
et al. 2008), or detections of linear structures, such as the Rolling
Hough Transform (Clark et al. 2014). The stability of these
descriptions under small deformations of the fields is, however,
not easy to ensure.

An inherent difficulty to statistically modelling ISM pro-
cesses in a comprehensive way lies in their long-range inter-
action properties. In this case, a description using probability
distributions of pixel values must be based on conditional prob-
abilities involving many points, and this is not easily tractable.
A simpler way to describe such processes involves a hierarchi-
cal multiscale approach: the small scale interactions lead to the
formation of local structures at intermediate scales, that in turn
interact to form structures at larger scales, etc. This requires
properly separating the variability of the process under study at
different scales, which is precisely the purpose of the wavelet
transform (Cohen & Ryan 1995; Van Den Berg 2004; Farge et al.
2010; Farge & Schneider 2015).

Second-order moments of wavelet coefficients are closely
related to standard power-spectrum approaches (Flandrin 1992;
Meyer et al. 1999; Farge et al. 2010). As a first step, some phys-
ical insight into ISM processes may be gained from these power
spectrum analyses. They discriminate between different models
of turbulence that make various assumptions about the com-
pressibility of the fluid and the presence of a magnetic field (see,
e.g. Kolmogorov 1941; Iroshnikov 1964; Kraichnan 1965a,b;
Sridhar & Goldreich 1994; Goldreich & Sridhar 1995; Kowal &
Lazarian 2007; Falceta-Gonçalves et al. 2014). However, second-
order moments do not fully describe the statistical properties of
non-Gaussian fields. Higher-order statistical moments have also
been used, such as bispectra (Burkhart et al. 2009) or structure
functions (She & Leveque 1994), but these are prone to exhibit
high variances due to outliers, and are therefore of limited use
when only limited good quality data is available.

To beat these shortcomings, recent advances in data science
have shown that it is possible to extract non-Gaussian features of
fields in the multiresolution framework provided by the wavelet

1 In this paper, we use the word field to describe the two-dimensional
physical quantities under study that our statistical descriptions are
applied to. This unifies different words that could be used in other
communities, such as “image”, “texture”, or “flow”.

transform, while keeping a reduced variance (see Sect. 2.3).
The Wavelet Scattering Transform (WST, Mallat 2012), which
makes use of the properties of directional wavelets, is inspired
by the architecture of convolutional neural networks, and yields
state-of-the-art results for image classification problems, with-
out requiring any training stage (Bruna & Mallat 2013; Sifre &
Mallat 2013). The outputs of the WST, called scattering coeffi-
cients, constitute an efficient, low-variance, low-dimensionality
statistical description of non-Gaussian processes. They contain
information on moments of order higher than two, are able to
capture long-range correlations, and can be related to physical
properties of the systems under study.

We note that studies of ISM emission maps making a
direct use of the wavelet transform, and therefore related to the
work presented here, have also been conducted. For instance,
Khalil et al. (2006) used the wavelet transform modulus max-
ima method (Mallat & Zhong 1992) to analyse HI maps from
the Canadian Galactic Plane Survey (Taylor et al. 2003) in
terms of their multifractal spectrum and local, scale-dependent
anisotropies. More recently, Robitaille et al. (2014) used com-
plex Morlet wavelets on thermal dust emission maps from the
Hi-GAL Herschel survey (Molinari et al. 2010), to separate their
Gaussian and non-Gaussian components by thresholding on the
probability distribution function (PDF) of the wavelet coeffi-
cients, finding in particular that the non-Gaussian part correlates
well with the molecular gas emission. These approaches are in
some sense akin to studying the first layer of the WST that we
describe in Sect. 2.2.

The goal of this paper is to make use of this new method
borrowed from data science to statistically characterise the com-
plex structures of the ISM. With this purpose in mind, this paper
introduces a statistical description of even lower dimension, the
reduced wavelet scattering transform (RWST), that is obtained
from the WST through the identification of the different angu-
lar modulations of the scattering coefficients, whose physical
meanings are identified. This reduction does not require spe-
cific priors, but assumes that the angular dependency is smooth,
as expected for physical systems. We show it to be successful
in characterizing very different processes: fractional Brownian
motions (Stutzki et al. 1998), column density maps generated
from MHD simulations, and an observation of the Polaris Flare
molecular cloud with the Herschel satellite (Miville-Deschênes
et al. 2010). The RWST allows us to perform quantitative com-
parisons between these processes, and to produce realistically
looking synthetic fields.

The paper is organised as follows: Sect. 2 offers a simpli-
fied presentation of the WST aimed at a general audience of
physicists. Section 3 introduces the RWST and discusses the
generality of the angular reduction that is performed. It also
presents a validation of this approach through the synthesis
of random fields based on the WST and RWST coefficients.
Section 4 reviews the various components of the RWST coeffi-
cients, and gives examples of what physical features are encoded
in these coefficients. Our conclusions and some perspectives for
future works are presented in Sect. 5. Five appendices complete
the paper. The basic properties of Morlet wavelets are given in
Appendix A; the three different classes of physical fields used
to build examples are described in Appendix B; some com-
ments on the generalizations and limits of the RWST are given in
Appendix C; the possibility to achieve a local statistical descrip-
tion of fields with the reduced scattering coefficients, as well
as the difficulties it poses, are discussed in Appendix D; finally,
additional examples of RWST for different processes are given
in Appendix E.
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2. Global wavelet scattering transform

The starting point of the statistical description introduced in this
paper is the wavelet transform. Its ability to perform an effi-
cient scale separation allows to study processes with long-range
interactions by means of a hierarchical multiscale approach, and
the progressive identification of structures at different scales that
interact with each other (Farge et al. 2010). From this, the WST
has been built specifically to quantify these couplings between
such structures.

2.1. Introduction

Since its first introduction in data science (Mallat 2012), the WST
has led to state-of-the-art classification results for handwritten
digits and texture discrimination (Bruna & Mallat 2013), includ-
ing the most difficult textures databases (Sifre & Mallat 2013). It
has also been applied to quantum chemical energy regression and
the prediction of molecular properties (Eickenberg et al. 2018).
The goal of this section is to present and synthesise for a gen-
eral audience of physicists the construction and the properties of
the WST coefficients2. The results of this section are thus not
new in themselves, but are formulated as much as possible in the
language of physics rather than applied mathematics. A more
complete presentation and discussion of this transform can be
found in Bruna & Mallat (2013) and Bruna et al. (2015).

The initial purpose of the WST was to understand and
reproduce the image classification successes obtained by deep-
learning architectures, but by means of a statistical description
that does not require any training stage, and is entirely controlled.
The WST is built by successive convolutions of the field with
Morlet wavelets followed by the application of the modulus oper-
ator. We mainly use in this paper the WST to characterise the
global statistical properties of a field. The WST thus computes
a set of global coefficients that can be labelled with the scales
they characterise. It is however also possible to use the WST
to achieve a local description of a field that is not statistically
homogeneous, as presented in Appendix D.

2.2. Computation of the WST coefficients

We consider here a real-valued two-dimensional field I(x). Typ-
ically, I(x) is defined on a grid of d × d pixels and represents,
for instance, an intensity level at a given wavelength in an astro-
physical observation. In that case, x stands for a position in the
sky. All the sizes discussed henceforth refer to certain numbers
of pixels, that can in turn be related to physical lengths. We use
discretised wavelets, defining a number J of scales to consider.
The integer scales j are labelled from 0 to J − 1 and correspond
to effective sizes of 2 j pixels (we work accordingly with base-2
logarithms in the whole paper). Therefore, 2J must be smaller
than or equal to the size d of the image.

The angles ϑ are also labelled by integers θ, such that

ϑ = (θ − 1) · π/Θ, (1)

where Θ denotes the number of angles in which we divide a π
interval3. As we work with real fields, it is indeed sufficient to
2 The scattering coefficients are computed with a MATLAB software
called scatnet that is publically available (https://www.di.ens.
fr/data/software/scatnet/). We also developed a python code to
perform the WST.
3 Note that the integer labels j and θ are sometimes abusively identified
in this paper with the effective scale 2 j in pixels and angle ϑ in radians
they correspond to.

Fig. 1. Two-dimensional Morlet wavelets, with σ= 1 (see Appendix A).
a: real part of ψ j,0. b: real part of ψ j,θ with ϑ= π/5. c: location of
the modulus of ψ̃ j,0 (blue) and ψ̃ j,θ (orange). We note that in our
applications, we take σ= 0.8, see Eq. (A.1).

consider the WST coefficients for angles ϑ in [0, π), i.e. with θ
going from 1 to Θ. The redundancy of the other angles stems
from the fact that the Fourier transform of a real-valued field
I(x) verifies Ĩ(−k) = Ĩ∗(k) where ∗ stands for complex conjuga-
tion4. From now on, we work with a labelling in terms of oriented
scales ( j, θ), each of which corresponds to a certain wavevector
k. This labelling will be particularly useful to distinguish scale
and angular dependencies of the scattering coefficients.

The computation of scattering coefficients implemented in
scatnet involves convolutions with complex Morlet wavelets,
which are convenient to interpret in the usual framework of
spectral analysis since those wavelets are well localized in
Fourier space. Their definition and basic properties are given in
Appendix A, where their link with discrete windowed Fourier
transforms is explained. Starting from an initial mother wavelet
ψ(x) defined as the product of an oscillation of unit frequency
and a Gaussian window (Eq. (A.3)) the complex Morlet wavelets
are then computed as

ψ j,θ(x) = 2−2 j · ψ(2− jr−1
θ x), (2)

where rθ is the rotation operator of angle θ. The real parts of
two examples of such wavelets and the supports of their Fourier
transforms are shown in Fig. 1. The Fourier transform of the
mother wavelet ψ̃(k) being centred on kψ with a unit bandwidth,
ψ̃ j,θ has a support centred on 2− jrθkψ with a bandwidth pro-
portional to 2− j. For given values of J and Θ, one can build
an appropriate set of wavelets {ψ j,θ} such that their combined
Fourier supports cover the whole Fourier plane, except for a
localised area close to the null frequency5 (Bruna & Mallat
2013).

Using these wavelets, the WST coefficients are computed in
three layers, indexed by an integer m going from 0 to 2. The first
layer m = 0 characterises the average value of the field, and thus
contains only one coefficient S 0

S 0 =
1
µ0

∫
I(x) d2x, (3)

where the normalization factor µ0 is the surface over which the
integration is performed. The coefficients S 1( j1, θ1) of the sec-
ond layer m = 1 depend on a single oriented scale ( j1, θ1) and are
given by

S 1( j1, θ1) =
1
µ1

∫ ∣∣∣I ? ψ j1,θ1

∣∣∣ (x) d2x, (4)

4 In the whole paper, f̃ (k) is the Fourier transform of f (x).
5 The lowest spatial frequencies can be probed by a dedicated Gaussian
window.
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where ? stands for the convolution and the normalization factor
is the impulse response

µ1 =

∫ ∣∣∣δ ? ψ j1,θ1

∣∣∣ (x) d2x, (5)

with δ the Dirac delta function6. These S 1 coefficients probe the
amplitudes of the spectral components of the field centred on the
wavevector 2− j1 rθ1 kψ that is associated with the ( j1, θ1) oriented
scale. Finally, the coefficients S 2( j1, θ1, j2, θ2) of the third layer
m = 2 depend on two oriented scales ( j1, θ1) and ( j2, θ2), and are
given by

S2( j1, θ1, j2, θ2) =
1
µ2

∫ ∣∣∣∣∣∣I ? ψ j1,θ1

∣∣∣ ? ψ j2,θ2

∣∣∣ (x) d2x, (6)

where µ2 is defined similarly to µ1 in Eq. (5). These S 2 coef-
ficients probe the level at which the first oriented scale ( j1, θ1)
is modulated at a second oriented scale ( j2, θ2), with j2 > j1
(see Sect. 2.4). They are also related to geometrical shapes and
structures appearing in the field (Bruna & Mallat 2013).

2.3. Properties of the WST coefficients

The WST coefficients depend on high-order moments of I(x),
mainly of order up to 2m for the mth layer (Bruna & Mallat
2013). We therefore expect the m = 2 coefficients to allow to dis-
tinguish fields that have the same second order moments (i.e.
power spectra), but different higher order moments.

However, unlike high-order moments, whose estimators
exhibit variances that are increasingly dominated by outliers,
that is by samples which are far away from the mean (Welling
2005), the WST coefficients do not involve products of values of
the field. On the contrary, the WST coefficients are built using
unitary and non-expansive operators (as the modulus), and have
reduced variance, which means that they can be better estimated
from limited number of samples (Bruna & Mallat 2013).

We note that the construction of scattering coefficients can
be pursued for deeper m> 3 layers, but in practice this is not
necessary, and we choose to limit the present study to the
m 6 2 layers. The m> 3 layers describe couplings between
three scales or more, and characterise accordingly correlations
of order higher than four. It has however been shown in practice
that those additional layers do not significantly improve the clas-
sification results or the quality of syntheses performed with the
WST, despite an important increase in the number of scattering
coefficients (Bruna & Mallat 2013).

Furthermore, for appropriate wavelets7, the WST also pre-
serves the field energy to a very good approximation (Mallat
2012)

||I||2 = S 0
2 +

∑
j1,θ1

S 1
2( j1, θ1) +

∑
j1,θ1, j2,θ2

S 2
2( j1, θ1, j2, θ2) + ε, (7)

where

||I||2 =
1
µ0

2

∫
|I(x)|2d2x. (8)

6 We do not write explicitly here the ji and θi dependencies of the µ1
and µ2 normalization factors.
7 By this we mean that the set of wavelet supports should cover the
whole spectrum of the field under study, up to its largest scale. For
example, for a 256× 256 image, it requires to have J = 8. Under this
condition, Eq. (7) is valid (Mallat 2012). In our case, we consider only
the energy contained in the scales j 6 5.

In Eq. (7), the ε term stands for the energy encoded in the
m> 3 layers, that contain in general less than 1% of the ini-
tial energy of the field (Bruna & Mallat 2013). Under the same
requirement as for Eq. (7), the conservation of energy can also
be written at the level of the power spectrum:

||I ? ψ j1,θ1 ||2 = S 1
2( j1, θ1) +

∑
j2,θ2

S 2
2( j1, θ1, j2, θ2) + ε′, (9)

where ||I ? ψ j1,θ1 ||2 is defined following Eq. (8), and essentially
represents the power spectrum of the field I at the ( j1, θ1) ori-
ented scale (see Eq. (A.5)). In this case, ε′ also encodes the
energy contained in the m> 3 layers, that has been shown to
be negligible for stationary processes (Bruna & Mallat 2013).
Equation (9) shows that it is possible to recover the power spec-
trum of a field from its scattering coefficients. In addition, these
properties link the distribution of energy into the different layers
of the WST to the sparsity of the wavelet coefficients. Indeed,
as I ? ψ j1,θ1 gets sparser, S 1 coefficients get smaller, and more
energy is propagated to deeper layers. Highly non-Gaussian
fields thus have larger S 2 coefficients, while the power spectrum
of Gaussian fields may be recovered from the S 1 coefficients
alone.

The WST finally has particular properties related to transla-
tions and small deformations of the field. First, the scattering
coefficients are invariant under any global translation, since
the coefficients are obtained after a spatial integration. Such
a property is indeed required when working with homoge-
nous statistics. Second, the WST linearises small deformations
(Mallat 2012). This means that starting from a field I(x) and
deforming it by a small amount8, the associated displacement in
the scattering coefficients space is bounded, and thus the mod-
ification of the statistical description performed by the WST
is related in amplitude to the deformation of the field. Such a
property is of prime importance when studying complex physi-
cal phenomena, since one expects two fields related by a small
deformation to have similar physical properties.

2.4. Number and normalization of the WST coefficients

The assumed values of J and Θ determine the number of scatter-
ing coefficients describing a given field. Let us first note that the
S 2 coefficients are negligible for j2 < j1. Indeed, after a convolu-
tion of I(x) by ψ j1,θ1 , all the information about scales smaller than
2 j1 is lost, and it is sufficient to consider the modulation of |I ?
ψ j1,θ1 | by a larger scale 2 j2 . The whole information about the cou-
pling of two scales j1 and j2 is thus contained in S 2( j1, θ1, j2, θ2)
for j2 > j1 and for all θ1 and θ2. There are then N1 = J · Θ coeffi-
cients for the m = 1 layer and N2 = J · (J − 1)/2 · Θ2 coefficients
for the m = 2 layer. For J = 6 and Θ = 8, which are the values
we consider in this paper9, it gives N1 = 48 and N2 = 960. With
N0 = 1, this gives a total of 1009 coefficients.

Since in simple cases we may expect the scattering coeffi-
cients to depend on scales through power laws of 2 j1 and 2 j2 , it is
8 A proper formulation of this property requires the introduction of
distances between two fields as well as between two sets of scattering
coefficients. It is then possible to show that when deforming a field by
a small amount, the displacement in the space of WST coefficients can
be bounded in terms of the displacement in the field space. See Mallat
(2012) or Bruna & Mallat (2013) for more details.
9 Working mainly with fields of linear sizes 28 pixels, one can hardly
compute meaningful statistics on scales larger than or equal to 26 pixels.
Also, to decompose the half-circle in Θ = 8 angles is a good trade-off
between a smooth sampling and the possibility to clearly distinguish
between two directions for scales up to 25 pixels on a square lattice.
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Fig. 2. Logarithms of the normalised scattering coefficients of a 256× 256 column density map from an MHD simulation (class 4, see Appendix B),
plotted in a lexicographical order. In the log2

[
S̄ 1( j1, θ1)

]
plot (left), θ1 spans the range 1–8 for each value of j1. In the log2

[
S̄ 2( j1, θ1, j2, θ2)

]
plot

(right), θ2 spans the range 1–8 for each value of ( j1 = 0, θ1, j2). The computation of the error bars is explained in Sect. 3.4.

useful to work with their logarithms, which would lead to linear
behaviours as a function of j1 and j2 (Sifre & Mallat 2013). We
finally normalise each layer of scattering coefficients by those of
the previous layer. We denote S̄ these normalised coefficients,

log2

[
S̄ 1( j1, θ1)

]
= log2

[
S 1( j1, θ1)

] − log2 [S 0], (10)

and

log2

[
S̄ 2( j1, θ1, j2, θ2)

]
= log2

[
S 2( j1, θ1, j2, θ2)

] − log2
[
S 1( j1, θ1)

]
, (11)

whereas log2(S̄ 0) = log2(S 0) is unchanged. This normalization
separates the dependencies of the different layers (Bruna et al.
2015), since the S̄ 1 and S̄ 2 coefficients are invariant under the
multiplication of the field by a constant factor, and the S̄ 2 coef-
ficients are also invariant under a modification of the spectrum
of the field by the action of a linear filter10. Note that in practice,
this normalization is done locally before performing the spatial
average (see Appendix D for more details).

As an example, Fig. 2 shows the logarithms of scattering
coefficients (log2(S̄ 1) on the left and log2(S̄ 2) on the right) com-
puted from a 256× 256 column density map in a simulation of
an astrophysical flow (see Appendix B.3 for more details), with
J = 6 and Θ = 8. All the coefficients are plotted as a function of
their arguments in lexicographical order: for instance, the first
eight log2(S̄ 1) coefficients are for fixed j1 = 0 and θ1 varying
from 1 to 8, the next eight log2(S̄ 1) coefficients are for j1 = 1 and
θ1 varying from 1 to 8, and so on. In Fig. 2 (right), only the j1 = 0
subset of the log2(S̄ 2) coefficients is plotted, in a ( j1, θ1, j2, θ2)
lexicographical order.

3. The reduced wavelet scattering transform

The WST was introduced in data science with the purpose of
characterizing any given field without assuming constraints such
as continuity or regularity. In the case of physical fields, some
of these constraints may be expected to hold, suggesting possi-
ble simplifications. Indeed, the scattering coefficients shown in
Fig. 2 exhibit regular patterns through the angles and scales, for

10 This is in fact verified only for linear filters roughly constant on each
of the spectral domains sampled by the different wavelets (Bruna &
Mallat 2018).

instance the “stair-like” shape for the m = 1 coefficients and the
oscillatory structure for m = 2. It should therefore be possible to
derive a new statistical description that would somehow factor
out these patterns, and thus offer a significant compression of
the WST coefficients.

3.1. Rationale

We propose such a description, called the Reduced Wavelet
Scattering Transform (RWST), obtained by fitting the angu-
lar (θ1, θ2) dependencies of the WST coefficients with a few
terms accounting for specific angular modulations. This reduc-
tion allows to concentrate the information contained in the
∼1000 coefficients of the WST (with J = 6 and Θ = 8) into fewer
than 100 reduced coefficients, almost without any loss of infor-
mation (see Sect. 3.5 below). Gathering coefficients describing
specific angular modulations also allows a simpler and more
transparent description, and gives supplementary simplifications
in some cases. For example the coefficients describing the statis-
tical anisotropies of a field can be ignored when the latter is in
fact statistically isotropic.

Our modelling of the WST coefficients separates the depen-
dency on angles from that on scales. In this assumption, the
logarithms of WST coefficients may formally be written as a sum
of terms corresponding to the various possible modulations,

log2

[
S̄ m({ ji, θi})

]
=

∑
p

Ŝ p
m({ ji}) · f p

m({θi}), (12)

for m = 1 and 2, while log2(S̄ 0) = Ŝ 0 for m = 0. In Eq. (12), the
f p
m({θi}) are given functions of the angles, that may involve some

reference angles related to preferred directions for anisotropic
fields, and the Ŝ p

m({ ji}) are the reduced scattering coefficients,
giving the respective amplitudes of the various angular modula-
tions.

Before discussing the form of the functions f p
m({θi}), it should

first be stressed that rotations and scalings, in their infinitesimal
versions, can be thought of as small deformations, under which
the WST is continuous (see Sect. 2.3). The scattering coefficients
should therefore be seen as a discrete sampling, at scales { ji} and
angles {θi}, of a continuous statistical description, rather than as
independent descriptors. The same should therefore be true of
the RWST description given in Eq. (12).

A115, page 5 of 21

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201834975&pdf_id=0


A&A 629, A115 (2019)

3.2. Reduction of the angular dependency

The choice of the functions f p
m({θi}) should be guided by gen-

eral considerations involving periodicities and angle references.
For instance, the presence of a statistically preferential direc-
tion, such as in images of fluid flows with a mean direction,
should manifest itself by a symmetric modulation of the WST
response with a π-periodicity, since the scattering coefficients
are themselves π-periodic11, and an angle reference either along
or perpendicular to the preferential direction. Similarly, a modu-
lation related to some signature of pixelation should be aligned
with the lattice and have a π/2 periodicity (see Appendix C). All
periodic functions being susceptible to a Fourier series decom-
position, we may assume – to first order – the f p

m to be cosine
functions. This assumption, as we will see, is generally validated
by the successful fits of the different physical fields it allows, as
shown in Sect. 3.4.

We first assume that the fields may be statistically
anisotropic, but with only one preferential direction at most. A
similar approach could be developed in the case of physical phe-
nomena exhibiting several preferential directions. The angular
modulations to take into account are expected to be functions of
θ1, θ2, or of the difference θ1 − θ2, the latter being isotropic since
it does not change under a global rotation.

For the m = 1 layer, the only angular dependency is on θ1.
Following Eq. (12) and the discussion above, we write log2

(
S̄ 1

)
as the sum of an isotropic term independent of θ1, and an
anisotropic term proportional to a π-periodic cosine function of
θ1:

log2

[
S̄ 1 ( j1, θ1)

]
= Ŝ iso

1 ( j1) + Ŝ aniso
1 ( j1)

× cos
(

2π
Θ

[
θ1 − θref,1( j1)

])
, (13)

where θref,1( j1) is a reference angle related to the direction of
anisotropy. This angle is a function of the scale j1, and is
expected to smoothly vary across the scales12. Such a trigono-
metric function distinguishes a direction from the perpendicular
one, but not a direction from its opposite13. If the field is
statistically isotropic, then we expect Ŝ aniso

1 ' 0.
For the m = 2 layer, we consider the following four-term

decomposition, with two isotropic and two anisotropic terms,

log2
[
S̄ 2( j1, θ1, j2, θ2)

]
= Ŝ iso,1

2 ( j1, j2)

+ Ŝ iso,2
2 ( j1, j2) · cos

(
2π
Θ

[
θ1 − θ2

])
+ Ŝ aniso,1

2 ( j1, j2) · cos
(

2π
Θ

[
θ1 − θref,2( j1, j2)

])
+ Ŝ aniso,2

2 ( j1, j2) · cos
(

2π
Θ

[
θ2 − θref,2( j1, j2)

])
. (14)

11 Indeed, the Morlet wavelets verify ψ j,ϑ+π =ψ∗j,ϑ. Knowing that I is
real-valued, the wavelet coefficients |I ? ψ j,θ | are then π-periodic.
12 Although the potential dependency of θref,1 on j1 means that scales
and angle dependencies are not completely separate as Eq. (12) sug-
gests, we use this slightly more general form to be able to detect
variations of the anisotropy directions across the scales.
13 Note that in terms of geometrical angles ϑ associated with the integer
labels θ (see Eq. (1)), the cosine function reads cos[2(ϑ1 − ϑref,1)] and
is therefore π-periodic. Note also that the reference angles are fitted as
real values in [0, π), and not as integers, in order to describe all possible
directions. They may also be defined modulo π/2 by reversing the sign
of Ŝ aniso

1 ( j1), but this degeneracy can be lifted by enforcing Ŝ aniso
1 > 0.

All the cosine functions in this equation are π-periodic, as in
the m = 1 case. We ignore a potential reference angle difference
for the Ŝ iso,2

2 term and assume the same θref,2( j1, j2) reference
angle for the two anisotropic terms, further imposing that it
should be close to θref,1( j1).

Our statistical description thus consists in eight functions
(Ŝ iso

1 , Ŝ aniso
1 , θref,1, Ŝ iso,1

2 , Ŝ iso,2
2 , Ŝ aniso,1

2 , Ŝ aniso,1
2 , and θref,2) that

are discretely sampled at scales j1 and j2. These functions form
the reduced wavelet scattering transform, and each of them is
described by J coefficients for m = 1, and J(J − 1)/2 coefficients
for m = 2, in addition to the m = 0 coefficient, for a total of (5J +
1)J/2 + 1 coefficients. This gives for instance 94 coefficients for
J = 6. More precisely, the 48 WST coefficients of the m = 1 layer
are fitted with 18 degrees of freedom, while the 960 WST coeffi-
cients of the m = 2 layer are fitted with 75 degrees of freedom14.

We investigated the limits of this reduction of the WST coef-
ficients. Our study shows that the modulations given in Eqs. (13)
and (14) are always largely sufficient to describe the angular
dependencies of the scattering coefficients. In other words, this
reduction boils down to the scattering coefficients at fixed j1 and
j2 being described by the zeroth and first harmonics in θ1 and
θ2, with a very good approximation. Indeed, higher harmonics
of those angular modulations are not detectable when working
with a single map, and are detected at a very small level when
working with a set of 20 independent maps for a given process
(see below). It was also possible to identify minor modulations
associated to potential signatures of the lattice at the smallest
scales. These terms, that allow to better evaluate the limits of
the RWST, are discussed in Appendix C. Note however that in
any case, their addition does not essentially modify the values of
the reduced scattering coefficients obtained by fitting Eqs. (13)
and (14).

3.3. Test cases

The fit of the angular dependency of the WST coefficients and
the associated reduction have been tested on various fields. These
are presented in detail in Appendix B, but we give here a short
description of each of them for easy reference.

The first type of field used are realizations of fractional
Brownian motions (fBm, Stutzki et al. 1998), Gaussian random
fields with power-law power spectra characterised by a Hurst
exponent H ∈ [0, 1]. We explore the range H = 0.1 to H = 0.9
in steps of 0.1. For each value of H, we use 20 different random
realizations over a 256× 256 grid. In the following, we may refer
to fits using a single map or using the ensemble of 20 maps.

The second type of field used are 256× 256 gas column
density maps NH obtained from numerical simulations of mag-
netised turbulent astrophysical flows (Iffrig & Hennebelle 2017).
There are nine classes of such maps, labelled from 1 to 9, with
varying intensities of the magnetic field and of the turbulent
velocity forcing (see Table B.1). For each class, we use 20 inde-
pendent maps. Similarly to the fBm case, in the following, we
may refer to fits using a single map or using the ensemble of
20 maps.

The third and last field used is an observation of the dust
continuum thermal emission in the Polaris Flare molecular
cloud (Miville-Deschênes et al. 2010) with the Herschel satellite
(Pilbratt et al. 2010; Griffin et al. 2010). Unlike the first two types
of field, the statistics of this field are likely not homogeneous.
We roughly addressed this limitation by using a local WST

14 Note that the different components of fixed j1 for m = 1 and of fixed
( j1, j2) for m = 2 can be fitted independently.
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Fig. 3. Logarithms of the normalised m = 2 scattering coefficients of a 256× 256 column density map from an MHD simulation (class 4, see
Appendix B). The coefficients are given in lexicographical order ( j1, θ1, j2, θ2). In the top panel, the fit using Eq. (14) is shown (dashed orange
line) on top of the data (solid blue line). In the bottom panel, we show the residuals normalised to the standard deviation. Dotted lines correspond
to ±2σ.

(see Appendix D) and clustering the data into four sub-regions
(clusters) based on the local WST coefficients, although this pro-
cess and the chosen number of clusters are somewhat arbitrary.

3.4. Goodness of the fits

The local computation of the WST coefficients (Appendix D)
is also instrumental in evaluating the goodness of the fits. The
statistical dispersion of these local WST coefficients over each
map and over the different realizations allows to estimate the
empirical variance of the global WST coefficients, and in turn
their uncertainties. As we work with non-Gaussian processes for
which no analytic variance estimation is available, this method
is currently the only one we have at hand to estimate these uncer-
tainties. One should however keep in mind that this method has a
notable flaw. Indeed, while the empirical estimate of the variance
of the WST coefficients has to converge to its expected value
when using a large enough number of samples, such an empiri-
cal estimate can be of poor quality when this convergence is not
achieved.

From our empirical study, we assess that the sampling per-
formed in a single 256× 256 map only gives well determined
uncertainties only for scales j 6 3, while it is necessary to sam-
ple on 20 such maps to correctly determine the uncertainties for
scales up to j = 5. This result can be seen for instance in Fig. 2,
where scattering coefficients obtained in a single map are given,
as well as their estimated uncertainties. One can for example
see in both panels that the uncertainties on the coefficients are
underestimated for j> 4. This is particularly visible for j = 5.

The fits of the angular dependencies given in Eqs. (13)
and (14) were performed taking these statistical uncertainties
into account, yielding a standard χ2

red using a diagonal covariance
matrix. We chose not to include complete covariance matrices
because we cannot properly estimate them on a single map. This
implies, in addition to the previous discussion on the statisti-
cal uncertainties of the scattering coefficients, that these χ2

red
are only indicative of the goodness of the different fits. This is
something to be improved upon in future works.

Performing these fits separately for each of the fBm and
MHD simulation maps at our disposal yields as many χ2

red values
as there are realizations, i.e., 2× 9× 20 = 360. Over all of these,
we have found similar results, that boil down to an average χ2

red
of 3.5 with a dispersion of 0.6 for the m = 2 coefficients. Such

a fit is shown in Fig. 3. Similar results are also obtained when
fitting the combined data from all twenty realizations for each
class of MHD simulation or H exponent of the fBm field, pro-
vided that the minor additional terms described in Appendix C
are included. Such a fit is shown in Fig. 4.

The goodnesses of the fits are somewhat lower in the case
of the Herschel observations of the Polaris Flare. For the four
sub-regions of the cloud discussed in Appendix B.3, we obtain
χ2

red values with a mean of 7.2 and a standard deviation of 3.3 for
the m = 2 fits. We however observe that the smallest scales are
very noisy in these fields. Indeed, performing the same fits while
excluding the ( j1 = 0, j2 = 1) scale, we obtain χ2

red values with a
mean of 4.8 and a standard deviation of 1.2. We consider these
values to be satisfactory, given the heterogeneity of the statis-
tics across the field of view and the crudeness of the clustering
approach we have used to address it.

These results validate our reduction of the WST to the RWST,
and show the wide range of applicability of this new statistical
description. Note however that we expect this reduction to be
efficient on physical fields only. We tested this hypothesis by fit-
ting the angular dependency of the WST coefficients obtained
on the image of a brick wall from the UIUC data base (Agarwal
et al. 2004). We obtained large χ2

red values, with a mean around
450 for m = 2, because the angular dependencies are in this case
not amenable to smooth trigonometric functions.

3.5. Syntheses

The efficiency of the RWST as a means to capture the essential
statistics of a complex field can be assessed through our ability,
starting from the RWST coefficients, to build synthetic fields that
are visually similar to the original data. Although this is not an
absolute criterion, such a visual comparison is a widespread indi-
cator in data science, among others such as the ability to regress
physical parameters, or to achieve high rates of success in clas-
sification tests. We also note that the power spectrum does not
generally pass this test for non-Gaussian fields, which is exem-
plified by the fact that starting from a highly non-Gaussian image
and synthesizing a field that has the same power spectrum but
with random Fourier phases completely destroys the structure in
the image.

The synthetic fields are constructed from a set of target WST
coefficients. These may be obtained directly from the field to
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Fig. 4. Logarithms of the normalised m = 2 scattering coefficients averaged over twenty 256× 256 column density maps from an MHD simulation
(class 4, see Appendix B). The coefficients are given in lexicographical order ( j1, θ1, j2, θ2). Top panel: fit using Eq. (14) plus additional terms
discussed in Appendix C is shown (dashed orange line) on top of the data (solid blue line). The additional terms that have been taken into account
in this fit are a lattice signature and a π/2 harmonic for the Ŝ iso,2

2 term. Bottom panel: residuals normalised to the standard deviation. Dotted lines
correspond to ±2σ.

mimic, or from its RWST coefficients, using Eqs. (13) and (14).
Starting from a white Gaussian noise map in order to ensure high
randomness, the pixel values are iteratively modified through
a gradient descent method to obtain the expected WST coef-
ficients (see Bruna & Mallat 2018 for more details). We show
such syntheses in Fig. 5, starting from an original data set that
consists of 20 column density maps from a simulation of inter-
stellar MHD turbulence (class 5, see Appendix B). One of these
maps is shown in the top left panel. Three different syntheses
are performed based on these original data: a synthetic Gaussian
field with the same power spectrum (top right), a synthetic field
with the same WST coefficients (bottom left), and a synthetic
field with the same RWST coefficients (bottom right). These syn-
theses are done with the maximum scale J = 6 we use in this
paper. This implies that the structures larger than 25 = 32 pixels
are not properly synthesised, including large scales modula-
tions as well as the long and thin filamentary structures. Further
work is needed to include the largest scales in the synthesis
algorithm.

Nevertheless, both of the syntheses based on scattering coef-
ficients provide a better agreement with the original image than
does the Gaussian field. More importantly, the RWST-based syn-
thesis is at least as good as the WST-based one, showing that the
dimensionality reduction (from ∼1000 to fewer than 100 coeffi-
cients, and even fewer than 50 for isotropic processes) leads to
no significant loss of statistical information. Other similar RWST
syntheses are given in Fig. E.5. The syntheses of fBm processes
and MHD simulations shown there also display good agreement
with the original data, except at the largest scales, as already dis-
cussed. This shows the efficiency of our angular reduction, and
the ability of the RWST to characterise in a very compact form
a significant part of the relevant statistical information about
physical fields with homogeneous statistics.

In the same Fig. E.5, we also present syntheses of fields
using the RWST coefficients computed on clusters of the Polaris
Flare field (see Appendix B.3). In this case, the syntheses are
hampered by the heterogeneous statistics of the original data, as
can be seen mainly for cluster 2. Improving this is a direction
for future work. Nevertheless, we find present syntheses of sub-
regions of the Polaris Flare to be in reasonably good agreement
with the original data, and believe that they show the applicabil-
ity of the RWST to observational data as well as simulations.

4. Interpretation of the RWST components

This section examines the different components of the RWST,
and proposes physical interpretations for them, using as exam-
ples the three different types of fields introduced in Sect. 3.3
(see also Appendix B).

4.1. Introduction

For the fBm processes as well as the column density maps from
MHD simulations, the RWST coefficients plotted in this section
have been obtained from WST coefficients averaged over the
20 independent maps for each class. For the Herschel obser-
vation, the RWST coefficients are calculated from the WST
coefficients averaged over each of the four clusters. To support
our physical interpretations, we have explored the full range of
parameters for each type of field, varying the Hurst exponent of
fBm processes, the physical parameters of the MHD simulations,
and the cluster of the Polaris Flare Herschel observation. In addi-
tion to the plots shown in this section, we also refer to several
additional plots of RWST coefficients given in Appendix E that
are helpful to discuss these explorations of the parameter spaces.

In the plots discussed, the RWST coefficients for m = 1 (Ŝ iso
1 ,

Ŝ aniso
1 , and θref,1) are of course plotted as functions of j1, and the

m = 2 coefficients (Ŝ iso,1
2 , Ŝ iso,2

2 , Ŝ aniso,1
2 , Ŝ aniso,2

2 , and θref,2) are
plotted as different functions of j2 for fixed j1. Since j2 > j1,
the number of points varies from one curve to another. All the
plots include associated 1σ uncertainties that are obtained by
propagating the statistical uncertainties of the WST coefficients
through the fitting process15. The smoothness of the variations
of the RWST coefficients across the scales corroborates our
understanding that these are discrete samplings of underlying
smooth functions.

4.2. Overview of the different terms

4.2.1. Isotropic Ŝ
iso
1 component

The m = 1 isotropic term Ŝ iso
1 describes how the amplitude of

the field is distributed across the different scales 2 j1 . Various
15 This means that they have the same flaws as the uncertainties of the
initial scattering coefficients, and are probably underestimated for the
j> 4 scales.

A115, page 8 of 21

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201834975&pdf_id=0


E. Allys et al.: The RWST, a comprehensive statistical description of the non-Gaussian structures in the ISM

100 50 0 50 100

100

50

0

50

100
y

Original data

100 50 0 50 100

100

50

0

50

100

Gaussian synthesis

100 50 0 50 100
x

100

50

0

50

100

y

WST synthesis

100 50 0 50 100
x

100

50

0

50

100

RWST synthesis

19.8

20.0

20.2

20.4

20.6

20.8

21.0

Fig. 5. Top left: example of a column density map, in logarithmic scale, from a simulation of interstellar MHD turbulence (class 5, see Appendix B).
Top right: synthetic Gaussian random field with the same power spectrum. Bottom left: synthetic random field with the same m = 0, m = 1, and
m = 2 WST coefficients. Bottom right: synthetic random field with the same m = 0, m = 1, and m = 2 RWST coefficients.

examples16 of this term are given in Fig. 6 (top row). Other exam-
ples are shown in Fig. E.1, obtained by including the additional
terms detailed in Appendix C, which, one can see by comparing
these two figures, do not change the Ŝ iso

1 coefficients appreciably.
For scale-invariant processes, these coefficients are expected to
be linear functions of the scale, Ŝ iso

1 ( j1) ∝ Ŝ 0
1 + j1H with H the

Hurst exponent (Bruna et al. 2015).

4.2.2. Anisotropic Ŝ
aniso
1 component and reference angle θref,1

The m = 1 anisotropic term Ŝ aniso
1 describes the angular mod-

ulation of the WST coefficients for anisotropic fields, with an
extremum at the preferential direction θref,1,

cos
(

2π
Θ

[
θ1 − θref,1( j1)

])
= cos

(
2
[
ϑ1 − ϑref,1( j1)

])
. (15)

As already mentioned, θref,1 can be uniquely defined by
imposing Ŝ aniso

1 > 0. Examples of Ŝ aniso
1 coefficients are given in

Figs. 6 (middle row) and E.1. For isotropic fields, we expect
Ŝ aniso

1 ' 0 and the uncertainty on θref,1 should be large, for
the same reason that the phase of a very low amplitude com-
plex number is poorly determined. For anisotropic fields, Ŝ aniso

1
should be non-zero and θref,1 should be well defined. It is notice-
able that in this case, the θref,1 angle often has almost constant
values over all the scales, which strengthens the interpretation
that we are indeed probing a particular direction of anisotropy.
16 Note that for the fBm, we did not normalise the m = 1 coefficients
by S 0, as described in Eq. (10), because the fBm processes we consider
have zero mean.

4.2.3. Isotropic Ŝ
iso,1
2 component

The first m = 2 isotropic term Ŝ iso,1
2 describes at which level the

2 j1 scales are modulated at the larger 2 j2 scale. In other words, it
describes the couplings between scales. Some examples of this
term are given in Fig. 7 (top row), and others in Figs. E.2–E.4
(first column). We expect this term to depend on j2 − j1 only
for scale-invariant fields, since the modulation of a first scale
by a second scale then solely depends on the ratio between the
two. We also expect this term to decrease as j2 − j1 increases,
and this decrease to be all the steeper for fields where scales are
only loosely coupled, and shallower in the case of fields with a
strong nonlinear behaviour. Note that this this property is related
to the notion of intermittency17 in random fields (Bruna et al.
2015).

4.2.4. Isotropic Ŝ
iso,2
2 component

The second m = 2 isotropic term Ŝ iso,2
2 describes an angular

modulation of the m = 2 WST coefficients of the form

cos
(

2π
Θ

[
θ1 − θ2

])
= cos

(
2
[
ϑ1 − ϑ2

])
. (16)

This term quantifies whether, after the filtering of the field
at the ( j1, θ1) oriented scale, it is more probable to have, at a
17 In Bruna et al. (2015), this is defined as the occurrence of randomly
distributed bursts of transient structures at multiple scales. This may
be different from the physical notion of intermittency in studies of
turbulent flows.

A115, page 9 of 21

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201834975&pdf_id=0


A&A 629, A115 (2019)

0 1 2 3 4 5

6

5

4

3
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Fig. 6. Plots of Ŝ iso
1 ( j1) (top row), Ŝ aniso

1 ( j1) (middle row), and θref,1( j1) (bottom row). First column: case of three fBm processes with different Hurst
exponents. Second column: three MHD simulations with different physical parameters. Third column: four clusters of the Herschel Polaris Flare
observation.

given j2, a modulation in the same direction (θ2 = θ1), in which
case Ŝ iso,2

2 > 0, or in the perpendicular direction, in which case
Ŝ iso,2

2 < 0. Some examples of Ŝ iso,2
2 coefficients are given in Fig. 7

(bottom row), and others in Figs. E.2–E.4 (second column).
Our understanding of these coefficients is that they signal

the presence of structures such as filaments in the field. Indeed,
in this case, we expect small scale oscillations to be aligned
over larger scales along the different filaments, leading to Ŝ iso,2

2
coefficients that do not vanish even at large j2 − j1. One can
for example see that all these coefficients quickly converge to
zero for large j2 − j1 for the fBm processes, which have very few
structure, while they rather converge to a constant value for the
filamentary MHD simulations. It is also interesting to see that
they indicate an increasing presence of structure from the most
diffuse (cluster 4) to the denser (cluster 1) areas of the Polaris
cloud, which is in agreement with our expectations.

4.2.5. Anisotropic Ŝ
aniso,1
2 and Ŝ

aniso,2
2 components, and

reference angle θref,2

The two m = 2 anisotropic terms Ŝ aniso,1
2 and Ŝ aniso,2

2 both describe
an angular modulation similar to the one given in Eq. (15), and
therefore characterise the anisotropy of the field, but with a finer
scale dependency. Examples of these coefficients and reference
angle are given in Figs. 8, E.2–E.4. Similarly to Ŝ aniso

1 , we expect
Ŝ aniso,1

2 and Ŝ aniso,2
2 to vanish for statistically isotropic fields, in

which case the uncertainty on θref,2 should be large. For the
anisotropic fields, it is striking to note that the levels as well as
the direction of anisotropy given by the m = 1 and m = 2 reduced
scattering coefficients are similar, see for instance Figs. 6 and 8.
This confirms our identification of the physical meaning of these
terms.

4.3. Physical interpretations on the various fields

4.3.1. Scale invariance

The signposts of scale invariance are unsurprisingly most appar-
ent for fractional Brownian motion fields, whose power spectra
display power-law scalings. Indeed, for these fields we find that
Ŝ iso

1 is a linear function of j1 with a slope proportional to H
(Fig. 6, top left), while Ŝ iso,1

2 is a function of j2 − j1 only, since
the curves for different j1 in Fig. 7 (top left) come together when
plotted as functions of j2 − j1. The same is true of Ŝ iso,2

2 (Fig. 7,
bottom left).

For the gas column density maps from MHD simulations, we
do not observe such a scale-invariant behaviour in the range of
scales that is sampled (see the Ŝ iso

1 isotropic term in Fig. 6, top
centre). This is not unexpected, since the energy injection in the
simulations is itself not scale-invariant. There is a hint of a scale-
invariant behaviour at small scales, but these are over too short
a range to be meaningful (Frisch 1995). On the other hand, the
Ŝ iso,1

2 (Fig. 7, top centre) and Ŝ iso,2
2 (Fig. 7, bottom centre) terms

are not a function of j2 − j1 only, indicating that the couplings
between scales are not scale-invariant.

In the Polaris Flare Herschel map, we observe a behaviour
that is similar to the MHD simulation maps for the most intense
region (cluster 1, Fig. 6, top right), but also a flattening at
small scales in the most diffuse regions18 (clusters 3 and 4).
This may be an effect of noise or of the Cosmic Infrared Back-
ground (CIB) fluctuations (Puget et al. 1996; Lagache et al. 2005;
Viero et al. 2013) beginning to stand out. We also note that the
third and four clusters seem to have Ŝ iso,1

2 and Ŝ iso,2
2 coefficients

18 Recall that the m = 1 coefficients are normalised by the m = 0 ones
(Eq. (10)), which precludes a direct comparison of the Ŝ iso

1 values.
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Fig. 7. Ŝ iso,1
2 ( j1, j2) (top row) and Ŝ iso,2

2 ( j1, j2) (bottom row). First column: case of a H = 0.3 fBm process. Second column: MHD simulation (class 4).
Third column: first cluster of the Herschel Polaris Flare observation. Each curve corresponds to a fixed j1 value, and j2 values ranging from j1 + 1
to 5.

similar to the scale-invariant fBm ones at the smallest scales,
which strengthens this observation.

4.3.2. Couplings between scales

The lack of coupling between scales in fractional Brownian
motion fields appears in the fast decrease of Ŝ iso,1

2 (Fig. 7, top
left) and of Ŝ iso,2

2 to zero (Fig. 7, bottom left) for j2 − j1 > 3. In
addition, the fBm processes share the same structure in Ŝ iso,1

2 and
Ŝ iso,2

2 coefficients. Indeed, one can recover these curves from one
another by a simple linear dilation of the ji scale that depends
on their H exponents only (see Fig. E.3). This property can
be related to the fact that all Gaussian fields have the same
m = 2 WST coefficients in one dimension (Bruna et al. 2015),
thus allowing their identification independently of their power
spectrum.

On the contrary, the Ŝ iso,1
2 and Ŝ iso,2

2 coefficients for MHD
simulations cannot be directly mapped from one another (see
Fig. E.3). However, these terms share similar forms indicating
that the gas dynamics in these MHD simulations are com-
puted for a common set of equations. We expect the differences
between those patterns to echo the differences of physical param-
eters. The dynamic range of Ŝ iso,1

2 (Fig. E.3, first column) may be
used as a measure of the strength of the coupling between scales.
We observe that it decreases as the turbulent forcing increases, in
the absence of a mean magnetic field (from class 1 to class 3, see
Appendix B), but that this effect is much less marked when the
mean magnetic field is strong (from class 7 to class 9). A similar
conclusion may be drawn from the comparison of the dynamic
ranges of Ŝ iso,2

2 (Fig. E.3, second column) for the same classes.
In all cases, this decrease is much less steep than in the fBm
case, especially for the Ŝ iso,1

2 terms, clearly indicating a stronger
coupling between scales.

For the Polaris Flare map, the Ŝ iso,1
2 terms signal a systematic

decrease of the coupling between scales, from the most dense
region (cluster 1) to the most diffuse (cluster 4, see Fig. E.4,

first column). The signature in Ŝ iso,2
2 (Fig. E.4, second column)

is not so clear-cut, but we do observe that for cluster 1, Ŝ iso,2
2 does

not go to zero at large j2 − j1, while it does for cluster 4. This
indicates a stronger nonlinear dynamics in the denser region of
the Polaris Flare, as one could expect.

4.3.3. Statistical isotropy and anisotropy

The statistical isotropy of fBm fields is evidenced by the fact that
Ŝ aniso

1 (Fig. 6, middle left), Ŝ aniso,1
2 (Fig. 8, top left), and Ŝ aniso,2

2
(Fig. 8, middle left) are all compatible with zero within statistical
uncertainties, and thus the uncertainties on θref,1 (Fig. 6, bottom
left) and θref,2 (Fig. 8, bottom left) are large. It is also interesting
to note that the third and fourth clusters of the Polaris Flare also
have isotropic signatures at the scales on which we identified
a possible contamination by noise of by the CIB (see Figs. 6
and E.4).

On the contrary, the MHD simulations mostly display signa-
tures of a statistical anisotropy, that is the result of a competition
between the mean magnetic field and the turbulent forcing.
Indeed, we note that the larger the magnetic field at a given tur-
bulent forcing (from class 1 to 7 in Fig. 6, centre), the larger the
Ŝ aniso

1 terms. Exploring these dependencies further, we note that
signatures of anisotropy (Ŝ aniso

1 , 0) are clear for MHD simula-
tions with a strong mean magnetic field and low turbulent forcing
(class 7, in Fig. E.1, centre), but are smaller for simulations with
no mean magnetic field (classes 1 and 3) or with a high turbulent
forcing even when the magnetic field strength is large (class 9).
Quantitatively, the value of Ŝ aniso

1 yields levels of anisotropy of
30% at most for the MHD simulation maps. The same conclusion
can be drawn from the study of Ŝ aniso,1

2 and Ŝ aniso,2
2 (Fig. E.3).

It is interesting to note that small signatures of anisotropy
appear even for the simulations without large-scale magnetic
fields (Figs. E.1 and E.3, classes 1 and 3). They are a priori
the result of the inherently anisotropic dynamics of MHD flows.
It is also worth noting that those self-induced spontaneous
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Fig. 8. Ŝ aniso,1
2 ( j1, j2), Ŝ aniso,2

2 ( j1, j2), and associated θref,2( j1, j2) terms of the RWST. First column: H = 0.3 fBm processes. Second column: MHD
simulations of the fourth described class. Third column: first clustered area of the Herschel Polaris observation (see Appendix B for more detail).
Each curve has a fixed j1 values, following the convention given in Fig. 7, and j2 values going from j1 + 1 to 5.

anisotropies have different signatures compare to the ones driven
by a mean magnetic field. Indeed, Ŝ aniso

1 appears to increase with
scale for classes 1 and 3, while it decreases for class 7 (Fig. E.1,
centre). Similar differences of behaviour also appear for Ŝ aniso,1

2
and Ŝ aniso,2

2 .
In the Polaris Flare map, we also detect signatures of

anisotropy in Ŝ aniso
1 (Fig. E.1, bottom centre). This coefficient

increases with scale as in the case of MHD simulations without a
mean magnetic field. We note that it also globally increases from
the most diffuse region (cluster 4) to the most intense (cluster 1),
reaching a ∼70% level of anisotropy. It is interesting to note that
the θref,i reference angles are similar for all clusters, except for
the most diffuse one (cluster 4), once again singling it out. The
m = 2 anisotropic RWST coefficients Ŝ aniso,1

2 and Ŝ aniso,2
2 similarly

increase with scale (at least for clusters 1 to 3), also in clear con-
trast to the MHD simulations with mean magnetic fields (see
Figs. E.3 and E.4, third and fourth columns).

5. Conclusions and perspectives

We have presented the RWST, a low-dimensionality statisti-
cal description of complex structures arising from nonlinear
phenomena, in particular interstellar MHD turbulence. This
description is built from the WST, a low-variance statistical
description of non-Gaussian processes, developed in data sci-
ence, that encodes long-range interactions through a hierarchical
multiscale approach based on the wavelet transform. The WST
characterises the textures of 2D images with coefficients that
depend on scales and orientations. The RWST provides a reduc-
tion of the WST through a fit of its angular modulations,
gathering the information into a few functions that separate
isotropic and anisotropic characteristics of the data.

We have applied the RWST to statistically describe and com-
pare fields arising from three processes: fractional Brownian
motions, column density maps from numerical simulations of
interstellar MHD turbulence, and an observation of the dust
thermal emission from an interstellar cloud (the Polaris Flare).

Our analysis, performed on these fields, allows us to draw a
number of conclusions on the properties of the RWST.

Firstly, the RWST characterises and differentiates processes
with a small number of coefficients grouped into a few functions,
since each of the 256× 256 maps we have analysed is charac-
terised by 94 RWST coefficients grouped into eight functions
of the scales. The coefficients are statistical descriptors encod-
ing, with reduced variance, moments of order up to four. The
coefficients derived from independent realizations of fractional
Brownian motions and MHD simulations are remarkably consis-
tent for any given set of input parameters. For the Polaris Flare,
the coefficients vary significantly across the image, but we obtain
a satisfactory description of the data by splitting the image in
four regions with distinct characteristics.

Secondly, the RWST coefficients compose a comprehensive
statistical model that we use to generate synthetic random fields
(Sect. 3.5). The textures of the synthesised images are noticeably
similar to that of the input data on scales sufficiently sam-
pled to allow for a statistical description. This match illustrates
the ability of the RWST coefficients to capture the multiscale
correlations intrinsic to non-Gaussian fields.

Thirdly, the RWST coefficients quantify the properties of
scale invariance, as well as the degree and direction of anisotropy
across the scales, in a given field (Sect. 4). They also encode
non-Gaussian characteristics quantifying the coupling between
scales as signatures of nonlinear gas dynamics. Further work is
needed to precisely understand how to use the RWST to char-
acterise the filamentary structure of the interstellar medium and
the intermittency of interstellar turbulence.

Finally, the RWST project data into a space of reduced
dimensionality where observations of the interstellar medium
may be compared with numerical simulations in a comprehen-
sive way. Such comparisons may contribute to constrain the
physical properties of interstellar MHD turbulence. The results
presented in Sect. 4 and Appendix E illustrate this possibility
and point out quantitatively that the numerical simulations used
in this paper fail to reproduce the statistical properties observed
in the Polaris Flare. Further work is needed to check whether
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a better match is obtained with more realistic simulations of
interstellar MHD turbulence including the formation of struc-
tures through the thermal instability.

In this paper, the WST and the RWST are applied to
images. It would be interesting to extend this analysis to three-
dimensional fields from MHD simulations of interstellar turbu-
lence, and data cubes obtained from spectroscopic observations
(e.g. Hily-Blant et al. 2008; Blagrave et al. 2017; Pety et al. 2017)
and Faraday tomography (e.g. Zaroubi et al. 2015; Van Eck et al.
2019), to build stationary stochastic models of the turbulent mag-
netised ISM including intermittency (e.g. Falgarone et al. 2009;
Momferratos et al. 2014).

One can also develop the WST and RWST to analyse
all-sky surveys, such as Planck data, as a whole, using direc-
tional wavelets on the sphere (Demanet & Vandergheynst 2001;
McEwen et al. 2007). This could open up a path towards gener-
ating equivalent random fields to be used for the development
of advanced component separation methods. A first example
of such an application would be the separation in total inten-
sity between the emission from Galactic dust and the Cosmic
Infrared Background (Planck Collaboration Int. XLVIII 2016).
We also expect to be able to adapt the RWST to fields describ-
ing polarised emission (Stokes I, Q, and U) and, from there, to
simulate polarised Galactic foregrounds (Vansyngel et al. 2017;
Planck Collaboration XI 2019).
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Appendix A: Morlet wavelets and windowed
Fourier transforms

Wavelets are waveforms that locally quantify the amplitude of
a field in a given range of scales (see for instance Cohen &
Ryan 1995; Van Den Berg 2004; Farge et al. 2010; Farge &
Schneider 2015 for a more detailed introduction to wavelets
and their application in physics and turbulence). They are con-
structed by dilating and rotating an initial wavelet, generally
called the mother wavelet. Each wavelet samples a given region
of the Fourier spectrum of the field under study.

The wavelets used in this paper are complex Morlet wavelets,
also called Gabor wavelets. They are complex analytic wavelets
that can efficiently separate the amplitude and phase com-
ponents of a signal, with a good localization in frequency
(Leung & Malik 2001). They are thus well suited to finely
describe the spectrum of a field. The complex Morlet wavelets
are defined from a mother wavelet of parameter σ, that in the
one-dimensional case reads:

ψ(x) = α
(
eix − β

)
· e−x2/(2σ2). (A.1)

In this equation, α and β= exp(−σ2/2) are normalization
factors respectively ensuring that the wavelets have a unit L2
norm and a null average (Ashmead 2010). This mother wavelet
is the product of a plane wave of unit wavenumber by a Gaussian
window of characteristic size σ which localises it. The β coef-
ficient can often be neglected when σ> 1. The wavelet ψ j is
obtained by a dilation of the mother wavelet:

ψ j(x) = 2−2 jψ
(
2− jx

)
. (A.2)

Such a wavelet and its Fourier transform are plotted in
Fig. A.1. Neglecting the β term in a first approximation, the
Fourier transform of the mother wavelet is a Gaussian window of
width proportional to 1/σ and centred on the unit wavenumber
kψ = 1. The Fourier transform of the ψ j wavelet is thus centred on
the 2− j wavenumber and has a bandwith proportional to (2 jσ)−1.
Thus, convolving a given field with such a wavelet corresponds
to bandpass filtering in which the passband is defined by the
Fourier transform of the wavelet. As this is done locally, this
convolution yields the local level of the signal filtered by the
wavelet.

Morlet wavelets in two dimensions can also be constructed
from a mother wavelet, which is then dilated and rotated, as
expressed in Eq. (2). In this case, the mother wavelet is the
generalization of the one-dimensional definition19:

ψ(x) =α
(
ein·x − β

)
· e−|x|2/(2σ2), (A.3)

where n is a unit vector defining the oscillation direction of the
mother wavelet20. The Fourier transform of such a wavelet is still
close to a Gaussian, whose central position and width are mod-
ified by rotations and scalings. Two examples of such wavelets
and the supports of their Fourier transforms in the Fourier plane
are shown in Fig. 1. We note that we consider a discrete set of
wavelets in this paper, since they are built from an integer num-
ber of rotations and scalings, labelled with the j and θ indices
introduced in Sect. 2.2.

19 In practice, the envelope of the oscillation is an elliptical Gaussian
window to increase its angular resolution (Laurent et al. 2013), but this
does not fundamentally modify our discussion.
20 This direction may for instance be the x direction in a (x, y) plane.

Fig. A.1. Real part of a Morlet wavelet in one dimension ψ j(x) (left),
and amplitude of its Fourier transform ψ̃ j(k) (right), with σ= 5.

The σ parameter describes approximately the number of
oscillations of the wavelet within its support, and allows a trade-
off between their spatial and frequency resolutions. Indeed,
small values of σ allow to detect the modulation of a given wave-
length at a scale close to the wavelength itself, but at the cost of
a poorer frequency localization. When studying fields linked to
astrophysical observations, as in this paper, we use small val-
ues of σ (σ= 0.8 in the present case). Indeed, when studying
the structure of a filament in a direction perpendicular to it, the
main modulation it contains defines the width of the filament
itself, and contains only one oscillation. Conversely, when study-
ing audio signals, it is more suitable to use wavelets with a large
value of σ, since the modulation timescales are often large in
comparison to the period of audible sounds.

We use in this paper the Morlet wavelet as a main tool.
All the calculations are however very close to what one could
obtain with the Discrete Windowed Fourier Transform (DWFT).
Indeed, the one-dimensional DWFT of wavevector k of a field
I(x) is

S [I](k, x) =

∫
dy I(y)g(y − x)e−iky, (A.4)

with g a normalised window function. Choosing for this window
a Gaussian with appropriate width (see Eq. (A.1)), the DWFT
reduces (up to a global phase and in the limit where β is negli-
gible) to the convolution with a wavelet ψ j such that k = 2− j. It
is thus possible to compute the power spectrum in the range of
frequencies of a given ψ j Morlet wavelet as

PS [I]
(
k = 2− j

)
=

1
L

∫
|I ? ψ j|2dx, (A.5)

where L is the size of the integration domain (Mallat 2012). This
result, that can be generalised in two dimensions, emphasises the
difference between the usual power spectrum and the scattering
coefficients, the latter being computed with the L1 norm (see
Eq. (4)).

Appendix B: Flows studied

In this appendix, we present in detail the three different types of
fields that we have applied our analysis to.

B.1. Fractional Brownian motions

The two-dimensional purely synthetic random fields that we use
in this work are fractional Brownian motions (Falconer 2004).
These extend the class of Brownian motion processes by relaxing
the condition of independent increments. In other words, val-
ues of fBm fields at nearby points are not independent, and this
process is continuous but almost nowhere differentiable. In one
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Fig. B.1. Top: 256× 256 maps of fBm processes, with H = 0.1, 0.5, and
0.9 (from left to right). Bottom: 256× 256 column density maps from
snapshots of various MHD simulations (classes 1, 3, and 7 from left to
right).

dimension, an fBm of Hurst exponent H ∈ ]0, 1[ is defined as
a random process X : R+ 7→ R such that the increments X(t +
δ) − X(t) for any t> 0 and δ > 0 are normally distributed with
zero mean and variance δ2H . In N dimensions, a random field X
defined on RN is an fBm if 〈[X (r2) − X (r1)]2〉 ∝ ||r2 − r1||2H , for
any pair of points (r1, r2).

The syntheses of such fields are most easily built in Fourier
space, with X̃(k) = A(k) exp

[
iφX(k)

]
, by specifying amplitudes

that scale as a power-law of the wavenumber k = ||k||, i.e.
A(k) = A0k−βX/2, where βX = 2H + N is the spectral index. The
Fourier phases φX are drawn from a uniform random distribution
in [−π, π], subject to the constraint φX(−k) = − φX(k) so that X
is real-valued. The power spectra of fractional Brownian motions
are therefore power laws, PX(k) ∝ k−βX . Three examples of such
fields are given in Fig. B.1 (top row), with Hurst exponents equal
to 0.1, 0.5 and 0.9.

In an astrophysical context, fBms have been used previously
as toy models for the fractal structure of molecular clouds, in
both density and velocity space (Stutzki et al. 1998; Brunt &
Heyer 2002; Miville-Deschênes et al. 2003). They have also
recently been used to model the turbulent component of the inter-
stellar magnetic field, and to study the statistical properties of
polarised thermal dust emission maps (Levrier et al. 2018).

B.2. Isothermal MHD simulations

The second class of fields used in this work are column density
maps NH computed from numerical simulations of magne-
tohydrodynamical turbulent flows, aiming at reproducing the
structures emerging in the interstellar medium. These simula-
tions are performed by solving numerically the equations of ideal
MHD, as described in Iffrig & Hennebelle (2017).

The simulations used in the present paper are simplified and
do not take self-gravity into account. Stellar feedback (from
supernovae and HII regions) is removed accordingly. Because
the equations are solved on a finite-resolution grid, numerical
diffusion mimics the effects of physical viscosity and dissi-
pates energy in the fluid. Due to this dissipation, the simulations
require constant energy input to attain a statistical steady state.
In Iffrig & Hennebelle (2017), the energy was injected by the
stellar feedback, but here this is done through a turbulent forc-
ing of the velocity field similar to the one described in Schmidt
et al. (2009). This forcing is quantified by the overall turbulent
velocity dispersion σturb. The thermodynamical treatment of the

Table B.1. Classes of MHD simulations.

Class B0 (µG) σturb (km s−1)

1 0.0 1.0
2 0.0 4.0
3 0.0 9.0
4 0.5 1.0
5 0.5 4.0
6 0.5 9.0
7 1.0 1.0
8 1.0 4.0
9 1.0 9.0

gas is simplified by assuming isothermality. Initially, the simula-
tion cube is filled by a uniform-density, uniform-temperature gas,
with nH = 2 cm−3 and T = 10 K, and is permeated by a uniform
magnetic field B0.

Several simulations are run with varying intensities of
the magnetic field21, from B0 = 0 (hydrodynamical case) to
B0 = 1 µG, and of the turbulent forcing, with σturb = 1 km s−1,
to σturb = 9 km s−1. To distinguish the different simulations, we
group them into classes, as indicated in Table B.1.

Snapshots of the logarithm of total column density (log NH)
for several of these simulations are shown in Fig. B.1 (bottom
row). The degree of anisotropy in these maps increases with the
ratio between the mean value of the magnetic field and the tur-
bulent forcing. We thus expect maps derived from simulations in
class 3 to be isotropic, while those derived from simulations in
classes 4 and 7 present higher levels of anisotropy.

B.3. Herschel Polaris observations

The third field on which we have tested our approach is an obser-
vation of the Polaris Flare molecular cloud (Miville-Deschênes
et al. 2010) obtained with the SPIRE instrument (Griffin et al.
2010) onboard the Herschel satellite (Pilbratt et al. 2010), at a
wavelength of 500 µm. The Polaris Flare is a diffuse molecular
cloud that is not showing clear signs of star-formation activity.
As such, it is generally thought to be representative of the very
early stages of molecular cloud formation and evolution, and
the dynamics of its gas and dust contents are therefore proba-
bly more representative of the interstellar turbulent cascade than
other, star-forming clouds, in which feedback processes from
young stars (jets, outflows, and radiation) tend to confuse the
picture.

The far-infrared emission that was mapped by Herschel-
SPIRE at a resolution of 37′′ is produced by the cold dust in
the cloud, as it reprocesses the ambient visible and UV radiation
from Galactic starlight. At these long wavelengths, this emission
is optically thin, and its integrated intensity is therefore directly
proportional (to a very good level of approximation) to the col-
umn density of the large, cold grains on the line of sight. It allows
to probe the matter content of the cloud, assuming a uniform gas-
to-dust ratio. We note that the Polaris Flare has been extensively
studied, not only through this thermal continuum emission of
cold dust, but also through CO rotational lines that allow to probe
the velocity field of the molecular gas down to very small scales
(Falgarone et al. 1998; Hily-Blant & Falgarone 2009). The geom-
etry of the magnetic field in the Polaris Flare was also studied
with optical stellar polarisation data by Panopoulou et al. (2016).

21 Note that the values given here are smaller than the usually assumed
values in the ISM, which are closer to 5 µG.
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Fig. B.2. Left: dust thermal emission in the PolarisFlare observed with Herschel-SPIRE-LW at 500 µm (Miville-Deschênes et al. 2010). The initial
observation has been reshaped and the orientation of the axes is arbitrary. Right: k-means clustering of the Herschel map in WST space, with k = 4.
A cluster (green, red, blue, yellow colours) gathers regions of the map that have similar WST coefficients.

We use a 832× 832 pixels subset of the full Herschel-SPIRE
map discussed in Miville-Deschênes et al. (2010), covering
almost 10 square degrees in the sky (Fig. B.2, left). Compared
to the fBm and MHD simulations, the statistical properties of
this map are unlikely to be homogeneous22. It is therefore neces-
sary to work with local WST coefficients and, ideally, to identify
a mesoscopic scale over which the statistical properties may be
considered homogeneous and study their variations over larger
scales, as discussed in Appendix D.

To circumvent this difficulty, we propose, as a first attempt
to distinguish between a spatial evolution of the statistical prop-
erties across the Polaris Flare and the statistical variability that
is intrinsic to an homogeneous stochastic process, to compute
local WST coefficients on the map (using a Gaussian window φJ
of width 2J = 64 pixels for J = 6, see Appendix D), and gather
regions in the sky that have similar WST coefficients using a
clustering algorithm23. To do so, we divide the Polaris Flare map
into N = 22× 22 square regions and for each region we compute
a set of normalised WST coefficients that we note yi. These yi
can be seen as a vector in a statistical space of dimension 1009
(with J = 6 and L = 8). To identify regions that have similar WST
coefficients, we use a k-means clustering algorithm24 which per-
forms a partition of {yi}k∈{1,...,N} in k subsets {S 1, ..., S k} so that
the sum of the variances of Euclidean distances between vec-
tors within each cluster is minimised (Arthur & Vassilvitskii
2007). Formally, the k-means algorithm finds a partition which
minimises:

k∑
j=1

∑
yi∈S j

||yi − µj||2

where µj is the centroid of cluster S j.

22 For example, the filamentary structures just south of the centre of the
map might be gravitationally bound, but the diffuse filaments towards
the edge probably are not.
23 Note that the local WST coefficients are computed with some over-
sampling, which means that the windows on which they are computed
partially overlap (Laurent et al. 2013). Due to these local windows, it is
also necessary to exclude a thin band close to the edges of the map.
24 Note that this clustering approach has already been used in studies of
the interstellar medium (Bron et al. 2018).

Figure B.2 (right) shows the four clusters of the Polaris Flare
map that were identified in this way. This number of clusters is
a free parameter of the algorithm, but we have not explored its
influence, settling for k = 4 as a first guess. It already shows a
clear distinction between the statistical properties of the iden-
tified clusters. For each of these regions, we then assume that
the statistical properties are homogeneous, so that local WST
coefficients within each region can be averaged.

Appendix C: Possible additional terms to the
RWST angular reduction

In Sect. 3.2, we discussed the form of the dominant terms
accounting for the angular dependencies of the WST coefficients
(Eqs. (13) and (14)), but it may happen that residuals exhibit
oscillatory trends with different periodicities, showing that these
terms are not sufficient. This is mostly apparent when averag-
ing over several realizations, because these residual trends then
start to stand out from the sampling noise. In this case, several
additional terms are used to satisfactorily fit these minor features.

When fitting the angular dependency of WST coefficients
averaged over twenty 256× 256 maps, we identified three such
additional terms, that are either new angular modulations due
to additional physical effects, or higher harmonics of an angular
modulation that has already been identified. We stress, however,
that these terms have small amplitudes compared to the RWST
coefficients discussed in the main text, and that the values of the
latter are unaffected by the inclusion of these additional terms in
the fit. The discussion of these additional minor terms neverthe-
less offers a better understanding of the limits of the dominant
terms discussed in the main text.

The first two additional terms are modulations related to
pixelation. These terms are not attributable to the WST compu-
tation, but to the methods used to generate the fields, and may be
different for the different types of fields. For instance, we may
expect a signature at small scale of the grid that the MHD simu-
lations were computed on. Similarly, the computation of the fBm
fields on a square, regular grid in Fourier space should produce
signatures at both small and large scales. Similar effects related
to pixelation have been identified in the map of the Polaris Flare.
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Ŝla
t,

1
1

(j 1
)

fBm
H = 0.2
H = 0.5
H = 0.8

0 1 2 3 4 5

0.025

0.000

0.025

0.050

0.075

MHD
Class 2
Class 4
Class 6

0 1 2 3 4 5
j1

0.010

0.005

0.000

0.005

0.010

0.015
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Fig. C.1. Additional Ŝ lat,1
1 ( j1) and Ŝ lat,2

1 ( j1) terms related to lattice pix-
elation, for the m = 1 layer. For each class of fBm processes or MHD
simulations, these were computed using twenty 256× 256 maps.

Following the discussion in Sect. 3.2, we expect any modu-
lation related to the lattice to be π/2-periodic and aligned with
the lattice’s main directions, that is with a reference angle θr = 1.
Experience shows that the second harmonic also needs to be
taken into account. For the m = 1 and m = 2 layers, we there-
fore, respectively, add the following terms to the decompositions
given in Eq. (13)

· · · + Ŝ lat,1
1 ( j1) · cos

(
4π
Θ

[
θ1 − 1]

)
+ Ŝ lat,2

1 ( j1) · cos
(

8π
Θ

[
θ1 − 1]

)
, (C.1)

and in Eq. (14)

· · · + Ŝ lat,1
2 ( j1, j2) · cos

(
4π
Θ

[
θ1 − 1]

)
+ Ŝ lat,2

2 ( j1, j2) · cos
(

8π
Θ

[
θ1 − 1]

)
. (C.2)

When included, these additional terms have low levels (see
Fig. C.1 for examples), and all the fields but the fBm show such
non-vanishing additional components only at the smallest scales.
A signature of the lattice also seems to appear at large scales for
fBm fields, but this is weakly significant and difficult to precisely
assess. We note that the π/2 and π/4 harmonics have similar
amplitudes. This is not surprising since anisotropic terms related
to lattice pixelation may be much less smooth than a physical
anisotropy.

The third additional term that we have identified is a π/2
harmonic for the Ŝ iso,2

2 component of Eq. (14), that needs to be
added to this equation

· · · + Ŝ iso,3
2 ( j1, j2) · cos

(
4π
Θ

[
θ1 − θ2]

)
. (C.3)

The appearance of such a term in the angular reduction of the
WST coefficients is in line with the discussion of Sect. 3.2 about
the structure of the angular modulations. The Ŝ iso,3

2 terms may
also contain additional information on the fields. For instance,
Fig. C.2 shows that the fBm fields and MHD simulations
clearly have different forms for this π/2 harmonics, providing
yet another quantitative lever to compare various processes.
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Fig. C.2. Additional Ŝ iso,3
2 ( j1, j2) terms. For each class of fBm pro-

cesses or MHD simulations, these were computed using twenty
256× 256 maps.

No other additional term was necessary to achieve satisfac-
tory fits of the residual trends, but future studies may need to
include further terms of a similar type (e.g. π/2 harmonics for
the anisotropic Ŝ aniso

1 , Ŝ aniso,1
2 and Ŝ aniso,2

2 terms). However, we
expect all these additional terms to remain small compared to
the main RWST coefficients described in Sect. 3.2.

Appendix D: Heterogeneous statistics and the
local wavelet scattering transform

In this appendix, we discuss the generalisation of the WST to
fields that are not statistically homogeneous and how it can be
applied locally in such cases.

D.1. Mesoscopic scale

The use of any statistical measure to describe properties of
fields arising from nonlinear physical processes, and hopefully,
from there, to gather information about the underlying physics
itself, warrants some discussion about the physical quantities
that may be encoded in the statistics, and about the scales
over which these statistics are computed. A useful analogy here
can be found in statistical thermodynamics, which proceeds by
devising statistical measures over a vast number of particles to
establish physically meaningful quantities25. These averages are
performed over mesoscopic scales, large enough to contain a
huge number of particles so that statistical fluctuations may be
neglected, but also small enough so that the thermodynamical
variables can be seen as locally-defined fields. These may in turn
vary over larger, macroscopic scales.

In our case, we have observable fields, such as column den-
sity maps, whose morphologies we mean to describe statistically,
with the purpose of relating these statistics to physical properties
of the medium, such as the amplitude of the magnetic field aver-
aged on a certain scale. Assuming that such a relationship exists,
it is important to ask which scales and structures in the observ-
able fields are subject to the inherent variability that is meant
to be captured by the statistics, and which ones are related to a
modification of the larger scale physical properties associated in
turn with the statistical properties themselves. Our mesoscopic

25 For instance, the kinetic temperature arises as the parameter charac-
terizing the dispersion of particle velocities in ideal gases.
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scale should be chosen where these two ranges of scale meet,
so that the statistics can be considered homogeneous below this
scale while allowing for a subsequent study of the variation of
physical properties across larger scales26.

It may be difficult to properly determine this mesoscopic
scale. A good criterion seems to be the apparent reproduction of
similar patterns. For instance, in the Polaris Flare map (Fig. B.2),
structures at the scale of 30′ are too scarce to be treated sta-
tistically, but those appearing at the 0.3′ scale may be. The
mesoscopic scale required to describe such a map should then be
somewhere in between these two scales, which is why we chose
J = 6, corresponding to 15′. We see that the scale separability
provided by the WST and the RWST is of great importance.

D.2. The local WST

When the field considered has homogeneous statistical prop-
erties, it is sufficient to compute a set of global scattering
coefficients that can be obtained by integration on the entire spa-
tial support of this field (Eqs. (3)–(6)). It is however also possible
to compute scattering coefficients that describe local statistical
properties (Bruna & Mallat 2013) on mesoscopic scales. In the
homogeneous case, these local WST coefficients provide dif-
ferent samples and allow us to estimate the variance. In the
heterogeneous case, they allow us to quantify the evolution of
statistical properties on large scales.

For a real-valued field I(x), these local WST coefficients
S loc

0 (x), S loc
1 [ j1, θ1](x) and S loc

2 [ j1, θ1, j2, θ2](x) are computed
similarly to the global coefficients but with a spatial integration
limited to a subset of the space, using a normalised Gaussian
window φJ of fixed width 2J , the size of the largest wavelength
probed by the Morlet wavelets (Bruna & Mallat 2013). The m = 0
coefficient is the local average of the field over a characteristic
scale 2J , i.e.

S loc
0 (x) =

[
I ? φJ

]
(x), (D.1)

while the m = 1 and m = 2 coefficients are given by

S loc
1 [ j1, θ1](x) = µ−1

1,loc
[|I ? ψ j1,θ1 | ? φJ

]
(x), (D.2)

and

S loc
2 [ j1, θ1, j2, θ2](x) = µ−1

2,loc
[||I ? ψ j1,θ1 | ? ψ j2,θ2 | ? φJ

]
(x), (D.3)

26 An important difference between our case and statistical thermody-
namics is that in the latter the quantities defined on a mesoscopic scale
(e.g. kinetic temperature) are different in nature from those they are
built upon at the microscopic scale (e.g. particle velocities), while in
our case, these two quantities could well be the same, for example the
amplitude of the magnetic field. With a statistical description that allows
a scale separability, as it is the case for the WST and its reduced form,
we can treat the variations of these quantities statistically at small scales,
and relate these statistics to the value of the same physical quantities
averaged on the mesoscopic scale.

where the µi,loc normalization factors are the m = 1 and m = 2
responses to a Dirac δ function,

µ1,loc =
[|δ ? ψ j1,θ1 | ? φJ

]
(x), (D.4)

and similarly for µ2,loc. The normalization described in Sect. 2.4
(Eqs. (10) and (11)) can be performed at this stage. Then, the
computation of local RWST coefficients can be done following
exactly the computation described in Sect. 3. Otherwise, inte-
grating these local coefficients over the entire space recovers the
global scattering coefficients.

Appendix E: Additional results

We give in this appendix additional sets of RWST coefficients
for the various processes studied in this paper, as well as supple-
mentary examples of RWST syntheses. The reduced scattering
coefficients given in Figs. E.1–E.4 have been obtained from sets
of twenty 256× 256 maps of MHD simulations or fBm pro-
cesses, as well as from the four clusters in the Polaris Flare
map (see Appendix B). The coefficients given in Figs. E.2–E.4
use the angular fits given by Eqs. (13) and (14), while the ones
given in Fig. E.1 also include the additional terms described in
Appendix C (Eqs. (C.1)–(C.3)).

In Fig. E.5, we show additional syntheses. These are based
on the RWST coefficients derived from the WST coefficients
averaged over twenty maps for the MHD and fBm processes,
and over each cluster for the Polaris Flare map. They are pro-
duced following the method described in Sect. 3.5. We display
the synthetic fields obtained from the RWST coefficients of
the different Polaris Flare clusters next to 256× 256 zooms
of the original 832× 832 Polaris Flare map, covering regions
where the given cluster is dominant. The regions in that zoom
that do not belong to this specific cluster are shaded. We note
that, especially because these fields are not statistically homo-
geneous, they present a much larger dynamic range in terms
of local averages. To allow satisfactory visual comparisons, we
therefore subtracted the mean value of the 256× 256 maps we
show27. If the synthesis of cluster 4 is satisfactory (except at
the largest scales, as already discussed), that for cluster 2 shows
the limitation of the clustering performed, because the statistical
properties of the field seem to vary with the local mean level.

27 This was applied both to the original maps and to the synthetic ones.
The same colour scale is used in both.
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Fig. E.1. m = 1 reduced scattering coefficients for four class of synthetic fBm processes, MHD simulations, and the four clusters of the Herschel
Polaris observation. These coefficients have been obtained from sets of twenty 256× 256 maps, using the reduction given in Sect. 3.2 as well as
the additional reduced terms discussed in Appendix C.
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Fig. E.2. RWST coefficients for m = 2 and four classes (H = 0.1, H = 0.3, H = 0.5, H = 0.7) of fBm processes. For each class, twenty 256× 256
maps are used. Each curve correspond to a fixed j1 value, and j2 values from j1 + 1 to 5.

A115, page 19 of 21

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201834975&pdf_id=0
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201834975&pdf_id=0


A&A 629, A115 (2019)

1 2 3 4 5

4.2

4.0

3.8

3.6

3.4

3.2

3.0

C
la

ss
 1
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Fig. E.3. Same as Fig. E.2 but for four classes (1, 3, 5, 7) of MHD simulations. For each class, twenty 256× 256 maps are used.
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Fig. E.4. Same as Fig. E.2 but for the four clusters of the Polaris Flare map.
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Fig. E.5. Additional examples of RWST syntheses. The RWST coefficients have been obtained from twenty 256× 256 maps for the fBm synthetic
fields and the MHD simulations, and from the different clusters of the Polaris Flare map. The original data shown here for the Polaris Flare are
256× 256 subsets of the original map, and all regions but the cluster under study are shaded. The colourscale is the same for each pair of original
and synthetic fields. For the Polaris Flare case, all maps are mean-subtracted.
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