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Abstract

Aging likely plays a role in neurodegenerative disorders. In Huntington’s disease (HD), a disorder caused by an abnormal
expansion of a polyglutamine tract in the protein huntingtin (Htt), the role of aging is unclear. For a given tract length, the
probability of disease onset increases with age. There are mainly two hypotheses that could explain adult onset in HD:
Either mutant Htt progressively produces cumulative defects over time or ‘‘normal’’ aging renders neurons more vulnerable
to mutant Htt toxicity. In the present study, we directly explored whether aging affected the toxicity of mutant Htt in vivo.
We studied the impact of aging on the effects produced by overexpression of an N-terminal fragment of mutant Htt, of
wild-type Htt or of a b-Galactosidase (b-Gal) reporter gene in the rat striatum. Stereotaxic injections of lentiviral vectors were
performed simultaneously in young (3 week) and old (15 month) rats. Histological evaluation at different time points after
infection demonstrated that the expression of mutant Htt led to pathological changes that were more severe in old rats,
including an increase in the number of small Htt-containing aggregates in the neuropil, a greater loss of DARPP-32
immunoreactivity and striatal neurons as assessed by unbiased stereological counts. The present results support the
hypothesis that ‘‘normal’’ aging is involved in HD pathogenesis, and suggest that age-related cellular defects might
constitute potential therapeutic targets for HD.
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Introduction

Huntington’s disease (HD) is an autosomaly inherited neurode-

generative disorder characterized by abnormal involuntary

movements (chorea), cognitive decline and psychiatric symptoms

associated with neurodegeneration, which affects mainly the

striatum [1]. HD is caused by an expansion of CAG trinucleotide

repeats in the HD gene that codes for huntingtin (Htt) [2]. When

glutamine (polyQ) repeats located in the N-terminal part of Htt are

higher than approximately 38 repeats, they cause disease, while

unaffected individuals can have repeats lengths of up to 35 repeats.

The age of onset is inversely correlated with the number of CAG/

polyQ repeats [3], with, however, considerable inter-individual

variation within a given repeat-length range, suggesting the

importance of other genetic and environmental factors [4].

Although ‘‘normal’’ aging is thought to play a role in

neurodegenerative diseases (e.g. Parkinson’s and Alzheimer’s

disease) [5], the experimental evidence for this phenomenon in

HD is sparse. In HD patients, the probability of disease onset

increases with age, indicating that aging is a risk factor. However,

the mechanisms by which aging might play a role in HD are

speculative. ‘‘Normal’’ aging may render striatal neurons more

vulnerable to mutant Htt toxicity. In support of this hypothesis,

cellular functions known to be altered by aging, including the

anomalies of the ubiquitin/proteasome pathway [6], Ca2+

deregulation [7], and oxidative stress [8], are likely to be involved

in HD pathogenesis [9]. Alternatively, the adult onset of HD may

result from the progressive accumulation of toxic Htt fragments. In

this case, cellular defects related to ‘‘normal’’ aging would not

‘‘accelerate’’ degeneration in HD. In support of this view, one

study has suggested that the probability of degeneration may be

constant in HD [10].

The lack of direct evidence that aging-related processes could

play a role in HD is mainly a result of an absence of experimental

settings in vivo where the influence of aging on the toxicity of

mutant Htt can be directly assessed. In most transgenic models of

HD, mutant Htt expression takes place throughout life, and it is

very difficult to dissociate the effects of ‘‘normal’’ aging by

themselves from an age-related accumulation of defects specifically

due to the presence of mutant Htt. The aging issue in HD is of

importance since, if cellular defects related to ‘‘normal’’ aging are

risk factors for HD, they could constitute interesting therapeutic

targets to delay disease onset and slow progression.

In the present study, we used a rat model of HD [11–15] in

which striatal degeneration is induced by lentiviral vectors

encoding the 171 N-terminal amino acids of human Htt with an

82 CAG-repeat pathological expansion (Htt-171-82Q), in order to

directly compare the neurotoxicity of mutant Htt in young and old

animals. Our results show that the vulnerability of striatal neurons

to mutant Htt increases with age.
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Results

Aging does not modify PGK promoter efficacy
We wanted to determine the effect of aging on mutant Htt

toxicity using lentiviral vectors (Fig. 1). We first examined whether

aging could modify the transduction efficiency of our lentiviral

vectors and/or change the efficacy of the promoter driving the

expression of mutant Htt. As controls, lentiviral vectors encoding

the reporter protein b-Galactosidase (b-Gal), which was modified

to contain a nuclear localization signal (nls), were stereotactically

injected alone (first experiment) or with wild-type Htt (second

experiment). These experiments were designed to evaluate the

efficacy of the PGK promoter in young (3 week) and old

(15 month) rats (Fig. 1). b-Gal was detected in situ using

immunohistochemistry, and immunofluorescence (Fig. 2). b-Gal

enzymatic activity was also used to detect transduced cells and

quantify the level of protein expression (Fig. 2). Qualitatively, there

was no obvious age-related difference in the appearance of

neurons expressing b-Gal (Fig. 2). Nuclei were densely stained.

Cell bodies and processes, mostly dendrites with spines, were more

rarely visible. At 12 weeks post-infection (i.e. when young rats

were 12 weeks old and older rats were 18 months old), the volume

of the striatum containing b-Gal-positive cells was not statistically

different between the two age groups. Similar experiment was

performed at 4 weeks post infection, showing no differences

between old and young rats. Enzymatic detection of b-Gal activity

showed similar labeling in striatal cells in young and old rats

(Fig. 2C, G, J). Consistent with this, analysis of the levels of

expression in transduced cells using immunofluorescence detection

of b-Gal showed no difference between the two groups (Fig. 2D,

H, K). This demonstrates that neither the transduction properties

of lentiviral vectors nor the apparent efficacy of the PGK promoter

used to express b-Gal, Htt171-82Q and Htt171-18Q in the

experiments described hereafter significantly changes with age.

Characterization of EM48-positive inclusions/aggregates
Huntingtin-containing inclusions and aggregates were detected

by immunohistochemistry using the EM48 antibody [16,17]. As

expected, EM48 immunoreactivity was absent in striata injected

with the wild-type human Htt fragment (Htt171-18Q) in both age

Figure 1. Experimental design to study age-dependent vulnerability of the striatum to mutant huntingtin (Htt). Young (3 week old)
and old (15 month old) rats were injected with a lentiviral vector encoding the 171 N-terminal amino acids of mutant huntingtin with 82
polyglutamine repeats (Htt171-82Q), the corresponding wild-type fragment with 18 polyglutamine repeats (Htt171-18Q) or the reporter protein b-
Galactosidase (b-Gal). In the first experiment (A), young and old rats received a stereotaxic injection of lentiviral vectors (2 ml, 200 ng/ml of p24)
encoding b-Gal (left striatum) or Htt-171-82Q (right striatum). Histological evaluation was carried out 4 weeks after infection to determine the effects
of aging on the expression of b-Gal and Htt171-82Q. In a second experiment (B), the actual degeneration produced by Htt171-82Q was characterized
at a later time point after infection. Animals were injected with lentiviral vectors (4 ml, 200 ng/ml of p24) encoding b-Gal mixed with lentiviral vectors
encoding either Htt171-82Q or Htt171-18Q. Histological characterization of the striatum consisting of an assessment of DARPP-32, EM48, and b-Gal
immunoreactivity and activity was carried out 12 weeks post-infection. Unbiased stereological count of b-Gal-positive neurons were used to compare
Htt-171-82Q toxicity with that of Htt171-18Q. Analysis of b-Gal levels in neurons in the Htt171-18Q-expressing striatum permitted the verification of
the effect of age on transgene promoter (PGK) efficiency.
doi:10.1371/journal.pone.0004637.g001

Aging and Mutant Htt Toxicity
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groups. In Htt171-82Q-injected striata, EM48 immunoreactivity

was found at 4 weeks post-infection in both young and old rats.

Typically, immunoreactive nuclei (apparent cross-sectional area of

,50 mm2) showed a diffuse staining which was variable depending

on the cells considered, appearing relatively pale in certain cases

(left images, Fig. 3G, 3H) or quite dark in others (right images,

Fig. 3C, F–H). Superimposed on this diffuse staining, a round

strongly stained inclusion was generally seen that, in some cases,

could be prominent (Fig. 3C–H). These typical features (called

intranuclear inclusions hereafter) are highly consistent with the

intranuclear inclusions previously described in the striatum of HD

patients and transgenic HD mouse models including knock-in

Figure 2. Absence of an effect of age on PGK promoter function. Young (3 week) and old (15 month) rats received stereotaxic injections of
lentiviral vectors encoding b-Gal under the PGK promoter into the striatum. Histological evaluation was carried out 12 weeks after infection to
determine the levels of expression of b-Gal using immunohistochemistry (A, B, E, F), b-Gal activity (C, G) and immunofluorescence (D, H). Typical
photomicrographs showing the striatum after infection with lentiviral vectors encoding b-Gal in young (A–D) and old (E–H) rats. No major qualitative
difference could be detected between young and old rats. I, quantification of the volume of the striatum expressing b-Gal. J, Quantification of b-Gal
activity. K, Quantification of immunoreactivity using fluorescence detection. Note the absence of an effect of age. Scale bar = 500 mm for A, C and
50 mm for B–D and F–H. Results are expressed as mean+/2SEM. These are no significant differences as assessed by Student t test.
doi:10.1371/journal.pone.0004637.g002

Aging and Mutant Htt Toxicity
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models, using the same antibody [16,18,19]. In young rats, EM48-

positive (EM48+) objects mainly consisted of intranuclear

inclusions. In old rats, in addition to the nuclear inclusions,

numerous densely stained small EM48+ objects that were not

superimposed on any background were also observed. These small

aggregates with a cross-sectional area of ,1–10 mm2 were found

to be widespread throughout the neuropil, sometimes organized as

if localized in neuronal processes (Fig. 3). These objects resembled

neuropil aggregates described previously [16,17]. Although it

cannot be ruled out that a small proportion of these small EM48+
aggregates lacking a nuclear background were actually present in

the nucleus, we believe that the majority were localized in the

somatodendritic compartment. They are thus called neuropil

aggregates hereafter. In young animals, these objects were very

rarely seen.

Quantification of the EM48+ objects revealed no age-related

differences in the volume of the striatum exhibiting EM48+ objects

(Table 1). Similarly, a determination of the total number of

Figure 3. EM48-positive inclusions/aggregates in the striatum of young and old rats appear different. Young (3 week; A, B, C) and old
(15 month; D, E, F) rats received a stereotaxic injection of lentiviral vectors encoding Htt171-82Q (2 ml, 200 ng/ml of p24) and b-Gal with the PGK
promoter into the striatum. Histological evaluation was carried out 4 weeks after infection using EM48 immunohistochemistry to detect mutant Htt-
containing aggregates and inclusions. Qualitatively, the striatal region showing EM48-positive inclusions/aggregates was similar in young (A) and old
(D) rats (see table 1 for quantification). Higher magnification observation indicated that the nature of the aggregates was different between the
groups (B, C, G and E, F, H). While nuclear inclusions (arrowhead) were essentially similar in both groups, many small aggregates (arrow in E and F)
often organized as if located in processes are visible in old rats but not in young animals. G, H, examples of nuclear EM48 immunoreactivity displaying
from a pale (left images) to dark (right images) diffuse staining, on which an inclusion is superimposed. Scale bar = 250 mm for A, D, 50 mm for B, E,
20 mm for C, F, and 10 mm for G, H.
doi:10.1371/journal.pone.0004637.g003
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EM48+ objects (inclusions/aggregates) using automated image

acquisition and analysis systems indicated that neither the mean

apparent numerical density nor the absolute number of Htt-

containing aggregates within the striatum were markedly different

between the two age groups. However, we observed that the mean

cross-sectional area of the EM48+ objects (as determined by

analyzing more than 10,000 objects per animal) was slightly

(,10%) but consistently and significantly reduced in older rats

when compared with young animals (p,0.0001, Table 1).

We further explored possible morphological differences in the

EM48+ inclusions/aggregates using object size distribution

analysis. A comparison of the morphometric characteristics of

the objects detected with a visual determination of their

localization suggested that, regardless of the age group considered,

large EM48+ objects (40–80 mm2) mostly corresponded to

nuclear-like inclusions. Distribution histograms revealed that the

peak in the distribution of the objects occurred around 54 mm2 in

young rats. In older rats this peak was shifted towards smaller

objects (i.e. ,46 mm2) (Fig. 4). Frequency distribution of EM48+
objects according to size also clearly revealed that the number of

small inclusions (4–24 mm2) was increased by approximately 3

times in all old rats, compared with the young ones (Fig. 4). Since

this contrast was likely to have been underestimated at the

magnification used (206objective), we performed an analysis at a

higher resolution [12]. Results showed that there were approxi-

mately 10 times more very small aggregates (0.2–4 mm2) in adult

animals than in young animals (Fig. 5).

Thus, at 4 weeks post-infection, a time point at which mutant-

Htt-induced cell loss is minimal in this model [11], we observed a

clear cut increase in the number of small neuropil-like aggregates

in older rats as compared to younger rats. This indicates age-

related changes in mutant Htt processing/elimination, aggregation

and/or transport.

Loss of striatal DARPP-32 expression is greater in old rats
Striatal degeneration induced by mutant Htt was assessed using

DARPP-32 immunohistochemistry (Fig. 6). At 12 weeks post-

infection, in lenti-Htt171-18Q-infected rats, the loss of striatal

DARPP-32 expression was limited, and restricted to the vicinity of

the needle track. This volume was small (,0.23 mm3), and showed

no significant difference between age groups. In contrast, a clear

loss of striatal DARPP-32 expression (1.5–2.0 mm3) was observed

in Htt171-82Q-injected striata relative to lenti-Htt-18Q-injected

striata in both age groups. Interestingly, the volume of the

DARPP-32-depleted region in Htt171-82Q-injected striata was

significantly greater (+59.6%, p,0.05) in older rats than in

younger rats. This suggests that mutant Htt produces a more

severe dysfunction and/or degeneration in older rats.

Aging increases striatal neuron loss induced by mutant
Htt

We next assessed whether aging could actually modify striatal

cell death induced by mutant Htt. For this purpose, we undertook

unbiased stereological counts of neurons expressing b-Gal

12 weeks after intrastriatal co-injection of b-Gal vectors with

vectors encoding Htt171-82Q or Htt171-18Q. By this method,

most neurons (.90%) are transduced with both vectors, leading to

the expression of both transgenes [20]. Cell counts of b-Gal+ cells

in Htt-171-18Q-injected striata were not statistically different

between young and old animals. In contrast, presumably as a

result of neurodegenerative processes, the number of b-Gal+ cells

in Htt-171-82Q-injected striata was significantly reduced (p,0.01)

in both age groups as compared to Htt-171-18Q-injected striata

(Fig. 7). The surviving b-Gal+ neurons were mainly restricted to

the borders of the area infected by lenti-Htt-171-82Q, with the

center of the infected area showing a markedly reduced density of

b-Gal+ neurons. Importantly, the loss of b-Gal/Htt171-82Q–

expressing striatal neurons in old rats was significantly greater

(p,0.01) than that measured in young rats (Fig. 7).

Discussion

Advanced age is generally associated with multiple cellular,

structural and functional changes that may contribute to the age-

associated decline of brain function [21]. Aging is generally

considered a risk factor for neurodegenerative diseases, but its role

in HD is unclear. Not only is this issue of fundamental interest, it

also has implications for the development of therapeutic strategies.

If aging processes exacerbate the alterations induced by mutant

Htt, ‘‘normal’’ age-related cellular defects could constitute

potential therapeutic targets for slowing HD progression.

In this study, we have obtained in vivo evidence that ‘‘normal’’

brain aging has an impact on the striatal toxicity of an N-terminal

fragment of human mutant Htt. The reduction of DARPP-32

expression in the striatum of old rats, induced by a lentiviral vector

encoding mutant Htt, indicates that these rats were more

vulnerable to mutant Htt than young animals. In agreement with

this, stereological cell counts demonstrate that the number of

striatal neurons co-expressing b-Gal and mutant Htt is signifi-

cantly reduced in aged rats. Interestingly, a quantitative analysis of

brain sections from adult rats expressing mutant Htt shows that

age affects the nature of the EM48+ aggregates. A detailed analysis

of b-Gal expression indicates that the age-related modification of

the toxicity of the N-terminal part of mutant Htt is not due to a

difference in the efficiency of the PGK promoter between young

and old rats. These observations suggest that the aged striatum is

more vulnerable to the development of HD pathology.

Table 1. Quantitative characteristics of EM48-positive objects in young and old rats.

Young rats Old rats

Striatal volume with EM48-positive objects (mm3) 2.88+/20.48 3.06+/20.56 n.s.

Striatal density of EM48-positive objects (counts/mm2) 1010.83+/267.90 1100.33+/258.30 n.s.

Number of EM48-positive objects (estimated total number) 71,640+/211,268 80,905+/212,244 n.s.

Cross-sectional area of EM48-positive objects (mm2) 56.34+/21.08 47.74+/20.94 p,0.0001

Rats received intrastriatal injection of lentiviral vectors encoding the Htt171-82Q at different ages (young, 3 weeks; old, 15 months). Histological evaluation using EM48
immunohistochemistry for inclusions and neuropil aggregate detection was performed at 4 weeks post-infection. EM48-positive objects (inclusions and aggregates)
were counted using an automated acquisition and image analysis system. Note that in older rats there is a reduction in the cross-sectional area of EM48-positive objects
and a trend towards an increased number of objects.
doi:10.1371/journal.pone.0004637.t001

Aging and Mutant Htt Toxicity
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The reduction of DARPP-32 immunoreactivity in our HD rat

model probably results from a loss of expression of DARPP-32 in

dysfunctional neurons and/or an actual loss of striatal neurons.

DARPP-32, which is expressed by 96% of medium spiny striatal

projection neurons, is down-regulated in the HD striatum [22], in

HD transgenic mice [23,24] and in a lentivirus-based HD rat

Figure 4. Morphometric analysis of EM48-positive inclusions/aggregates shows age-dependent differences. Young (3 week) and old
(15 month) rats received a stereotaxic injection of lentiviral vectors encoding Htt171-82Q (2 ml, 200 ng/ml of p24) into the striatum. Histological
evaluation was carried out 4 weeks after infection using EM48 immunohistochemistry and image analysis software. The number of EM48 positive
objects was computed for 25 bins (steps of 4 mm2) based on cross-sectional area. A, typical individual distribution of object size is shown for 3 young
rats (#1 to #3) and 3 old rats (#1 to #3). Note that the proportion of small aggregates (grey vertical bar) is higher in old animals than in young rats.
B, the averaged distribution of small aggregates is shown for the two experimental groups (n = 6 per group). Note the clear cut augmentation of the
number of aggregates with an apparent cross-sectional area in the 4–20 mm2 range in older rats. Note also that the distribution peak of EM48 positive
objects in the 40–60 mm2 range was shifted to the left in older rats (,46 mm2) as compared to young animals (,58 mm2). A similar shift was found in
all animals, consistent with a decreased nuclear inclusion size. Results are expressed as mean+/2SEM. *p,0.05, ANOVA and Bonferroni’s post hoc
test.
doi:10.1371/journal.pone.0004637.g004

Aging and Mutant Htt Toxicity
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model at 8 weeks post-infection [11]. DARPP-32 expression is

regulated by the nuclear factor cAMP-response-element-binding

protein (CREB). CREB signaling severely decreases with age in

the striatum [25]. Many studies have reported that poly-Q

expanded Htt interferes with transcriptional regulation involving

CREB [26,27]. It is thus possible that age-dependent alterations to

CREB signaling may interact synergistically with CREB deficits

induced by mutant Htt, increasing DARPP-32 loss and striatal

degeneration in our rat model.

It is also possible that the apparent loss of b-Gal in striatal

neurons expressing Htt171-82Q may at least in part result from

alterations of transcription machinery. However, the effect of

transcriptional deregulation might not be predominant. Indeed,

the PGK promoter that drives b-Gal expression is also the

promoter that drives mutant Htt expression in the same cells in

our model. We observed strong accumulation of mutant Htt –

containing nuclear inclusions in young and old rats, suggesting

that mutant Htt is expressed at relatively high levels. Thus, if the

loss of b-Gal phenotype was uniquely produced by transcription

inhibition, mutant Htt expression would be markedly down-

regulated as well, so that build up of inclusion/aggregates could

not be detected. In previous studies, the loss of DARPP32

phenotype in our HD rat model has been correlated with loss of

the neuronal marker NeuN, suggesting that it represents severe

dysfunction and/or disappearance of striatal neurons and not only

transcriptional alterations [11]. In line with this, neuroprotective

strategies not directly targeting transcription (e.g. chaperones and

calcineurin) block the loss of DARPP32 produced by mutant Htt

in our rat model [12,13,61].

Thus the concomitant loss of DARPP32 and b-Gal in the

present rat model is consistent with neurodegeneration (i.e.

dysfunction and suffering) possibly without the actual disappear-

ance of the striatal neurons. In addition, it may, at least in part,

result from direct effects of transcriptional alterations caused by

mutant Htt.

Our study also demonstrates that aging changes the character-

istics of Htt-containing aggregates/inclusions. In vivo, lentiviral

vectors mainly transduce neurons [28,29]. The present results with

lentiviral vectors encoding b-Gal support this view. In the HD

brain, N-terminal fragments of Htt containing an expanded polyQ

tract accumulate and form aggregates in the nucleus and neuropil

of affected neurons [30]. In the R6/2 mouse, best studied model of

HD, similar features have been observed [31]. The EM48

antibody is often used for the detection of aggregates/inclusions

in post mortem tissue [16,17]. With this antibody, the nuclei of

neurons expressing mutant Htt show densely stained inclusions

superimposed on diffuse staining (from light to dark staining

depending on the cases) that encompasses the entire organelle. In

contrast, somatodendritic/neuropil aggregates are generally small,

and their background appears unstained [16,19,32]. In our

experiments, both neuropil aggregates and intranuclear inclusions

can be observed in striatal neurons expressing Htt171-82Q, as

previously described in rats and non-human primates [11,14]. Our

results show that 4 weeks post-infection with lenti-Htt171-82Q,

there is a clear-cut increase in the number of neuropil aggregates

in older animals. There is also a subtle but significant reduction in

the size of the nuclear inclusions. These observations suggest that

age-dependent changes possibly affect the targeting/transport,

elimination and/or sequestration of the N-terminal fragment of

mutant Htt.

The relationship between the age-dependent changes in the

aggregates/inclusions and the increase in vulnerability to mutant

Htt is unclear. Nuclear polyQ inclusions are not correlated with

neurodegeneration and may be a protective strategy developed by

cells against mutant Htt toxicity [17,33,34]. In particular, Arrasate

and collaborators [33] showed using video-microscopy analysis of

striatal cells in culture that the accumulation of mutant Htt into

large aggregates (‘‘inclusion bodies’’) correlates with improved

survival. In old rats, we found that the larger polyQ aggregates

Figure 5. High resolution image analysis of EM48-positive
aggregates indicates major age-dependent differences. Young
(3 week) and old (15 month) rats received a stereotaxic injection of
lentiviral vectors encoding Htt171-82Q (2 ml, 200 ng/ml of p24).
Histological evaluation was carried out 4 weeks after infection using
EM48 immunohistochemistry and image analysis software. The number
of EM48 positive objects (aggregates) was determined from images
obtained using a 506objective at different focal depths (see Materials
and Methods) so that very small EM48 positive objects could be
detected. Typical images acquired at 506 objective in a young rat (A)
and an old rat (C). B and D correspond to zoomed images of the
rectangles in A and B. Note the high resolution of the images allows
reliable detection of even small aggregates. E, Histograms showing the
distribution of small objects as a function of size (apparent cross-
sectional area) in two animals, indicating that the proportion of very
small aggregates in old rats is approximately ten fold higher than in
young animals.
doi:10.1371/journal.pone.0004637.g005

Aging and Mutant Htt Toxicity
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(mostly nuclear inclusions) are slightly but significantly smaller

than in the young rats. Thus it can be speculated that this change

in old rats results from an inability to sequester toxic mutant

huntingtin, leading to increased toxicity. In line with this, neuropil

polyQ aggregates have been shown to be strongly correlated with

disease progression [31,32] and intimately associated with axonal

degenerative processes [19], a hypothesis consistent with observa-

tions that Htt interacts with numerous proteins associated with

cytoskeleton-based transport, such as HAP-1 [35–38]. The

remarkable study by Wang and collaborators [39] further supports

the view that neuropil aggregates are toxic to striatal neurons. In

the present case, the increase in the number of small neuropil

aggregates in old rats directly demonstrates the existence of an

age-dependent modification(s) in mutant Htt processing. Whether

this leads to increased toxicity in vivo still needs to be determined.

What defects might be involved in the age-dependent increase

in mutant Htt toxicity? It is tempting to speculate that the

pathways/components that are altered in both normal aging and

mutant Htt toxicity could participate in the process. There seem to

be several similarities between HD and aging. One major theory

of aging is related to mitochondrial dysfunction and oxidative

stress [5,8,40]. This is based on several types of observations

including an age-dependent accumulation of mutations in

mitochondrial DNA, [41], and the oxidative stress markers 8-

hydroxy-2-deoxyguanosine (8OHdG) in both nuclear [42] and

mitochondrial DNA [43,44]. In addition, several genetic models

have shown that alterations to the molecular machinery regulating

the production or detoxification of reactive oxygen species (ROS)

shortens life span [40,45]. Oxidative stress has also been suggested

to play a role in HD pathogenesis. In transgenic mouse models of

HD (R6/2), there is an age-dependent increase in the levels of

8OHdG [46,47], and high doses of the antioxidant ubiquinone

(also known as CoQ10) increase the survival of HD transgenic

mice [48,49]. Thus, mitochondrial dysfunction and oxidative stress

linked to ‘‘normal’’ aging may, along with mutant Htt-induced

mitochondrial defects, synergistically modulate HD pathogenesis

[9,50].

Apart from mitochondrial changes, there are numerous age-

dependent mechanisms that are also involved in HD pathogenesis.

Although it is beyond the scope of this manuscript to review these

processes in detail, we would like to provide a few examples to

illustrate this point. Aging alters p53 function [51] and p53-related

mechanisms are clearly involved in HD, possibly leading to

mitochondrial anomalies [52]. Sirtuins, which are also involved in

Figure 6. Loss of DARPP-32 induced by Htt171-82Q is more severe in old rats. Young (3 week) and old (15 month) rats received a
stereotaxic injection of a mixture of lentiviral vectors (4 ml, 200 ng/ml of p24) encoding either Htt171-82Q and b-Gal or Htt171-18Q and b-Gal.
Histological evaluation was carried out 12 weeks after infection using DARPP-32 immunohistochemistry. A, representative photomicrograph showing
the loss of DARPP-32 in the striatum of a young rat. B, loss of DARPP-32 in the striatum of an old rat. Black arrowheads indicate the area with loss of
staining. C, quantification of the volume of DARPP-32-depleted striatum. The loss measured after infection with lenti-Htt171-18Q corresponds to the
mechanical damage caused by the injection needle. Note that lesions produced by Htt171-82Q are (+40%) larger in old rats. Results are expressed as
mean+/2SEM. *p,0.05, Htt171-82Q vs. Htt171-18Q; #, p,0.01, young vs. old, ANOVA and Bonferroni’s post hoc test.
doi:10.1371/journal.pone.0004637.g006
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Figure 7. Htt171-82Q toxicity in exacerbated in old rats. Young (3 week) and old (15 month) rats received a stereotaxic injection of a mixture
of lentiviral vectors (4 ml, 200 ng/ml of p24) encoding Htt171-18Q or Htt171-82Q and b-Gal. Immunohistochemistry for b-Gal was performed at
12 weeks post-infection. A, B, high magnification photomicrographs of b-Gal-positive neurons in a young rat co-injected with lenti-Htt171-18Q (A)
and lenti-Htt171-82Q (B). Representative photomicrographs showing the repartition of b-Gal neurons in a young rat co-infected with lentiviral vectors
encoding Htt171-18Q (C) or Htt171-82Q (D). Note the clear-cut loss of b-Gal-positive cells in the striatum co-injected with Htt171-82Q when
compared with Htt171-18Q, consistent with the known toxicity of Htt171-82Q at this time point. E, stereological cell counts indicating the absence of
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longevity/aging at least in part through FoxO regulation, can

modify HD pathogenesis [53]. In line with this observation, Sirtuin

SIRT1 also regulates PGC-1a, another important target involved

in metabolism and longevity [54]. PGC-1a knock-down leads to

striatal damage and precipitates neurodegeneration in HD

transgenic mice [55,56]. Aging also leads to a reduction in

proteasome efficacy [6]. The role of proteasome impairment in

HD is central, and age-related proteasome deficits would further

facilitate the accumulation of toxic mutant Htt fragments as well as

the accumulation of other proteins normally degraded by the

proteasome [57].

Our results suggest that the aging process is instrumental in HD

pathogenesis. Targeting age-related changes might thus slow

disease progression. Characterizing the mechanisms underlying

the effects of aging in HD could provide important information

and lead to the identification of new therapeutic candidates. The

lentiviral approach used in the present study could similarly be

used to examine the effects of aging on the toxicity of mutant

proteins involved in other neurodegenerative diseases (e.g. PS1/

APP for Alzheimer’s disease, and DJ-1, PINK-1, and LRRK2 for

Parkinson’s disease).

Materials and Methods

Animals
Young (3 week-old) and older (14–16 month-old) male Spra-

gue-Dawley rats (Charles River) were used. For simplification, 14–

16 month-old rats are called 15 month-old rats. The animals were

housed in a temperature-controlled room maintained on a 12 hr

light/dark cycle. Food and water were available ad libitum.

Experiments were performed in accordance with the European

Community Council directive 86/609/EEC for the care and use

of laboratory animals.

Lentiviral vector production
The construction of SIN-W-PGK (mouse phosphoglycerate

kinase 1) vectors encoding Htt171-18Q and Htt171-82Q has been

previously described [11], as has the nls-LacZ construct [58]. Viral

particles were produced in human embryonic kidney 293T cells

using a four-plasmid system [58], collected by ultracentrifugation

and suspended in PBS with 1% bovine serum albumin (BSA). The

particle content of the viral batches was determined by ELISA for

the p24 antigen (Gentaur, France). Viral particles were used at a

concentration of 200,000 ng of p24 per ml in 0.1 M Phosphate

Buffer Saline (PBS) with 1% BSA for intrastriatal injections.

Injection of lentiviral vectors
Male Sprague-Dawley rats were anesthetized with ketamine/

xylazine (75 and 10 mg/kg respectively; i.p.) and placed in a

stereotaxic frame. Bilateral stereotaxic injections into the striatum

were made using a 30 gauge blunt-tip steel needle connected to a

10 ml Hamilton syringe (Hamilton, Reno, NV) via a 30 cm

polypropylene catheter. Viral suspensions from the same batch

were injected into each striatum at 0.25 ml/min by means of an

automatic injector (Stoelting, Wood Dale, IL), using the following

coordinates: 0.8 mm rostral to bregma, 3.5 mm lateral to midline

and 4.0 mm ventral to the skull surface, with the tooth bar set at

3.3 mm. At the end of the injection, the needle was left in place for

5 min, before being slowly withdrawn. Animals were killed at 4

and 12 weeks after injection, and brains processed for immuno-

histochemistry.

Experimental design
In a first set of experiments, we sought to establish the effect of

normal aging on the formation of neuropil aggregates and

intranuclear inclusions by infecting the striatum of young and

older rats with lentiviral vectors encoding expanded Htt (Fig. 1).

Animals (n = 6 per group) received a 2 ml injection of a LacZ

lentiviral vector encoding b-Galactosidase or mutant Htt (Htt171-

82Q) into the left and the right striatum respectively. Animals were

killed 4 weeks post-infection. In a second set of experiments, we

explored the effect of normal aging on Htt-induced striatal

neuropathology, using two approaches. First, we compared the

loss of the striatal protein dopamine- and cyclic AMP-regulated

phosphoprotein with molecular weight 32 kDa (DARPP-32).

Second, neuronal cell degeneration in young and older animals

was examined using stereological cell counts (Fig. 1). In this case,

animals (n = 10 per group) received a 4 ml injection of a LacZ

lentiviral vector mixed (ratio 2:1) with a vector encoding the wild-

type N-terminal Htt fragment (LacZ+Htt171-18Q) or expanded

Htt (LacZ+Htt171-82Q) into the left and the right striatum,

respectively. Animals were killed 12 weeks post-infection.

Brain tissue processing for histological evaluation
After anesthesia with a sodium pentobarbital overdose, animals

were transcardially perfused with phosphate buffer containing 4%

paraformaldehyde (PFA) and 1.5% picric acid. Brains were then

post-fixed in 4% PFA for 24 h, and then cryoprotected by

immersion in 15% and 30% sucrose for 48 h. Coronal sections

(thickness 40 mm) were cut at 222uC using a sliding microtome

(Cryocut 1800; Leica Microsystems, Nussloch, Germany). Free-

floating sections encompassing the entire striatum were serially

collected and stored in antifreeze cryoprotectant solution at

220uC until immunohistochemical processing.

Immunohistochemistry, immunofluorescence and
enzymatic detection of b-Gal activity

Immunohistochemistry for EM48 (mouse monoclonal antibody,

gift of Pr X.-J. Li, Emory University, and Chemicon Intl. Inc.,

diluted 1:2000), DARPP-32 (rabbit polyclonal antibody, Chemi-

con Intl. Inc., diluted 1:5000) and b-Galactosidase (rabbit

polyclonal antibody, diluted 1:3000 for immunohistochemitry

and 1:800 for immunofluorescence) was performed as previously

described [11,59]. Immunoreactivity was revealed using the

Vectastain ABC Elite System (Vector, Burlingham, CA). The

sections were mounted, dehydrated by passing through ethanol

and toluene, and coverslipped with Eukitt. For immunofluores-

cence of b-Gal, Alexa 488 goat anti-rabbit secondary antibodies

were used (Molecular probes). The activity of b-Gal was revealed

by incubating section for 2 h at 37uC in dionized water containing

4 mM potassium ferrocyanide, 4 mM potassium ferricyanide,

40 mM MgCl2, and 5-bromo-4-chloro-3-indolyl-b-O- galactopyr-

anoside (0.4 mg/ml).

age-dependent changes in the expression of b-Gal in cells co-infected with Htt171-18Q, whereas Htt171-82Q induces a greater loss of b-Gal+ cells in
old rats than in young rats. Results are expressed as mean+/2SEM. *, p,0.05, Htt171-82Q vs. Htt171-18Q. #, p,0.01, young vs. old; ANOVA and
Bonferroni’s post hoc test.
doi:10.1371/journal.pone.0004637.g007
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Detection and quantification of EM48 aggregates
The EM48 antibody has been raised against the first 256 amino

acids of human Htt with the polyglutamine tract deleted, and

specifically stains both Htt-containing nuclear inclusions and

somatodendritic/neuropil aggregates [16–19]. Nuclear staining

generally shows a round weakly immunoreactive structure with the

superimposition of strongly stained inclusions. Neuropil aggregates

are generally seen as small densely stained objects often organized

to resemble neuronal processes. Morphological, numerical and

other features of EM48-positive inclusions were obtained by

scanning 10–12 coronal sections spread over the anterio-posterior

extent of the striatum (inter-section distance: 400 mm), using a 206
objective on a Zeiss Axioplan2 Imaging microscope motorized for

x, y and z displacements, and an image acquisition and analysis

system (Morphostar, IMSTAR, Paris) [12,60,61]. Section lighting

was similar for all acquisitions and image light homogeneity was

automatically corrected using blank images. For each section,

200–300 contiguous images (pixel size, 0.4 mm60.4 mm) were

acquired. All images were segmented using the same light

threshold, mask smoothing and object size filters. Up to 1000–

5000 EM48-positive objects (depending on the experimental

group considered) were detected. With this set-up, objects with an

apparent cross-sectional area of over 2 mm2 could be reliably

detected. Objects were attributed to classes/bins with a step size of

2 mm2 in order to obtain a distribution histogram, as previously

reported [12]. The number of objects was expressed as mean6SD

for each bin. For each animal, the total number of aggregates/

inclusions in the striatum was calculated by dividing the number of

aggregates actually counted by the sampling frequency (1/10). The

volume of the striatum containing EM48-positive objects was

calculated by the Cavalieri method [62], using the formula:

volume = d.(a1+a2+a3 …), where d is the distance between serial

sections (400 mm), and a1, a2, a3 etc. stand for the area containing

EM48-positive objects within individual serial sections throughout

the striatum.

For very high resolution imaging, a similar X–Y scanning

procedure was carried out using a 506 objective. This was

combined with an analysis of stacks of images acquired along

5 mm of the Z axis. For each stack, all images were back-projected

along the Z axis to yield one composite image, allowing very small

objects (0.1 mm2 and above) to be segmented and identified. Since

this analysis was highly time consuming, it was performed in only 3

representative striatal sections each of young and older rats

infected with lentiviral vectors.

Determination of striatal DARPP-32-depleted volume
The volume of the striatum exhibiting a depletion of DARPP-32

staining was estimated as follows. The unstained area of all serial

striatal sections (400 mm apart) was manually delineated using a

46 objective and an AX70 microscope (Olympus, Munster,

Germany) coupled with an image analysis system. The volume was

then calculated according to the principle of Cavalieri (see above).

Image analysis of b-Gal expression levels
Sections stained for b-Gal enzymatic activity and b-Gal

immunofluorescence were scanned at 106 objective using a Zeiss

Axioplan 2 Imaging microscope equipped with a motorized stage

and an image acquisition and analysis system image (FluoUp and

Mercator softwares, Explora Nova, La Rochelle, France). Care

was taken to optimize image acquisition and avoid image

saturation. Based on similar principles as described for automated

detection of EM48 objects, segmentation of b-Gal-positive objects

was performed and, for every object segmented, the mean levels of

fluorescence (grey levels) or mean levels of b-Gal-enzymatic

activity (optical density) was determined. Mean value for each

animal was calculated based on the analysis of approximately 3000

b-Gal-positive objects per rat.

Stereological counting of b-Galactosidase-positive
neurons

The optical fractionator method [63,64] was used to obtain an

unbiased stereological estimate of the total number of b-Gal-

positive cells within the striatum. Cells were counted using an

AX70 Olympus microscope equipped with a digital color camera,

an x–y motorized stage controller, a microcator to measure stage

movements along the z-axis with a precision of 0.5 mm, and

CAST-GRID stereology software (Olympus, Denmark). The

striatum was delineated using a 46 objective, in accordance with

a rat brain atlas [65]. Section thickness (from 13–16 mm) was

measured at three locations for each section analyzed. Sampling

was performed bilaterally within the delineated areas with a 1006
oil-immersion objective. The area of the counting frame was

3521.2 mm2 and dissector height was 8 mm with a guard zone of

2 mm from the surface of the section. The sampling areas were

separated by x–y steps of 296.7 mm6296.7 mm, generating counts

of 150–300 sampled cells per animal. In the present study, the

mean coefficient of error (CE) of the estimates was 0.08. The total

number of b-Gal-positive cells within the entire striatum was

calculated according to the following formula: Ntot = SQ2. 1/ssf.

1/asf. 1/tsf where SQ2 is the number of sampled cells, ssf is the

section sampling fraction, asf is the area of the sampling fraction

and tsf is the thickness of the sampling fraction.

All histological data (surface, volume measurements and cell

counts) were performed by an investigator blind to the age of the

animals.

Statistical analysis
All data were expressed as means+/2SEM. In the first set of

experiments, an unpaired Student’s t-test was used for the

comparison between the two age groups. In the second set of

experiments, where results obtained from the left and right striata

were considered to be independent (Htt-19Q versus Htt-82Q) and

both age groups were compared, a one-way ANOVA with

multiple comparisons using the post hoc Bonferroni method was

carried out using commercially available software (StatViewH
software, SAS Institute Inc., USA). For all statistical tests

performed, a probability level of 5% was considered significant.
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