

Development of the synthetic diagnostic for the ultra-fast swept reflectometer

A. Medvedeva, F. Clairet, C. Bottereau, R. Marcille, S. Hacquin, G. D. Conway, U. Stroth, S. Heuraux, Guilhem Dif-Pradalier, D. Molina, et al.

▶ To cite this version:

A. Medvedeva, F. Clairet, C. Bottereau, R. Marcille, S. Hacquin, et al.. Development of the synthetic diagnostic for the ultra-fast swept reflectometer. 14th International reflectometry workshop, IAEA, May 2019, Lausanne, Switzerland. cea-02288900

HAL Id: cea-02288900 https://cea.hal.science/cea-02288900v1

Submitted on 16 Sep 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

DE LA RECHERCHE À L'INDUSTRIE

Development of the synthetic diagnostic for the ultra-fast swept reflectometer

A. Medvedeva¹, F. Clairet¹, C. Bottereau¹, R. Marcille², S. Hacquin^{1,3}, G. D. Conway⁴, U. Stroth^{4,5}, S. Heuraux⁶, G. Dif-Pradalier¹, D. Molina¹, A. Silva⁷, ASDEX Upgrade team⁴, EUROfusion MST1 team⁸

¹CEA, IRFM, F-13108 Saint-Paul-lez-Durance

²Ecole Polytechnique, F-91128 Palaiseau

³EUROfusion Programme Management Unit, Culham Science Centre, OX14 3DB

⁴Max-Planck-Institut für Plasmaphysik, D-85748 Garching

⁵Physik-Department E28, Technische Universität München, D-85747 Garching

⁶Institut Jean Lamour UMR 7198 CNRS, Universite de Lorraine, F-54011 Nancy

⁷Instituto de Plasmas e Fusao Nuclear, IST, Universidade Lisboa, Lisbon

⁸For a list of members, see H.Meyer et al, Nucl. Fusion 57 102014 (2017)

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

1. Motivation:

Role of turbulence in plasma confinement

- 2. Ultra-fast swept reflectometer Diagnostic capabilities for turbulence measurements
- 3. Synthetic diagnostic Project progress

- 1. Motivation: Role of turbulence in plasma confinement
- 2. Ultra-fast swept reflectometer Diagnostic capabilities for turbulence measurements
- 3. Synthetic diagnostic Project progress

Confinement is limited by turbulent transport

EUROfusion

Plasma in a tokamak must be:

- hot and dense at the core
- cool at the edge

 \rightarrow gradients \rightarrow turbulence

Turbulence should be understood, predicted and reduced for a better confinement

Objective:

Investigate turbulence during confinement changes

δ*T* in the ASDEX Upgrade tokamak with GENE code [genecode.org]

L-H transition – crucial issue for fusion

low confinement (L-mode) \rightarrow high confinement (H-mode)

[F. Wagner, PRL1982]

EUROfusion

- Transport of heat and particles reduced
- Drift velocity $\vec{v}_{E \times B} = \frac{\vec{E} \times \vec{B}}{B^2} \propto E_r$
- Increase of the radial electric field creates E×B shear flow
- Shear flow suppresses turbulence

1. Motivation:

Role of turbulence in plasma confinement

- 2. Ultra-fast swept reflectometer Diagnostic capabilities for turbulence measurements
- 3. Synthetic diagnostic Project progress

- UFSR developed at CEA for Tore Supra and WEST tokamaks, transferred to ASDEX Upgrade (2013–2016) supported by EUROfusion
- 50-102 GHz X-mode
- Acquisition 2Gs/s
- Sweep time 1 μs
 [F. Clairet, RSI 2017]

Turbulence properties measured by UFSR

- Density profiles with 1 µs resolution
- 1D wave propagation simulation
 → radial wavenumber spectra
- Density fluctuation (turbulence level)
- Frequency spectra up to 400 kHz
- Correlation length and time
- 2D effects to be considered

A.Medvedeva et al – IRW 2019

Background flow (E_{r0}) evolution during I-phase () EUROfusion

 E_{r0} minimum (at $\rho_{pol} = 0.98$) deepens during I-phase from -5 to -20 kV/m

Turbulence and E_{r0} oscillate during I-phase

- Established I-phase might be explained by edge instabilities causing a fast relaxation of pressure (turbulence and flow in phase)
- Edge coherent modes appear in the pedestal region and might play a role

the spectra become narrower during the I-phase and in H-mode due to the radial electric field shear

Outline

1. Motivation:

Role of turbulence in plasma confinement

2. Ultra-fast swept reflectometer Diagnostic capabilities for turbulence measurements

3. Synthetic diagnostic

Project objectives and progress

New challenge: identification of turbulent flows () EUROfusion

Spontaneous organisation of a set of regularly spaced weak transport barriers: ExB staircase predicted by GYSELA

Project at the crossroads between theory, simulation and experiments

A.Medvedeva et al - IRW 2019

Synthetic diagnostic for UFSR data interpretation

EUROfusion

Turbulence map simulated with gyrokinetic code

1

Density map from GYSELA, 10¹⁹m⁻³

Low collisional plasma \rightarrow gyrokinetic description

- \Box flux-driven \rightarrow mimic experiments
- self-consistent interplay btw core, edge & simplified SOL model
- global description: kinetic ions & adiabatic or kinetic trapped electrons
- □ self-organised E_r well

Soft source: $H_z(kdx, y, ndt) = H_z(kdx, y, (n-1)dt) + e^{j\omega(ndt)}e^{-\frac{(y-y_0)^2}{\sigma^2}}\frac{A_0}{\sqrt{\varepsilon_0\mu_0}}$

Measured signal: $E_y^n(x_s, y_s) = A_0^* e^{j\omega_0 ndt} + a_1^* e^{j(\omega_0 ndt - \phi)}$

Calculation speed (Python+C): 1000 x 1000 x 5000 points 10min for F_0 x y t

A.Medvedeva et al – IRW 2019

Further development: sweep simulation

Sweep: $\omega_0 \rightarrow \omega = \omega_0 + v_\omega t$

Source:

 $e^{i(\omega_0 t + v_\omega t^2 + \Delta \varphi(t))}$

- Mimic real reflectometer
- Optimised calculation speed
- 1 µs sweep 2 000 000 points \rightarrow 70 hours 0.01 µs sweep 20 000 points \rightarrow 1 hour $F_{beat} \approx 400 MHz \rightarrow 40 GHz$

2D code application

Sign inversion of the spectra asymmetry during I-phase can be explained by a sawtooth-like cutoff layer

Further application: modes' size, flow detection, turbulence level and wavenumber spectra, correlation analysis

- ^{20¹} Create 2D full wave code
 - Couple with GYSELA turbulence maps
 - Parallel calculation for (F,t) 10 min each
 - Optimise calculation speed by sweeping of frequency
 - Integrate 2D code to the loop method of wavenumber/turbulence level analysis
 - Add functions for correlation analysis
 - Reproduce spectra for various turbulence scenarios for ASDEX Upgrade and WEST data, compare with GYSELA and GENE

Conclusions

- First studies of the electron density and density fluctuations dynamics during L-H transitions in ASDEX Upgrade have been performed with a time resolution of 1 μs using 1D wave propagation simulation.
- 2D full wave code is developed for interpretation of ultra-fast swept reflectometer data and coupled with GYSELA and GENE turbulence simulations.
- Synthetic diagnostic is being optimised for further data analysis.

Slow sweep simulation

Loop method for wavenumber spectra

Density fluctuation dynamics : k_r-spectra

22

A.Medvedeva et al - IRW 2019