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ABSTRACT

Adapting a source code to the specificity of its host hardware
represents one way to implement software optimization. This
allows to benefit from processors that are primarily designed to
improve system performance. To reach such a software/hard-
ware fitting without narrowing the scope of the optimization
to few executions, one needs to have at his disposal relevant
performance models of the considered hardware. This paper
proposes a new method to optimize software kernels by consid-
ering their data-access mode. The proposed method permits to
build a data-cache-miss model of a given application regarding
its specific memory-access pattern. We apply our method in
order to evaluate some custom implementations of matrix data
layouts. To validate the functional correctness of the generated
models, we propose a reference algorithm that simulates a ker-
nel’s exploration of its data. Experimental results show that the
proposed data alignment permits to reduce the number of cache
misses by a factor up to 50%, and to decrease the execution
time by up to 30%. Finally, we show the necessity to integrate
the impact of the Translation Lookaside Buffers (TLB) and
the memory prefetcher within our performance models.
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1 INTRODUCTION

Over the last few decades, each new generation of hardware
(HW) platform overcame the former one by introducing a
brand new approach for memory storage or computation.
This has led High-Performance-Computing (HPC) develop-
ers to have a very large set of potential software (SW) op-
timizations methods applicable to their code. However, the
considered HW platforms are very heterogeneous in terms
of Instruction Set Architecture (ISA), registers and mem-
ory hierarchy. Consequently, the most commonly-used SW
optimizations are specific to the family of the given host
HW. As an example, for a simple matrix multiplication ap-
plication, [12] provides a set of SW optimizations that may
be implemented and the corresponding gain. We note from
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this example that the code-efficiency is reached at the ex-
pense of its portability, i.e. through code specialization and
using hardware-specific instructions. Thus, porting a given
source code to a new family of HW and benefiting from
its performance may require an important engineering ef-
fort.

The objective of our study is to walk a first step toward
automatic code-adaptation of a given SW kernel to its specific
host HW. In this paper, we present a custom method to esti-
mate the data-cache-miss ratio depending on HW parameters
related to the memory hierarchy (e.g. cache-line size, number
of cache lines). The generated estimation depends also on
some OS-related parameters such as the memory-allocation
policy. The proposed method is specifically designed to be
embedded within a SW platform to automatically detects
the adequate code optimizations to apply to a given source
code. The objective being to make it fit specifically its host
HW. To illustrate our method, we consider the example of
matrices accessed through memory-patterns similar to simple
matrix multiplication and convolution algorithms [14]. We
consider matrix lines and columns that have been dynamically
allocated (within the heap of the process). We assume that
the data-caches implement the ”least-recently used” (LRU)
cache-replacement policy. No assumption is made on the cache-
write policy. Using the generated models, we pick the ideal
data-layout implementation for the considered kernel. This
allows to reduce the number of cache misses by a factor up
to 50%, and to decrease the execution time up to 30%. It is
noteworthy that our objective is not to propose a new matrix
multiplication or convolution algorithm. Other specialized
implementations and libraries ([17], [9] and [16]) exist and
are proven to reach peak performance. However, we pick this
example as a visual way to illustrate our general-purpose
method.

The rest of the paper is organized as follows. Section 2 dis-
cusses the state-of-the-art. Section 3 provides a background on
data-layout families to store matrices. Section 4 details the pro-
posed method to build a data-cache-miss model parametrized.
Section 5 experiments the performance-interest of the matrix
data-layouts. Finally, section 6 concludes the paper.

2 STATE OF THE ART

Code optimization is a potentially endless topic in modern
computer science. Various research solutions have been widely
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studied, ranging from just-in-time compilation [13] to polyhe-
dral compilation [2] and source-to-source transformation [7].
We group some of these solutions in Table 1 and classify them
according to their leverage point within an application’s life cy-
cle.We note from this table that the ecosystem of SW optimiza-
tion is highly detached from HW consideration. No particular
attention is given to the specificity of the host hardware.

Algorithm Source
Code

Compilation
(static)

Compilation
(dynamic)

Post-
mortem

FFTW [9] X X X

JIT [13] X X X

Magma [17] X X

deGoal [3] X X X

LGen [16] X X X

BOAST [7] X X X

Polyhedral com-
pilation [2]

X X

Table 1: Classification of existing code-optimization
solution according to their leverage-point on source
code

Meanwhile, code specialization to a specific host hardware
is still a barely-explored way of code optimization. The evi-
dence lies in the fact that most existing hardware-performance
models, which are crucial for such a approaches, are hardly
exploitable in automatic SW optimization. The example of
the roofline model [18] is representative of this trend. Indeed,
this model is a couple of constant thresholds the performance
of a kernel can not exceed. Thus, it cannot be used to spot the
hardware parameters (such as the cache sizes, associativity
or replacement policy) that may influence most the kernel’s
performance.
Our aim through this paper is to propose a method to build
cache-miss models that exhibits a higher correlation between
the source-code performance and the host-hardware character-
istics. To the best of our knowledge, the closest data-cache-miss
modeling methods similar to our work are proposed in [19]
and [1]. These methods estimate the data-cache-miss model of
a program by analyzing its corresponding data-reuse distance
(defined as the number of distinct data elements accessed be-
tween two consecutive reference to the same element [19]).
Unlike our method, these methods exhibit models that do
not depend on the considered memory-access pattern of the
algorithm but on the input data used during the test execution.
Thus, the models generated by these methods are only valid
for a specific set of input data.

3 BACKGROUND:
MATRIX DATA-LAYOUTS

When dealing with memory for performance-optimization, two
aspects, highly interleaved, need to be considered: the memory
layout used for its storage and the pattern followed to access
the addresses.
In this section, we give an overview of the data-layout archi-
tectures that we have considered. By data-layout we refer to
the geometrical shape followed by data-addresses. The data-
reorganizations that we deploy being at virtual-addresses level.

We also assume memory access patterns similar to common
matrix multiplication [5] and convolution [14].

3.1 Flattening
2D Structures Within 1D Array

A first way to access a cell (𝑥,𝑦) from a dynamically-declared
uni-dimensional line-major matrix array is using equation:
@(𝑥,𝑦) = @𝑏𝑎𝑠𝑒 + (𝑥𝑁 + 𝑦)𝐷. Thanks to its simplicity, this
method allows to access a cell (at address @(𝑥,𝑦)) in roughly
one computation and only one memory access (assuming that
the initial address @𝑏𝑎𝑠𝑒 of the array and the values of 𝑥 and
𝑦 are stored within processor-registers). Furthermore, keeping
cells that belong to contiguous lines within the same block
of addresses contributes to cache and page locality. Indeed, a
residual from a matrix line (fetched within the caches) has a
high probability to be used immediately afterward if it contains
the following matrix line. It also leads to a high prediction-hit
ratio for the prefetcher by creating a high regularity within
the accessed addresses.
Given the growing impact of memory wall, this high locality
and relatively-reduced number of memory-accesses represents
an interesting performance advantage. The main limitation of
this uni-dimensional data-layout family is related to the lack
of scalability with respect to the number of concurrent threads.
The relative proximity between addresses belonging to inde-
pendent lines increases their probability to be set within the
same cache-line. Accessing these addresses concurrently would
thus trigger false sharing [10], which may increase the access
time by up to 100 CPU cycles. Most methods ([15] and [4])
proposed to reduce false sharing are based on memory align-
ment. Thus, they can not be applied to the current data layout
without prohibitively increasing its memory-access cost.

3.2 Multidimensional Matrix Storage

A second way to store a dynamically-declared matrix is using
a multidimensional array. Each cell of the array is a pointer
to either a payload-data array (Figure 1a) or a pointer to
another pointer’s array (Figure 1). Each array (from each
dimension) is dynamically allocated independently from the
others. Similar principles are used by the java implementation
of N-dimensional data layouts.
The main advantage of using a multidimensional matrix stor-
age is its modularity. The data may be split with respect to any
dimension (projection on hyper plans) in order to fit an ideal
workload distribution among threads or to suite the hardware
and OS specifications (cache line size, virtual page size or
process-fork buffer). Figure 1 shows how adapting the data-
layout according to the access pattern helps to significantly
reduce the number of cache misses. We may thus improve
scalability with respect to the workload, number of threads1

and hardware dimensions.

1It would for instance help implement the previous solutions for false
sharing
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Cache-line
size

Matrix	A Matrix	B

Matrix	res

Memory-access
pattern

(a)Matrices in 2D array (column,

row)

C C

C

(b) Matrices in 2D array (column, row)

with mixed row/line-major layout

C

C C

(c) Matrices stored within 3D array (col-

umn, row, cache line)

Figure 1: Memory access pattern and cache misses of matrix multiplication (naive algorithm) on three different
implementations of a matrix stored on multidimensional data layout.

In the rest of this paper and for the sake of clarity, we will
always consider multidimensional matrices as line-major. We
will also assume a line-major exploration.

4 PROPOSED
DATA-CACHE-MISS MODEL

In this section, we propose a method to accurately model the
number of data-cache misses triggered while accessing each
family of data-layout presented in section 3. The objective
being to highlight the parameters (such as data alignment
or block subdivision) that may have a significant impact on
data-cache misses (when dealing with access-pattern similar
to matrix multiplication and convolution).

4.1 Data-Cache-Miss
Modeling on a 1D Memory Block

The data of the considered kernels is accessed sequentially.
Consequently, the proposed method to build a cache-miss
model is to first consider a simple 1D array of 𝑁 elements
at the address 𝑎0 and where each element is of size 𝐷 bytes.
The data are being fetched within a cache made of 𝐶𝑡𝑜𝑡𝑎𝑙 lines
where each one is of size 𝐶. Throughout all our modeling
process, we assume that all this constants belong to N* (set
of purely-positive natural numbers).We also assume that the
array has not been covered yet (hence it is not present in the
considered cache).

The number 𝑛0 of cache-misses triggered while accessing
the array sequentially is given by Equation 1 (the notation
𝑎0[𝐶] refers to the rest of the euclidean division of 𝑎0 by 𝐶).

𝑛0=1+

⌈︂
𝑁𝐷−(𝐶−𝑎0[𝐶])

𝐶

⌉︂
(1)

Accessing one byte at an address 𝑎0 leads to fetch the corre-
sponding data at a position 𝑎0[𝐶] within a cache line. The
rest of the cache line being populated with the data at the
addresses surrounding 𝑎0. Consequently, at the initial data
access (address 𝑎0), 𝐶−𝑎0[𝐶] bytes from the array are fetched
into the cache. The next data access to trigger a cache miss
(𝑎0 +𝐶 − 𝑎0[𝐶]) will thus be aligned with a cache-line size
𝐶 (because 𝑎0+𝐶−𝑎0[𝐶]≡ 0(𝑚𝑜𝑑𝐶)). Then, the data are
fetched by chunks of size 𝐶 bytes. The number of fetch pro-
cessed is found by dividing the number of remaining bytes
after the first access (𝑁 *𝐷−(𝐶−𝑎0[𝐶])) by the size of one
chunk (𝐶). We then take the ceiling of the result to consider
the case where the last chunk of the array is smaller than
𝐶.

In the context of simple matrix multiplication or convo-
lution, a line 𝑗 of the matrix is generally browsed after the
previous one 𝑗−1. Given the previously described functioning
of a cache, this results in an initial part 𝐿𝑗 (bytes) of the
array 𝑗 being pre-loaded at the time we start accessing it. The
Equation 2 shows how we have introduced this new parameter
within the proposed cache-miss model in order to evaluate
𝑛𝑗 (number of cache misses triggered while exploring the 𝑗𝑡ℎ

matrix line). This is achieved by reducing the total number
of bytes 𝑁𝐷 by 𝐿𝑗 . We also increment the initial address 𝑎𝑗

of the 𝑗𝑡ℎ line of the matrix by the same value.

𝑛𝑗=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 if 𝐿𝑗≥𝑁𝐷

1+

⌈︂
𝑁𝐷−𝐿𝑗−(𝐶−(𝑎𝑗+𝐿𝑗)[𝐶])

𝐶

⌉︂
=

⌈︂
𝑁𝐷+𝑎𝑗

𝐶

⌉︂
−
⌊︂
𝑎𝑗+𝐿𝑗

𝐶

⌋︂
if 𝐿𝑗<𝑁𝐷

(2)
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Finally, and for the same time-proximity reason, it is impor-
tant that we know how much residual bytes2 from a line of a
matrix are loaded with each line. In Equation 3, we determine
the model of that residual 𝑟𝑗 for a given line 𝑗 using the same
kind of reasoning on the cache-fetch and positioning.

𝑟𝑗 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if 𝐿𝑗 ≥𝑁𝐷

𝐶−(𝑁𝐷+𝑎𝑗−1)[𝐶]−1

=𝐶

⌊︂
𝑁𝐷+𝑎𝑗−1

𝐶
+1

⌋︂
−𝑁𝐷−𝑎𝑗 if 𝐿𝑗 <𝑁𝐷

(3)

4.2 Extension of the Data-Cache-Miss
Model to a 2D Memory Blocks

In the subsection 3.1, we considered the case where a matrix
is stored within a 1D data layout. The number 𝐿𝑗 of bytes
already located in the cache when we start exploring the line
𝑗 is exactly the number of residual bytes 𝑟𝑗−1 of data loaded
while fetching the line 𝑗−1.
Equation 4 gives the total number 𝑛* of cache misses triggered
during a multiplication of matrices stored within a 1D data
layout. We obtain this formula by first replacing 𝐿𝑗 by the
expression of 𝑟𝑗−1 in Equation 2 (using an initial value 𝐿0=0).
We then replace the address 𝑎𝑗 by 𝑎0+𝑗𝑁𝐷. Finally, we use
Weyl ’s criterion applied to rational numbers in order to sum
the cache misses for each column.

𝑛1𝐷
𝑗 =

⎧⎪⎪⎨⎪⎪⎩
⌈︂
𝑁𝐷+𝑎0

𝐶

⌉︂
−
⌊︁𝑎0

𝐶

⌋︁
if 𝑗=0⌈︂

𝑁𝐷(𝑗+1)+𝑎0

𝐶

⌉︂
+

⌈︂
1−𝑁𝐷(𝑗+1)−𝑎0

𝐶
−1

⌉︂
𝑛*=

𝑗=0∑︁
𝑁

𝑛1𝐷
𝑗 =𝑁 * 8

√︂
𝑁𝐷+1

𝐶
−1+𝑂(1)

(4)

In this section, we consider matrices stored within 2D arrays
(as shown in subsection 3.2); the number 𝐿𝑗 of pre-fetched
bytes for a line 𝑗 is no longer the number of residual bytes
𝑟𝑗−1

3. In order to represent 𝐿𝑗 , we need to model, for the given
memory allocator, the distance between two consecutively
allocated lines of the matrix.
In this context, we have considered ptmalloc (version 2.19),
the heap allocator based on Dong Leas Malloc algorithm that
has become the default Linux GLIBC implementation [11].
As shown on Figure 2, a memory block (also known as basic
block) allocated using the malloc function of ptmalloc has a
size that is a multiple of 𝐵, where 𝐵 is usually equal to 8 or 16
depending on the processor architecture. The returned block
contains a reserved section (tail) of size 𝑇 =8 Bytes at its end.
It is also allocated at an address that is amultiple of𝐵 (however
the payload data maybe shifted within the basic block).

Allocating an array of size𝑁𝐷 dedicates a basic block of size
𝑘𝐵 where 𝑘 is the smallest strictly positive integer such that
𝑘𝐵≥𝑁𝐷+𝑇 >(𝑘−1)𝐵 (hence 𝑘=

⌈︀
𝑁𝐷+𝑇

𝐵

⌉︀
). Consequently,

the distance 𝐷𝑗 between two arrays of size 𝑁𝐷 allocated con-
secutively is 𝐷𝑗 = 𝑘𝐵−𝑁𝐷−𝑆 where 𝑆 is the shift of each
array within its relative basic block.

2Residual is the number of bytes that do not belong to a given line but
that are fetched along with it into the cache.
3Even though we still have ∀𝑗∈ [1,𝑁−1],𝐿𝑗 ≤𝑟𝑗−1

@	multiple	of	B

TPShift	S

Basic	block	=	k	*	B	>=	P+T

TPayloadShift	S

Figure 2: Example of two blocks of size P Bytes allo-
cated using ptmalloc: Basic block of size multiple of B
and reserved section of size T Bytes.

In Equation 5 we have estimated the number pre-fetched bytes
𝐿𝐽 for an array 𝑗 of a matrix. It is obtained by retaining the
distance 𝐷𝑗 from the number of residual bytes 𝑟𝑗−1 of the
previous array 𝑗−1.

𝐿𝑗=

⎧⎪⎨⎪⎩
0 if 𝑗=0 or 𝐷𝑗 >𝑟𝑗−1

𝑟𝑗−1−(𝑘𝐵−𝑁𝐷−𝑎𝑗−1[𝑘𝐵]) else

(5)

By injecting the expression of 𝐿𝑗 into the general expression
of 𝑛𝑗 (see Equation 2), we obtain the number of cache misses
𝑛2𝐷
𝑗 triggered while exploring a line of a matrix stored within

a 2D data layout:

𝑛2𝐷
𝑗 =

⌈︂
𝑁𝐷+𝑎𝑗

𝐶

⌉︂
−
⌊︂
𝑎𝑗−𝑘𝐵+𝑎𝑗−1[𝑘𝐵]

𝐶

⌋︂
+

⌊︂
𝑁𝐷−1

𝐶
+1

⌋︂ (6)

5 RESULTS AND DISCUSSION

In this section, we experiment the correctness and the accu-
racy of the generated performance-models. In this paper, the
accuracy refers to how precisely a model allows to spot the
parameters (WH, SW and OS related) that may significantly
influence the performance of the corresponding kernel. In fact,
our objective is to find such parameters for a given source-code
in order to tune them. Any further understanding for ”accu-
racy” is not relevant for our approach of SW optimization.
Consequently, we compare non of the cache-miss models that
our method generates with experimental evaluations.

5.1 Experimental setup

All the presented performance results are obtained following
the same experimental protocol. Each considered point is as-
sessed (experimental run) 10 times4. The corresponding values
that we present in Figure 3 and Figure 5 are the average of the
results of these 10 runs. It is noteworthy that all the perfor-
mance gain that we show has been obtained without changing
the original algorithm nor re-ordering the instructions.
All the performance experimentations have been processed on
an x86 HW architecture implementing an Intel Xeon E3-1270
v4 processor with a l3 cache (LLC) containing a total of 8M
Bytes made of 128 Bytes per cache line and implementing the
LRU cache-replacement policy. A Debian (4.9.2) operating

4Between two consecutive experimentations, we make sure to flush all
the considered data-caches using the CFLUSH instruction from the
ISA of our Intel processor
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system has been used based on the Linux (3.16.0-4) kernel. The
g++ (4.9.2) compiler (with the -03 optimization option) has
been used to compile the considered computation-kernels (ma-
trix multiplication) andmatrix data structures. ThePerfmon2
library [8] has been used to access the performance manage-
ment unit of the processor in order to measure different cache
misses and CPU cycles.

5.2 Experimental
Impact of Data Layout on Performance

In this section, we present an experimental evaluation of three
custom implementations of the data layouts introduced in
section 3. In Figure 3, we show how a proper alignment of
the matrix lines (respectively columns) along with a proper
orientation the matrix majors (according to the access pattern)
allowed us to reduce the number of cache misses by a factor up
to 50%.We also showhow the reached cache-miss reduction can
eventually lead to an execution-time improvement (up to 30%).
Indeed, the Figure 3a confirms that the 1D data layout fits
poorly to caches once a matrix line exceeds the size of a cache
line (128 Bytes): a line of the matrix will most likely cross
different cache lines leading to reject part of a matrix line while
the algorithm still needs to access it.
Meanwhile, Figure 3c and Figure 3d show the clear advantage
of using optimizations based on cache-alignment when dealing
with multi-dimensional data structures (orange curve com-
pared to the blue one). Furthermore, these figures show how
transposing arrays (from row-major to column-major) allowed
us to significantly reduce cache-misses when a matrix-line
exceeds a cache line size (128 Bytes). In this case, returning
from the end to the beginning of a matrix-line leads to consider
a new cache line; which is likely to have been fetched-out.

5.3 Using the Models
to Choose Software Optimizations

0 20 40 60 80
aj in [0, 3C]

1

2

3

4

5

6

# 
ca

ch
e 

m
iss

Cache Miss (model)

Figure 4: Number of cache misses triggered while se-
quentially accessing a single column (at the address
𝑎𝑗) of a matrix stored within a 2D data-layout using
a cache line of size 𝐶=32 (Bytes). The array contains
𝑁 = 10 cells of size 𝐷 = 2 (Bytes) each. The consid-
ered allocator (ptmalloc) allocates blocks with a size
multiple of 𝐵=16, containing a tail of size 𝑇 =8 bytes.

The model presented in Equation 2 shows that for a ma-
trix stored within the presented 1D data structure, ∀𝑎0 ∈

[0,𝐶−1],𝑛* belongs to [𝑁𝐷
𝐶

,𝑁𝐷−1
𝐶

+1]. Thus, any optimiza-
tion based on memory alignment (changing the value of 𝑎0)
regarding such a data layout would at most bring a gain of 1
cache miss; which is insignificant compared to the total cache
miss number which is in order of magnitude of 𝑁 8

√
𝑁 (see

Equation 4).

On the contrary, for a matrix stored within the presented
2D data-layout, memory alignment may bring a cache-miss
improvement in an order of magnitude of 𝑁 . Indeed, Figure 4
shows that by selecting an ideal address 𝑎𝑗 for a line 𝑗 of a
matrix, we may gain 𝑖 cache-misses while exploring it (with
𝑖=5 cachemisses in the conditions of Figure 4). More generally,
we show using Abel ’s theorem that this improvement 𝑖 is in
𝑂( 𝐶

𝑁*𝐷2 ). Given that the size of the basic blocks used by the
considered memory allocator is unique, the distance between
two arrays allocated consecutively is unique. Consequently,
this cache-miss improvement is identical for the𝑁 arrays of the
matrix. Hence the 𝑁 *𝑖 cache-miss improvement for exploring
the N arrays of the matrix.
It is noteworthy that in the case of operands for matrix mul-
tiplication, this number is in order of magnitude of 𝑁2 given
that each line (respectively column) is explored 𝑁 times.

5.4 Extension of the Modeling
to TLB-Misses and Date Prefetcher

For the sake of simplicity, we consider, in this paper, the number
of data-cache misses as a direct cause of performance down-
grade.We show onmost of our experimental results in section 5
the validity of such an assumption. However, we acknowledge
the fact that this relation is not always straight-forward. For
instance, Figure 5 presents an experimental assessment of a
multitreaded implementation of matrix multiplication, com-
paring two different 2D data layouts. We conclude from this
figure that the cache-misses and cycle-counts are not always
correlated. Our guess is that the prefetcher is responsible for
many useless cache misses while miss-predicting addresses.
This would principally explain the fact that our model is
most often underestimating the experimental number of cache
misses. As a future work, we are thus considering two ap-
proaches to deal with this experimental gap.
On one hand, we are trying to propose an experimentalmethod-
ology to model the behavior of the prefetcher regarding our
data-access pattern.
On the other hand, we are trying to propose a new data lay-
out that would try to ease the pattern-detection work of the
prefetcher. It is mainly based onmulti-dimensional data-layout
(to enhance modularity regarding parallelization) that would
aggregate as much payload blocks as possible. The objective
being to increase the linearity of addresses accessed sequen-
tially.

5The algorithm subdivides the result-matrix in 𝑇 2 (𝑇 : number of
threads) sub-matrices (see Figure 5d). A thread 𝑖 is in charge of the

𝑖𝑡ℎ column of sub-matrices. This thread accesses its corresponding
sub-matrices sequentially starting from the one at height 𝑖.
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(a) LLC cache misses: comparing 1D and 2D data layout
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(b)Total number of cycles: comparing 1Dand2Ddata layout
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(c) LLC cache misses: comparing 2D data layout optimiza-

tions
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(d) Total number of cycles: comparing 2D data layout opti-
mizations

Figure 3: Experimental comparison, according to LLC cache miss and CPU cycles, of a matrix-multiplication
implementation using 4 different data layout: 1D array, simple 2D array, 2D array with blocks aligned with cache
lines and 2D array with blocks aligned with cache-lines and transposed first operand and result matrix.

Meanwhile, data and instruction caches are not the only
one to suffer from contention, nor the only one that may
lead to an important time overhead. Indeed, given the rising
complexity of OS-pagination systems6 [6], more and more
contention is applied to TLB. In this context, Figure 5 shows
the impact of TLB-misses (Figure 5b) on the performance
(Figure 5a) of amultithreaded implementation of the algorithm
Figure 5d. Indeed, we can notice that the execution time is
much more correlated with the experimental number of TLB
misses than the number of L3misses. The impact of TLB-based
optimization may thus be more relevant in such a work-case
than focusing on data caches.

6 CONCLUSION

In this paper, we introduced amethodology to predict the num-
ber of data-cache misses triggered while accessing a matrix fol-
lowing the naive multiplication or convolution algorithms. We
used the generated models to validate or reject some families
of software optimization, regarding the software-parameters
that they consider: memory alignment, memory clustering and
data-layout projection. In the context of software-optimization

6We mainly refer to the rising number of address-accesses needed to
transform virtual to physical addresses

decision, we showed how our generated models can be more
accurate then the existing worst-case or roof-line models: they
allow to predict performance-trends regarding the considered
hardware parameters and the access pattern.
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