Riyane Sid Lakhdar
email: riyane.sidlakhdar@cea.fr

Henri-Pierre Charles
email: henri-pierre.charles@cea.fr

Maha Kooli
email: maha.kooli@cea.fr

Toward Modeling Cache-Miss Ratio for Dense-Data-Access-Based Optimization

Adapting a source code to the specificity of its host hardware represents one way to implement software optimization. This allows to benefit from processors that are primarily designed to improve system performance. To reach such a software/hardware fitting without narrowing the scope of the optimization to few executions, one needs to have at his disposal relevant performance models of the considered hardware. This paper proposes a new method to optimize software kernels by considering their data-access mode. The proposed method permits to build a data-cache-miss model of a given application regarding its specific memory-access pattern. We apply our method in order to evaluate some custom implementations of matrix data layouts. To validate the functional correctness of the generated models, we propose a reference algorithm that simulates a kernel's exploration of its data. Experimental results show that the proposed data alignment permits to reduce the number of cache misses by a factor up to 50%, and to decrease the execution time by up to 30%. Finally, we show the necessity to integrate the impact of the Translation Lookaside Buffers (TLB) and the memory prefetcher within our performance models.

INTRODUCTION

Over the last few decades, each new generation of hardware (HW) platform overcame the former one by introducing a brand new approach for memory storage or computation. This has led High-Performance-Computing (HPC) developers to have a very large set of potential software (SW) optimizations methods applicable to their code. However, the considered HW platforms are very heterogeneous in terms of Instruction Set Architecture (ISA), registers and memory hierarchy. Consequently, the most commonly-used SW optimizations are specific to the family of the given host HW. As an example, for a simple matrix multiplication application, [START_REF] Hennessy | A New Golden Age for Computer Architecture[END_REF] provides a set of SW optimizations that may be implemented and the corresponding gain. We note from this example that the code-efficiency is reached at the expense of its portability, i.e. through code specialization and using hardware-specific instructions. Thus, porting a given source code to a new family of HW and benefiting from its performance may require an important engineering effort.

The objective of our study is to walk a first step toward automatic code-adaptation of a given SW kernel to its specific host HW. In this paper, we present a custom method to estimate the data-cache-miss ratio depending on HW parameters related to the memory hierarchy (e.g. cache-line size, number of cache lines). The generated estimation depends also on some OS-related parameters such as the memory-allocation policy. The proposed method is specifically designed to be embedded within a SW platform to automatically detects the adequate code optimizations to apply to a given source code. The objective being to make it fit specifically its host HW. To illustrate our method, we consider the example of matrices accessed through memory-patterns similar to simple matrix multiplication and convolution algorithms [START_REF] Oneil | Convolution operators and 𝐿(𝑝, 𝑞) spaces[END_REF]. We consider matrix lines and columns that have been dynamically allocated (within the heap of the process). We assume that the data-caches implement the "least-recently used" (LRU) cache-replacement policy. No assumption is made on the cachewrite policy. Using the generated models, we pick the ideal data-layout implementation for the considered kernel. This allows to reduce the number of cache misses by a factor up to 50%, and to decrease the execution time up to 30%. It is noteworthy that our objective is not to propose a new matrix multiplication or convolution algorithm. Other specialized implementations and libraries ([START_REF] Tomov | Magma library[END_REF], [START_REF] Frigo | FFTW: An adaptive software architecture for the FFT[END_REF] and [START_REF] Daniele | A basic linear algebra compiler for structured matrices[END_REF]) exist and are proven to reach peak performance. However, we pick this example as a visual way to illustrate our general-purpose method.

The rest of the paper is organized as follows. Section 2 discusses the state-of-the-art. Section 3 provides a background on data-layout families to store matrices. Section 4 details the proposed method to build a data-cache-miss model parametrized. Section 5 experiments the performance-interest of the matrix data-layouts. Finally, section 6 concludes the paper.

STATE OF THE ART

Code optimization is a potentially endless topic in modern computer science. Various research solutions have been widely studied, ranging from just-in-time compilation [START_REF] Mccarthy | History of LISP[END_REF] to polyhedral compilation [START_REF] Benabderrahmane | The polyhedral model is more widely applicable than you think[END_REF] and source-to-source transformation [START_REF] Cronsioe | BOAST: Bringing optimization through automatic source-to-source transformations[END_REF]. We group some of these solutions in Table 1 and classify them according to their leverage point within an application's life cycle. We note from this table that the ecosystem of SW optimization is highly detached from HW consideration. No particular attention is given to the specificity of the host hardware.

Algorithm Source Code

Compilation (static)

Compilation (dynamic) Post- mortem FFTW [9] X X X JIT [13] X X X Magma [17] X X deGoal [3] X X X LGen [16] X X X BOAST [7] X X X Polyhedral com- pilation [2] X X
Table 1: Classification of existing code-optimization solution according to their leverage-point on source code Meanwhile, code specialization to a specific host hardware is still a barely-explored way of code optimization. The evidence lies in the fact that most existing hardware-performance models, which are crucial for such a approaches, are hardly exploitable in automatic SW optimization. The example of the roofline model [START_REF] Williams | Roofline: An insightful visual performance model for floating-point programs and multicore architectures[END_REF] is representative of this trend. Indeed, this model is a couple of constant thresholds the performance of a kernel can not exceed. Thus, it cannot be used to spot the hardware parameters (such as the cache sizes, associativity or replacement policy) that may influence most the kernel's performance. Our aim through this paper is to propose a method to build cache-miss models that exhibits a higher correlation between the source-code performance and the host-hardware characteristics. To the best of our knowledge, the closest data-cache-miss modeling methods similar to our work are proposed in [START_REF] Zhong | Miss rate prediction across program inputs and cache configurations[END_REF] and [START_REF] Alsaedi | Applying Supervised Learning to the Static Prediction of Locality-Pattern Complexity in Scientific Code[END_REF]. These methods estimate the data-cache-miss model of a program by analyzing its corresponding data-reuse distance (defined as the number of distinct data elements accessed between two consecutive reference to the same element [START_REF] Zhong | Miss rate prediction across program inputs and cache configurations[END_REF]). Unlike our method, these methods exhibit models that do not depend on the considered memory-access pattern of the algorithm but on the input data used during the test execution. Thus, the models generated by these methods are only valid for a specific set of input data.

BACKGROUND: MATRIX DATA-LAYOUTS

When dealing with memory for performance-optimization, two aspects, highly interleaved, need to be considered: the memory layout used for its storage and the pattern followed to access the addresses.

In this section, we give an overview of the data-layout architectures that we have considered. By data-layout we refer to the geometrical shape followed by data-addresses. The datareorganizations that we deploy being at virtual-addresses level.

We also assume memory access patterns similar to common matrix multiplication [START_REF] Thomas H Cormen | Introduction to algorithms[END_REF] and convolution [START_REF] Oneil | Convolution operators and 𝐿(𝑝, 𝑞) spaces[END_REF].

Flattening 2D Structures Within 1D Array

A first way to access a cell (𝑥,𝑦) from a dynamically-declared uni-dimensional line-major matrix array is using equation: @ (𝑥,𝑦) = @ 𝑏𝑎𝑠𝑒 + (𝑥𝑁 + 𝑦)𝐷. Thanks to its simplicity, this method allows to access a cell (at address @ (𝑥,𝑦)) in roughly one computation and only one memory access (assuming that the initial address @ 𝑏𝑎𝑠𝑒 of the array and the values of 𝑥 and 𝑦 are stored within processor-registers). Furthermore, keeping cells that belong to contiguous lines within the same block of addresses contributes to cache and page locality. Indeed, a residual from a matrix line (fetched within the caches) has a high probability to be used immediately afterward if it contains the following matrix line. It also leads to a high prediction-hit ratio for the prefetcher by creating a high regularity within the accessed addresses.

Given the growing impact of memory wall, this high locality and relatively-reduced number of memory-accesses represents an interesting performance advantage. The main limitation of this uni-dimensional data-layout family is related to the lack of scalability with respect to the number of concurrent threads.

The relative proximity between addresses belonging to independent lines increases their probability to be set within the same cache-line. Accessing these addresses concurrently would thus trigger false sharing [START_REF] Ghane | False sharing detection in OpenMP applications using OMPT API[END_REF], which may increase the access time by up to 100 CPU cycles. Most methods ([START_REF] Riyane | On the Impact of Asynchronous I/O on the performance of the Cube re-mapper at High Performance Computing Scale[END_REF] and [START_REF] Wesley | The page fault frequency replacement algorithm[END_REF]) proposed to reduce false sharing are based on memory alignment. Thus, they can not be applied to the current data layout without prohibitively increasing its memory-access cost.

Multidimensional Matrix Storage

A second way to store a dynamically-declared matrix is using a multidimensional array. Each cell of the array is a pointer to either a payload-data array (Figure 1a) or a pointer to another pointer's array (Figure 1). Each array (from each dimension) is dynamically allocated independently from the others. Similar principles are used by the java implementation of N-dimensional data layouts.

The main advantage of using a multidimensional matrix storage is its modularity. The data may be split with respect to any dimension (projection on hyper plans) in order to fit an ideal workload distribution among threads or to suite the hardware and OS specifications (cache line size, virtual page size or process-fork buffer). Figure 1 shows how adapting the datalayout according to the access pattern helps to significantly reduce the number of cache misses. We may thus improve scalability with respect to the workload, number of threads1 and hardware dimensions.

Cache-line size

Matrix A Matrix B In the rest of this paper and for the sake of clarity, we will always consider multidimensional matrices as line-major. We will also assume a line-major exploration.

Matrix res

Memory-access pattern

PROPOSED DATA-CACHE-MISS MODEL

In this section, we propose a method to accurately model the number of data-cache misses triggered while accessing each family of data-layout presented in section 3. The objective being to highlight the parameters (such as data alignment or block subdivision) that may have a significant impact on data-cache misses (when dealing with access-pattern similar to matrix multiplication and convolution).

Data-Cache-Miss Modeling on a 1D Memory Block

The data of the considered kernels is accessed sequentially. Consequently, the proposed method to build a cache-miss model is to first consider a simple 1D array of 𝑁 elements at the address 𝑎0 and where each element is of size 𝐷 bytes. The data are being fetched within a cache made of 𝐶 𝑡𝑜𝑡𝑎𝑙 lines where each one is of size 𝐶. Throughout all our modeling process, we assume that all this constants belong to N * (set of purely-positive natural numbers).We also assume that the array has not been covered yet (hence it is not present in the considered cache).

The number 𝑛0 of cache-misses triggered while accessing the array sequentially is given by Equation 1 (the notation 𝑎0[𝐶] refers to the rest of the euclidean division of 𝑎0 by 𝐶).

𝑛0 = 1+ ⌈︂ 𝑁 𝐷-(𝐶 -𝑎0[𝐶]) 𝐶 ⌉︂ (1)
Accessing one byte at an address 𝑎0 leads to fetch the corresponding data at a position 𝑎0)) by the size of one chunk (𝐶). We then take the ceiling of the result to consider the case where the last chunk of the array is smaller than 𝐶.

In the context of simple matrix multiplication or convolution, a line 𝑗 of the matrix is generally browsed after the previous one 𝑗 -1. Given the previously described functioning of a cache, this results in an initial part 𝐿𝑗 (bytes) of the array 𝑗 being pre-loaded at the time we start accessing it. The Equation 2 shows how we have introduced this new parameter within the proposed cache-miss model in order to evaluate 𝑛𝑗 (number of cache misses triggered while exploring the 𝑗 𝑡ℎ matrix line). This is achieved by reducing the total number of bytes 𝑁 𝐷 by 𝐿𝑗. We also increment the initial address 𝑎𝑗 of the 𝑗 𝑡ℎ line of the matrix by the same value.

𝑛𝑗 = ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 0 if 𝐿𝑗 ≥ 𝑁 𝐷 1+ ⌈︂ 𝑁 𝐷-𝐿𝑗 -(𝐶 -(𝑎𝑗 +𝐿𝑗)[𝐶]) 𝐶 ⌉︂ = ⌈︂ 𝑁 𝐷+𝑎𝑗 𝐶 ⌉︂ - ⌊︂ 𝑎𝑗 +𝐿𝑗 𝐶 ⌋︂ if 𝐿𝑗 < 𝑁 𝐷 (2)
Finally, and for the same time-proximity reason, it is important that we know how much residual bytes 2 from a line of a matrix are loaded with each line. In Equation 3, we determine the model of that residual 𝑟𝑗 for a given line 𝑗 using the same kind of reasoning on the cache-fetch and positioning.

𝑟𝑗 = ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ 0 if 𝐿𝑗 ≥ 𝑁 𝐷 𝐶 -(𝑁 𝐷+𝑎𝑗 -1)[𝐶]-1 = 𝐶 ⌊︂ 𝑁 𝐷+𝑎𝑗 -1 𝐶 +1 ⌋︂ -𝑁 𝐷-𝑎𝑗 if 𝐿𝑗 < 𝑁 𝐷 (3)

Extension of the Data-Cache-Miss Model to a 2D Memory Blocks

In the subsection 3.1, we considered the case where a matrix is stored within a 1D data layout. The number 𝐿𝑗 of bytes already located in the cache when we start exploring the line 𝑗 is exactly the number of residual bytes 𝑟𝑗-1 of data loaded while fetching the line 𝑗 -1. Equation 4 gives the total number 𝑛 * of cache misses triggered during a multiplication of matrices stored within a 1D data layout. We obtain this formula by first replacing 𝐿𝑗 by the expression of 𝑟𝑗-1 in Equation 2(using an initial value 𝐿0 = 0). We then replace the address 𝑎𝑗 by 𝑎0 +𝑗𝑁 𝐷. Finally, we use Weyl 's criterion applied to rational numbers in order to sum the cache misses for each column.

𝑛 1𝐷 𝑗 = ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ ⌈︂ 𝑁 𝐷+𝑎0 𝐶 ⌉︂ - ⌊︁ 𝑎0 𝐶 ⌋︁ if 𝑗 = 0 ⌈︂ 𝑁 𝐷(𝑗 +1)+𝑎0 𝐶 ⌉︂ + ⌈︂ 1-𝑁 𝐷(𝑗 +1)-𝑎0 𝐶 -1 ⌉︂ 𝑛 * = 𝑗=0 ∑︁ 𝑁 𝑛 1𝐷 𝑗 = 𝑁 * 8 √︂ 𝑁 𝐷+1 𝐶 -1+𝑂(1) (4)
In this section, we consider matrices stored within 2D arrays (as shown in subsection 3.2); the number 𝐿𝑗 of pre-fetched bytes for a line 𝑗 is no longer the number of residual bytes 𝑟𝑗-1 3 . In order to represent 𝐿𝑗, we need to model, for the given memory allocator, the distance between two consecutively allocated lines of the matrix. In this context, we have considered ptmalloc (version 2.19), the heap allocator based on Dong Leas Malloc algorithm that has become the default Linux GLIBC implementation [START_REF] Häggander | Optimizing dynamic memory management in a multithreaded application executing on a multiprocessor[END_REF]. As shown on Figure 2, a memory block (also known as basic block) allocated using the malloc function of ptmalloc has a size that is a multiple of 𝐵, where 𝐵 is usually equal to 8 or 16 depending on the processor architecture. The returned block contains a reserved section (tail) of size 𝑇 = 8 Bytes at its end. It is also allocated at an address that is a multiple of 𝐵 (however the payload data maybe shifted within the basic block).

Allocating an array of size 𝑁 𝐷 dedicates a basic block of size 𝑘𝐵 where 𝑘 is the smallest strictly positive integer such that 𝑘𝐵 ≥ 𝑁 𝐷+𝑇 > (𝑘-1)𝐵 (hence 𝑘 = ⌈︀ 𝑁 𝐷+𝑇 𝐵

⌉︀

). Consequently, the distance 𝐷𝑗 between two arrays of size 𝑁 𝐷 allocated consecutively is 𝐷𝑗 = 𝑘𝐵 -𝑁 𝐷 -𝑆 where 𝑆 is the shift of each array within its relative basic block. 2 Residual is the number of bytes that do not belong to a given line but that are fetched along with it into the cache. In Equation 5we have estimated the number pre-fetched bytes 𝐿𝐽 for an array 𝑗 of a matrix. It is obtained by retaining the distance 𝐷𝑗 from the number of residual bytes 𝑟𝑗-1 of the previous array 𝑗 -1.

𝐿𝑗 = ⎧ ⎪ ⎨ ⎪ ⎩ 0 if 𝑗 = 0 or 𝐷𝑗 > 𝑟𝑗-1 𝑟𝑗-1 -(𝑘𝐵 -𝑁 𝐷-𝑎𝑗-1[𝑘𝐵]) else (5)
By injecting the expression of 𝐿𝑗 into the general expression of 𝑛𝑗 (see Equation 2), we obtain the number of cache misses 𝑛 2𝐷 𝑗 triggered while exploring a line of a matrix stored within a 2D data layout:

𝑛 2𝐷 𝑗 = ⌈︂ 𝑁 𝐷+𝑎𝑗 𝐶 ⌉︂ - ⌊︂ 𝑎𝑗 -𝑘𝐵 +𝑎𝑗-1[𝑘𝐵] 𝐶 ⌋︂ + ⌊︂ 𝑁 𝐷-1 𝐶 +1 ⌋︂ (6)

RESULTS AND DISCUSSION

In this section, we experiment the correctness and the accuracy of the generated performance-models. In this paper, the accuracy refers to how precisely a model allows to spot the parameters (WH, SW and OS related) that may significantly influence the performance of the corresponding kernel. In fact, our objective is to find such parameters for a given source-code in order to tune them. Any further understanding for "accuracy" is not relevant for our approach of SW optimization. Consequently, we compare non of the cache-miss models that our method generates with experimental evaluations.

Experimental setup

All the presented performance results are obtained following the same experimental protocol. Each considered point is assessed (experimental run) 10 times 4 . The corresponding values that we present in Figure 3 and Figure 5 are the average of the results of these 10 runs. It is noteworthy that all the performance gain that we show has been obtained without changing the original algorithm nor re-ordering the instructions. All the performance experimentations have been processed on an x86 HW architecture implementing an Intel Xeon E3-1270 v4 processor with a l3 cache (LLC) containing a total of 8M Bytes made of 128 Bytes per cache line and implementing the LRU cache-replacement policy. A Debian (4.9.2) operating system has been used based on the Linux (3.16.0-4) kernel. The g++ (4.9.2) compiler (with the -03 optimization option) has been used to compile the considered computation-kernels (matrix multiplication) and matrix data structures. The Perfmon2 library [START_REF] Eranian | Perfmon2: a flexible performance monitoring interface for Linux[END_REF] has been used to access the performance management unit of the processor in order to measure different cache misses and CPU cycles.

Experimental Impact of Data Layout on Performance

In this section, we present an experimental evaluation of three custom implementations of the data layouts introduced in section 3. In Figure 3, we show how a proper alignment of the matrix lines (respectively columns) along with a proper orientation the matrix majors (according to the access pattern) allowed us to reduce the number of cache misses by a factor up to 50%. We also show how the reached cache-miss reduction can eventually lead to an execution-time improvement (up to 30%). Indeed, the Figure 3a confirms that the 1D data layout fits poorly to caches once a matrix line exceeds the size of a cache line (128 Bytes): a line of the matrix will most likely cross different cache lines leading to reject part of a matrix line while the algorithm still needs to access it. Meanwhile, Figure 3c and Figure 3d show the clear advantage of using optimizations based on cache-alignment when dealing with multi-dimensional data structures (orange curve compared to the blue one). Furthermore, these figures show how transposing arrays (from row-major to column-major) allowed us to significantly reduce cache-misses when a matrix-line exceeds a cache line size (128 Bytes). In this case, returning from the end to the beginning of a matrix-line leads to consider a new cache line; which is likely to have been fetched-out. The model presented in Equation 2shows that for a matrix stored within the presented 1D data structure, ∀𝑎0 ∈ [0,𝐶 -1],𝑛 * belongs to [𝑁 𝐷 𝐶 , 𝑁 𝐷-1 𝐶 +1]. Thus, any optimization based on memory alignment (changing the value of 𝑎0) regarding such a data layout would at most bring a gain of 1 cache miss; which is insignificant compared to the total cache miss number which is in order of magnitude of 𝑁 8 √ 𝑁 (see Equation 4).

Using the Models to Choose Software Optimizations

On the contrary, for a matrix stored within the presented 2D data-layout, memory alignment may bring a cache-miss improvement in an order of magnitude of 𝑁 . Indeed, Figure 4 shows that by selecting an ideal address 𝑎𝑗 for a line 𝑗 of a matrix, we may gain 𝑖 cache-misses while exploring it (with 𝑖 = 5 cache misses in the conditions of Figure 4). More generally, we show using Abel 's theorem that this improvement 𝑖 is in 𝑂(𝐶 𝑁 *𝐷 2). Given that the size of the basic blocks used by the considered memory allocator is unique, the distance between two arrays allocated consecutively is unique. Consequently, this cache-miss improvement is identical for the 𝑁 arrays of the matrix. Hence the 𝑁 *𝑖 cache-miss improvement for exploring the N arrays of the matrix. It is noteworthy that in the case of operands for matrix multiplication, this number is in order of magnitude of 𝑁 2 given that each line (respectively column) is explored 𝑁 times.

Extension of the Modeling to TLB-Misses and Date Prefetcher

For the sake of simplicity, we consider, in this paper, the number of data-cache misses as a direct cause of performance downgrade. We show on most of our experimental results in section 5 the validity of such an assumption. However, we acknowledge the fact that this relation is not always straight-forward. For instance, Figure 5 presents an experimental assessment of a multitreaded implementation of matrix multiplication, comparing two different 2D data layouts. We conclude from this figure that the cache-misses and cycle-counts are not always correlated. Our guess is that the prefetcher is responsible for many useless cache misses while miss-predicting addresses. This would principally explain the fact that our model is most often underestimating the experimental number of cache misses. As a future work, we are thus considering two approaches to deal with this experimental gap. On one hand, we are trying to propose an experimental methodology to model the behavior of the prefetcher regarding our data-access pattern.

On the other hand, we are trying to propose a new data layout that would try to ease the pattern-detection work of the prefetcher. It is mainly based on multi-dimensional data-layout (to enhance modularity regarding parallelization) that would aggregate as much payload blocks as possible. The objective being to increase the linearity of addresses accessed sequentially. Meanwhile, data and instruction caches are not the only one to suffer from contention, nor the only one that may lead to an important time overhead. Indeed, given the rising complexity of OS-pagination systems 6 [6], more and more contention is applied to TLB. In this context, Figure 5 shows the impact of TLB-misses (Figure 5b) on the performance (Figure 5a) of a multithreaded implementation of the algorithm Figure 5d. Indeed, we can notice that the execution time is much more correlated with the experimental number of TLB misses than the number of L3 misses. The impact of TLB-based optimization may thus be more relevant in such a work-case than focusing on data caches.

CONCLUSION

In this paper, we introduced a methodology to predict the number of data-cache misses triggered while accessing a matrix following the naive multiplication or convolution algorithms. We used the generated models to validate or reject some families of software optimization, regarding the software-parameters that they consider: memory alignment, memory clustering and data-layout projection. In the context of software-optimization

Figure 1 :

 1 Figure 1: Memory access pattern and cache misses of matrix multiplication (naive algorithm) on three different implementations of a matrix stored on multidimensional data layout.

 [𝐶] within a cache line. The rest of the cache line being populated with the data at the addresses surrounding 𝑎0. Consequently, at the initial data access (address 𝑎0), 𝐶 -𝑎0[𝐶] bytes from the array are fetched into the cache. The next data access to trigger a cache miss (𝑎0 + 𝐶 -𝑎0[𝐶]) will thus be aligned with a cache-line size 𝐶 (because 𝑎0 + 𝐶 -𝑎0[𝐶] ≡ 0(𝑚𝑜𝑑𝐶)). Then, the data are fetched by chunks of size 𝐶 bytes. The number of fetch processed is found by dividing the number of remaining bytes after the first access (𝑁 *𝐷 -(𝐶 -𝑎0[𝐶]

3 1 @Figure 2 :

 312 Figure 2: Example of two blocks of size P Bytes allocated using ptmalloc: Basic block of size multiple of B and reserved section of size T Bytes.

Figure 4 :

 4 Figure 4: Number of cache misses triggered while sequentially accessing a single column (at the address 𝑎𝑗) of a matrix stored within a 2D data-layout using a cache line of size 𝐶 = 32 (Bytes). The array contains 𝑁 = 10 cells of size 𝐷 = 2 (Bytes) each. The considered allocator (ptmalloc) allocates blocks with a size multiple of 𝐵 = 16, containing a tail of size 𝑇 = 8 bytes.

Figure 3 :

 3 Figure 3: Experimental comparison, according to LLC cache miss and CPU cycles, of a matrix-multiplication implementation using 4 different data layout: 1D array, simple 2D array, 2D array with blocks aligned with cache lines and 2D array with blocks aligned with cache-lines and transposed first operand and result matrix.

 Data TLB: store cache misses

Figure 5 :

 5 Figure 5: Experimental comparison of two implementations of a multithreaded version of matrixmultiplication 5 running 7 threads pinned on independent CPU cores and using 2 different data layouts: simple 2D array and 2D array with blocks aligned with cache-lines and transposed first operand and result matrix.

It would for instance help implement the previous solutions for false sharing

Between two consecutive experimentations, we make sure to flush all the considered data-caches using the CFLUSH instruction from the ISA of our Intel processor

The algorithm subdivides the result-matrix in 𝑇 2 (𝑇 : number of threads) sub-matrices (see Figure5d). A thread 𝑖 is in charge of the 𝑖 𝑡ℎ column of sub-matrices. This thread accesses its corresponding sub-matrices sequentially starting from the one at height 𝑖.

We mainly refer to the rising number of address-accesses needed to transform virtual to physical addresses decision, we showed how our generated models can be more accurate then the existing worst-case or roof-line models: they allow to predict performance-trends regarding the considered hardware parameters and the access pattern.