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Abstract

Low power wide area (LPWA) wireless networks based on the LoRa physical layer have attracted

huge attention in recent years, both from industry and from academic researchers. While this rising

popularity is due to this technology’s demonstrated effectiveness and low cost, unfortunately, due to their

complexity, the timing and frequency synchronization algorithms required to detect LoRa-modulated

frames, in the context of minimum sampling rate optimum receivers, have received little attention. The

aim of this paper is to fill this gap and describe how robust frame detection can be performed while

focusing on minimal complexity implementations of the proposed algorithms. The ultimate goal is to

propose frame detection techniques applicable to recently proposed ultra-low power software-defined

receivers.
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I. INTRODUCTION

Low power wide area (LPWA) wireless networks are gaining large-scale industrial acceptance

and enabling new smart applications in verticals such as transportation, health, industry and

agriculture. With an expected shipment of 350 million compatible nodes in 2022, and with a

large number of compatible gateways already deployed on a global scale, LoRa (short for “Long

Range”) is an increasingly popular modulation scheme for LPWA communications [1]. This

growing popularity has, in its turn, spurred a quick reaction from the research community. Indeed,

a recent review of research work published from 2015 to September 2018 and concerning either

LoRa or LoRaWAN, a medium access control (MAC) communication protocol based on the

LoRa physical layer, shows that approximately 2000 papers have been published in this short

time, clearly demonstrating the importance of this new technology to the research community

[2]. A non exhaustive list of LoRa and LoRaWan-based research includes areas such as physical

layer evaluation in the presence of interference, coverage tests, capacity evaluation, models for

network level simulators and applications and deployments.

The fact that LoRaWAN’s specifications are available in open access has clearly been beneficial

to the research community. On the contrary, many details about the LoRa physical layer itself

remain trade secrets. However, the importance of LoRa in the LPWA landscape prompted efforts

in the IoT research community to reverse engineer the LoRa physical layer and share this

information publicly [3][4][5][6]. A better understanding of the LoRa modulation format indeed

enables new research activities such as the development of new localization algorithms, the

development of accurate physical-layer models, the evaluation of potential security breaches,

and the invention of further physical layer improvements.

Another motivation for gaining a better understanding of the LoRa physical layer is the

development of LoRa-compatible demodulation software for recently proposed ultra-low power

software defined radios (ULP-SDR) [7][8][9]. Indeed, compared to today’s commodity IoT

transceivers which are mostly implemented in hardware, software-based wireless transceivers

enable the implementation of different physical layers on the same hardware. With the uncertain

evolution of LPWA networks and standards, software transceivers also minimize development



SUBMITTED PAPER 3

cost, enable multi-standard and multi-mode applications and future-proof integrated circuit de-

signs. Finally, software transceivers also make it possible to develop precise link quality infor-

mation extraction algorithms directly within the receiver’s digital baseband [10][11].

Unfortunately, while the rising popularity of LoRa-based technology is clearly due to its

accessibility, i.e. low cost and simplicity of deployment, the signal processing required to recover

LoRa modulated signals is, on the contrary, relatively complex. Using the terminology proposed

in [12], LoRa employs a Frequency Shift Chirp Modulation (FSCM) in which the information

is encoded by a frequency shift applied to a constant chirp rate symbol (a chirp is a frequency

modulated signal). Before being able to demodulate the received symbols and recover the data, a

LoRa receiver must also compensate for sampling, carrier frequency and symbol timing offsets

that are due to unsynchronized timing references between the transmitter and the receiver. To

date, little work has been published concerning the frame synchronization procedure for FSCM-

modulated frames, and for LoRa frames in particular.

The purpose of this paper is to contribute to the understanding of the preamble and start-

of-frame synchronization requirements of FSCM signalling schemes. In view of a potential

implementation on an ULP-SDR receiver, the focus of this paper is on low complexity frame

synchronization algorithms. In particular, we explain how the use of both up and down base

modulated chirps within the frame’s preamble is used to resolve integer symbol timing and

carrier frequency offset ambiguity. From this, we deduce the maximum carrier frequency offset

(CFO) that can be tolerated by the receiver. We provide simulation and measurement results

showing the relationship between number of received preamble symbols and both frame detection

performance and fractional CFO estimation error. Finally, we propose several ideas for lowering

the complexity of certain synchronization mechanisms, such as the detection of data sample start

time.

This paper is organized as follows: We start in Section II by a mathematical description of the

FSCM modulation and its frame synchronization requirements assuming Nyquist rate reception.

We also give two fundamental synchronization algorithms. In Section III, we discuss related

work on FSCM frame synchronization. Section IV is specifically dedicated to the detection of

LoRa modulated frames. Finally, Section V proposes a number of ideas for implementing new,
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Fig. 1. Annotated spectrogram of an example LoRa signal (with settings SF=11, BW=125 kHz) Reproduced with permission

from [3].

low complexity synchronization algorithms for FSCM, in particular in the light of upcoming

ULP-SDR transceivers.

II. FSCM MODULATION

Digital communication schemes based on linear frequency modulated (i.e. linear chirp) signals

have been in use for many years in applications ranging from military communications to short-

range personal area networks [13][14]. While past modulation schemes encoded information

either by varying the chirp rate, i.e. the rate at which the RF carrier frequency is varied, between

a set of possible values or by using two signals with opposite chirp rates (often named up-chirps

and down-chirps), in the LoRa physical layer, the information bearing element is a frequency

shift applied at the beginning of each constant rate chirp. Thus, the name frequency shift chirp

modulation (FSCM) assigned to the LoRa modulation by [12].

The FSCM modulation employed in the LoRa signalling scheme is an orthogonal modulation

with symbols encoded using a set of N cyclically shifted versions of a base Zadoff-Chu (ZC)

sequence. The general expression for ZC sequences is defined as follows [15]:

uM [k] =


e
jπ.M.k(k+1)

N , k = 0, 1...N − 1 if N is odd

e
jπ.M.k2

N , k = 0, 1...N − 1 if N is even.
(1)

If M and N are relatively prime, i.e. gcd(M,N) = 1, the auto correlation of a ZC sequence

with all N − 1 cyclically shifted versions of itself is zero for all values of n different from zero:
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RMM [n] =
1

N

N−1∑
k=0

uM [k]uM [(k + n) mod N ]∗ =


1 for n = 0

0 for n 6= 0

(2)

In order to simplify the extraction of the modulation value from of the set of N cyclicly-shifted

versions of a root (also called base) ZC sequence, B[k], it is advantageous to choose M = 1.

Adjusting this base sequence such that its normalized frequency covers the span [−0.5, 0.5], we

define B[k] as follows:

B[k] = ej2π(
k2

2N
− k

2
), k = 0, .., N − 1 (3)

This signal corresponds to a linear frequency modulated signal with frequency slope, or chirp

rate, equal to 1/N and with an initial normalized frequency of -0.5. N sequences, SN0 [k] with

N0 = 0, .., N − 1, are produced through N cyclic shifts of B[k]:

SN0 [k] = e−jπN0(N0/N−1)B[(k +N0) mod N ], k = 0, .., N − 1 (4)

In the above equation, the exponential term is necessary to set each symbol’s initial and final

phase to zero, enabling a continuous phase modulation. This equation simplifies to [16]:

SN0 [k] = ej2π(
k2

2N
+k(

N0
N
− 1

2
)), k = 0, .., N − 1 (5)

If a signalling bandwidth of size BW is allocated to the system, the minimum sampling

frequency, fsmin , is equal to BW .

A. FSCM demodulation in ideal synchronization conditions

Assuming perfect time and frequency synchronization, optimum non coherent demodulation is

performed by first multiplying the received symbol SN0 [k] by the conjugate of the base sequence:

SN0 [k]B
∗[k] = ej2πk

N0
N , k = 0, .., N − 1 (6)

The symbol value N0 is extracted from the resulting constant frequency signal using an FFT

and locating the frequency index, referred to as bin in the following, of the peak value of
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Fig. 2. Ideal non-coherent FSCM demodulation performance for N = 2SF and SF = 7, .., 12

the FFT magnitude (an operation referred to as argmax). It is shown in [12] that this is the

optimal receiver. With N possible symbols, a maximum of log2(N) bits can be encoded within

each symbol. Of course, it is always possible to use symbol redundancy to improve the link

robustness, at the cost of information-carrying capacity. The choice of this modulation versus

other modulations commonly employed in LPWA communication schemes (such as BFSK) is

justified by the high energy efficiency (minimum energy per bit versus noise density, Eb/No)

obtained for high modulation orders, as shown on Figure 2 [17].

B. Nyquist-rate receivers

Differently from the reverse engineering efforts mentioned in the introduction and which

employ high sampling rate USRP (Universal Software Radio Peripheral) receivers to capture

LoRa-modulated frames (such as in Figure 1), the IoT context requires transceivers designed

for ultra-low power consumption. Thus, in practical receivers, in order to minimize power

consumption, the down-converted signal is decimated down to its minimum sampling rate fsmin .

In addition, both memory usage and computational complexity of the digital baseband processing

algorithms must be kept to a minimum. Finally, received samples must be processed in close
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to real time in order to minimize delay. The synchronization algorithms discussed in this work

will focus on low complexity, minimum sampling rate receivers.

C. FSCM frame synchronization requirements

Frequency and timing synchronization are difficult to guarantee in practice due to offsets in

the frequency references used by the transmitter and receiver. More precisely, these offsets will

result in:

• a carrier frequency offset, CFO, which can be separated into two components: CFOint

and CFOfrac, which are, respectively, the integer and fractional parts of N × CFO/BW ,

• an initial symbol timing offset, STO, which can be separated into two components: STOint

and STOfrac,

• an ambiguity concerning the (optional) header or payload start time, as discussed in Section

V-F,

• a sampling frequency offset, SFO, which, if uncorrected, will generate an incremental

symbol timing offset,

• and, potentially, since both the transmitter and receiver’s quartz-based references are sus-

ceptible to drifts due, for example, to changes in temperature (drifts on the order of a few

tens of Hz/s are common), a receiver may also have to compensate for changes in the CFO

and SFO. If the RF synthesizer and sampling clocks are generated from the same crystal-

based reference clock, CFO and SFO will suffer from correlated drifts. This effect can

be particularly severe for long frames. Drift compensation methods will not be discussed

in this work.

The impact of CFO and STO is illustrated in Figure 3 in which we observe the frequency

component of the received modulated signal prior to sampling and after sampling at a normalized

rate of 1/N . First, we observe that CFO will shift the signal out of the receiver’s reception

bandwidth, defined by in the interval [−N/2, .., N/2]. Sampling at a normalized minimum rate

of 1/N folds the signal back into the receiver’s input bandwidth which, in Figure 3, has the

effect of reconstructing complete up-chirps. We observe that CFO (measured in Hz) has an

integer and fractional component, CFO = CFOint+CFOfrac. In the example of Figure 3, the
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signal is received with a CFO (vertical shift) equivalent to 3.5 frequency bins. Both CFOint

and CFOfrac must be recovered by the synchronization algorithm. Indeed, as discussed in [18],

at low signal to noise ratios (SNR), CFOfrac will shift the FFT outputs between two integer

frequency bins, resulting in demodulation errors.

Next, in the absence of synchronization, after sampling, the receiver has no way of identifying

the start of the received sequence, resulting in an STO consisting of an integer number of

samples, STOint (with STOint < N ) plus a fraction of a sample, STOfrac. In the example of

Figure 3, the signal is received with an STO (horizontal time shift) equal to 7.2 samples. Recov-

ering STOint is mandatory for correct alignment to the modulated symbols and compensating

for STOfrac is necessary for concentrating the symbol energy within a single FFT bin. Most

importantly, we observe that, simply by extracting the start times of the reconstructed up-chirps,

it is impossible to resolve the timing ambiguity caused by the simultaneous impact of STO and

CFO. Attempting to synchronize the receiver using the reconstructed up-chirps, such as in [16],

will result in limited CFO performance. Nor can this ambiguity be lifted by detecting the start

of the first preamble symbol using a power meter, the signal being often received at low or even

sub-zero SNR conditions.

Next, assuming that both CFO and STO have been completely recovered, it is possible that

an ambiguity concerning the start time of the samples corresponding to the (optional) header

or payload symbols remain, leading to a false synchronization decision and a resulting packet

drop. Resolving this ambiguity in a minimum complexity receiver implementation can represent

a challenge which is discussed in Section V-F.

Finally, Figure 4 shows the impact of SFO on an otherwise perfectly synchronized signal.

In the figure, we observe the effect of a receiver with a slightly higher sampling frequency to

that of the emitter. We observe a cumulative sampling offset which has the effect of slowly

moving the samples off of the desired integer frequency bins. If this offset is not corrected,

the demodulator will start confusing a symbol (identified by its frequency bin) with its next

neighbor. This is an important problem for high order modulations. For example, the highest

order modulation in LoRa has N = 4096. Assuming low cost quartz crystals with a ±20 ppm

precision are used in both emitter and receiver, a potential worse case offset of 40 ppm can
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Fig. 3. Plot of N∗ normalized frequency component of SN0(n) assuming N = 16 and N0 = 0 and for a signal composed of

three up-chirps and two down-chirps. Top: signal received at the antenna suffering from an STO of 7.2 samples and a CFO

of 3.5 frequency bins. Bottom: same signal after sampling at a normalized rate of 1/N (assuming SFO = 0).

lead to a drift of 0.16 sample after a single symbol. While this effect can sometimes be ignored

during preamble acquisition, for example if the preamble is relatively short, this effect must

imperatively be corrected during the demodulation phase of frame detection. An estimation of

SFO can be extracted from CFO if the source of both offsets, the quartz crystal reference, is

identical.

D. Fundamental frame synchronization algorithm

As seen previously, in minimum sampling rate receivers, it is impossible to distinguish between

STO and CFO. Luckily, the presence of both up-chirps and down-chirps in a synchronization
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Fig. 4. Plot of N∗ normalized frequency component of SN0(n) assuming N = 16 and N0 = 0 and for a signal composed

of three up-chirps and two down-chirps. Signal after sampling at a normalized rate of 1/N but with a small SFO (assuming

STO and CFO = 0).

preamble leads to an elegant solution for extracting the integer part of both values. Neglecting

noise, SFO and the fractional parts of both STO and CFO, and assuming that the first part of

the preamble is a base up-chirp, the received signal, r[k], can be written as follows:

r[k] = A× ej2π(
k2

2N
+k(

(N−STOint)
N

− 1
2
)) × ej2πkCFOint/BW+jφo (7)

where φo is the carrier phase offset and A is the signal amplitude. Indeed, integer STO has

the same effect as symbol modulation. Multiplying by the conjugate of B[k] produces:

r[k]×B[k]∗ = A× ej2πk(
CFOint
BW

+
(N−STOint)

N
) × ejφo (8)

Thanks to a Fourier Transform applied on this signal and the extraction of argmax, we can

extract the normalized frequency fup = CFOint/BW + (N − STOint)/N . Now assume that in

a following moment of the preamble, a down-chirp, necessarily suffering from the same CFO

and STO as the previous signal, is received:

r[k] = A× e−j2π(
k2

2N
+k(

(N−STOint)
N

− 1
2
)) × ej2πkCFOint/BW+jφo (9)
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Multiplying by B[k] produces:

r[k]×B[k] = A× ej2πk(
CFOint
BW

− (N−STOint)
N

) × ejφo (10)

Similarly, we extract the normalized frequency fdown = CFOint/BW − (N − STOint)/N .

Thanks to these two equations, the two unknowns, STOint and CFOint, can be estimated

(ŜTOint and ĈFOint). Of course, this assumes that these calculations are applied in the moments

when the receiver knows when to expect up and down chirps.

Interestingly, the above analysis can be used to extract the maximum CFO range that can

be recovered by the receiver. Since fup and fdown are normalized frequencies, they are defined

modulo 1, i.e. any value v exceeding 1 will become v mod 1. Combining the two equations

above, we find that CFOint/BW = (fdown + fup)/2. Since fdown + fup is also a modulo 1

normalized frequency, CFOint/BW can only be defined modulo 1/2. Thus, the estimation of

CFOint is only defined modulo BW/2. This means that the receiver will be able to recover a

CFO limited to the range [−BW/4, BW/4]. For example, assuming BW = 125 kHz and a 868

MHz carrier, acceptable CFO must remain below 36 ppm.

E. Extracting CFOfrac

As stated previously, the presence of a fractional CFO will cause a loss in sensitivity at low

signal to noise ratios. Thus, compensating for CFOfrac will recenter the FFT outputs onto integer

frequency bins. The extraction of CFOfrac can be achieved simply during the reception of two

consecutive identical symbols, e.g. two up-chirps or two down-chirps. Assuming that these two

symbols are up-chirps, each of these symbols is processed as in (8) but this time the resulting

frequency component is (CFOint + CFOfrac)/BW + (N − STOint)/N . Since this frequency

is identical for both symbols, the same FFT bin, fup will be selected by the argmax function.

The signal present in the FFT bin corresponding to fup can be expressed as:

ej2πkfup+j2πk
CFOfrac
BW (11)

This can be seen as a signal with constant frequency fup but with a time-varying phase.

Therefore, if the phase, respectively φ1 and φ2, of the signal present in this FFT bin is extracted
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for these two consecutive identical symbols, we can write:

φ2 − φ1 =
CFOfrac

BW
(k +N)− CFOfrac

BW
(k) (12)

from which we find CFOfrac = BW (φ2 − φ1)/N . This technique is applicable as long as

the two consecutive symbols are identical.

III. RELATED WORK

The reverse engineering efforts mentioned previously [3][4][5][6] employ wide-band software-

defined radios (SDR) and over-sample captured frames emitted by LoRa-compatible RF trans-

mitters. These samples can be stored in memory and post-processed by powerful CPU’s running

potentially complex synchronization and demodulation algorithms. In [3], a synchronization

algorithm is proposed based on cross-correlations of the signal’s instantaneous frequency. Un-

fortunately, this algorithm is only effective at high signal-to-noise ratios, severely limiting the

sensitivity of the receiver, and has a complexity O(N2). The patent in [18] proposes an FFT-

based demodulation algorithm for chirp modulated signals and, to the authors’ knowledge, is the

first to mention the impact of CFOfrac on performance. The compensation algorithm proposed

is however much too complex for low cost, low power transceivers. The authors in [16] study

optimal receiver algorithms, which have O(N logN) complexity, for a minimum rate receiver.

However, they do not resolve the time/frequency ambiguity discussed above leading to a limited

capacity for CFO compensation. In addition, the algorithm proposed for CFOfrac estimation is

less precise and needlessly complex compared to the one presented in Section II-E, as will be

discussed in Section V-D. Finally, they do not address STOfrac compensation. While publicly

available, the algorithms described in [19] for minimal rate, optimal LoRa synchronization are

difficult to understand. Providing a clear explanation of these algorithms is the focus of the

following section.

IV. LORA FRAME SYNCHRONIZATION

The techniques presented in II-D and II-E are the basic functions necessary to recover STOint,

CFOint and CFOfrac which are imperative to accurately achieve frame synchronization in sub-
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zero SNR conditions. When and how a given receiver actually extracts this information from the

received signal is implementation dependent. This section focuses on the acquisition of frames

that follow the format defined in the LoRa physical layer.

A. LoRa frame format

In the FSCM modulation employed in LoRa, N is always a power of 2 since this eases

FFT-based detection. For a given BW, an adaptive modulation is proposed allowing N to take

on the value 2SF , with SF = {7, 8, 9, 10, 11, 12}. In the context of LoRa, SF is referred to as

‘spreading factor’.

Since we are interested in the synchronization phase of frame acquisition, referring back

to Figure 1, we will focus on the synchronization header including the ‘preamble’, ‘frame

synchronization’ (also called sync word) and ‘frequency synchronization’ symbols of LoRa

frames. The preamble consists of a minimum of 2 and a maximum of 65535 un-modulated up-

chirps. Next, while [20] mentions that the frame synchronization symbols consist of 2 symbols

of value {x,N − x}, frame acquisitions made by [4] show that these symbols actually consist

of two identical consecutive symbols {x, x}, the value of which is defined by the settings of the

transceiver (note that they can be set to zero, making them identical to the preamble symbols).

These symbols can be used to uniquely identify a network thus easing the filtering out of

unwanted frames. Finally, the frequency synchronization symbols consist of 2.25 down-chirps

symbols. Depending on the synchronization algorithm employed, the last quarter-symbol can be

used by the receiver to apply the required time and frequency compensations before the start of

data demodulation.

B. LoRa frame synchronization algorithm

The information present in [19] can be used to reconstruct the synchronization algorithm

present in state of the art receivers. A schematic overview of this algorithm is presented in

Figure 5 in which the samples are processed from left to right while the different steps of

the algorithm, corresponding to the different phases of frame synchronization, flow from top

to bottom, with some processes occurring simultaneously as will be described below. While
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ĈFOfrac

f̂ e

Fractional Time Delay
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Fig. 5. Conceptual view of LoRa start-of-frame synchronization algorithm. Double arrows indicate complex signals.

existing commercially available LoRa transceivers can be programmed to emit and receive

frames containing only two preamble symbols1, measurements show that in order to synchronize

correctly, in practice the receiver needs a minimum of 4 preamble symbols (Figure 8). In addition,

measurements show that if the received frame contains more preamble symbols than expected,

the frame is rejected. Figure 6 shows an example as seen by the emitter (top) and by the

receiver (middle and bottom) of a worse-case synchronization scenario, i.e. the emitted frame

contains only two preamble symbols and therefore only a single block of received samples, r1[k],

contains a complete preamble symbol (for simplicity, N = 16). In this example, we choose frame

synchronization symbols with modulation value of 2, meaning that the chirp’s initial frequency

is offset by 2 integer frequency bins with respect to the base chirp. The signal as seen by the

receiver will suffer from STO and CFO thus resulting in a random circular frequency shift.

In the example presented in Figure 6, a shift of +6 bins is applied to the signal in the top

graph to obtain the signal in the middle and bottom graphs. These two graphs represent different

synchronization algorithms, as will be discussed below.

1) Preamble synchronization: When the receiver is activated, it starts receiving samples in

successive non-overlapping windows (referred to as ‘blocks’) of size N , denoted rb[k], with b

the block index. These are processed as in (13) in order to extract consecutive FFT bin indices:

1Here we use the same terminology as in Figure 1.
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Fig. 6. Plot of N∗ normalized frequency component of the baseband signal, assuming N = 16. Top: synchronization header

as seen by the transmitter and assuming frame synchronization symbols with modulation value of +2. Middle and bottom: the

same signal as seen by the receiver after a shift of +6 bins (assuming SFO = 0 and CFOfrac = 0).

{..., fb, fb+1, fb+2, ...}2:

fb = argmax(|FFT (rb[k]×B[k]∗)|) (13)

Since each block of samples is not synchronized with the emitted symbols, they necessarily

contain samples that belong to chirp fragments of two different symbols. In high SNR conditions,

the result of (13) will reflect the frequency offset due to the larger chirp fragment. For example,

if we consider blocks r1[k] and r2[k] from the bottom graph of Figure 6, these would produce

f1 = 2 and f2 = 4. As discussed previously, the frequency offset measured in r1[k] is the result

of both STO and CFO which cannot be distinguished at this point. However, f1 can be used

to realign block r′2[k] (middle graph of Figure 6) on what is seen by the receiver as the start of

a base chirp.

2The values of fb can be seen, as here, as FFT bin indices numbered from 1 to N , or alternatively, as normalized frequencies

that take on the values k/N with k = 1..N .
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In low SNR conditions, the use of a single preamble symbol can lead to a high error probability

in the extraction of f1. Suppose now that the receiver is turned on earlier and that the received

signal contains several blocks (theoretically, up to 65535) which contain un-modulated preamble

symbols. As discussed in [19], it is advantageous to average the FFT magnitudes of successive

blocks before applying the argmax function. Indeed, since successive symbols are identical,3

this will average out the bins which contain only noise, easing the extraction of the correct

bin. Of course, this accumulation cannot be applied to blocks containing frame synchronization

samples whose modulation value is not zero. In a low complexity implementation in which the

amount of sample storage space is limited, an IIR filter such as y[n] = x[n] + αy[n − 1] can

be used instead of averaging, with α < 1 representing the proportion of the previously received

blocks that is ‘remembered’. The positive impact of this averaging operation can clearly be seen

both in simulation and measurement on Figures 7 and 8. Figure 7 shows the simulated frame

synchronization miss-detection probability versus the number of complete received preamble

symbols whereas Figure 8 shows the measured sensitivity as a function of the number of

transmitted un-modulated preamble symbols.

As stated in [19], robustness can be further improved by imposing that the maximum FFT

magnitude value which is selected by the argmax function exceed a threshold. This threshold

can be designed to be proportional to the noise level present in the other frequency bins.

2) Frame (sync word) synchronization: Once a realignment by f1 has been applied, the

search for the two frame synchronization symbols (sync word) starts. Indeed, we expect that

blocks r′2[k] and r′3[k] will produce f ′2 = 2 and f ′3 = 2 since +2 is the modulation value

corresponding to the frame synchronization symbols in our example (middle graph of Figure

6). Recall however that the presence of CFOfrac and noise can easily cause ±1 bin errors (or

more). Thus, rather than searching for a specific sequence of bin values over successive blocks,

the frame synchronization algorithm proposed in [19] monitors the FFT absolute values in the

desired and undesired frequency bins (±1) in two successive blocks.

3This is true only if we ignore SFO which, for very long preambles, will tend to progressively shift the bin value extracted

from the accumulated magnitudes.
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Fig. 7. Simulation (infinite precision) results showing the probability of sync word detection failure versus the number of

complete un-modulated preamble symbols received by the receiver. Here sync word value is +8, SF = 7, BW = 125 kHz,

α = 0.5. STOint and CFO are chosen randomly between [0, 1,.., 2SF − 1] and ±34 ppm, respectively. SFO and STOfrac

are set to zero.
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Fig. 8. Sensitivity, defined as 5% PER for 66 byte packets, measured on SX1276 chip versus the number of TX and RX

programmed preamble symbols, SF = 7, coding rate = 4/5, non-zero frame synchronization symbols, BW = 125 kHz, carrier

frequency = 867.1 MHz.
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An effective frame filtering feature can be achieved simply by programming the receiver with

the number of un-modulated preamble symbols it should expect before successfully detecting

the frame synchronization symbols4. In this way, transmitted frames with longer preambles than

expected can be automatically rejected.

3) Coarse time and frequency synchronization: Once frame synchronization is achieved, the

next two blocks, r′4[k] and r′5[k] in our example, are used to find the frequency synchronization

symbols. This is achieved as in (13) but this time with the un-conjugated base sequence B[k].

Since r′5[k] contains only down-chirp samples, f ′5 is more reliable than f ′4 and is probably used

as fdown. Next, since fup is f1 calculated above, estimates of STOint and CFOint (ŜTOint and

ĈFOint) can be calculated as discussed in II-D.

4) Fine frequency synchronization: As discussed in II-E, the phase of the FFT output in bin

fdown of the two more recently processed blocks (r′4[k] and r′5[k] in our example) is used to

estimate CFOfrac. Unfortunately, since it is calculated using only two blocks, this estimation,

ĈFOfrac, will be relatively imprecise, as shown in Figure 10, leaving a residual fractional

frequency error that will be corrected by the tracking loop described below. As discussed in

[16], ĈFOfrac can be compensated by multiplying the received signal, or the reference base

chirp, by:

e−j2πkĈFOfrac/BW , k = 0, .., N − 1 (14)

5) Fine error tracking loop: At this point, we have successfully estimated ĈFOint, ŜTOint

and ĈFOfrac. The presence of STOfrac, which generates inter-symbol interference, and a small

residual fractional frequency error will have as consequence to spread the symbol energy onto

more than one FFT bin. (Note that this is true even in steps 1 and 2 presented above.) For

every block rb[k] processed according to (13) and producing fb, the extent to which the symbol

energy is shifted to the next nearest FFT bins, which is indicative of the fractional timing and

frequency errors, is estimated in [19] by subtracting FFT magnitude of the next higher FFT

bin (modulo N) from the FFT magnitude of the next lower FFT bin (modulo N) and dividing

4Measurements confirm that this feature is implemented on commercially available hardware.
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Fig. 9. Plot of TEraw versus the ‘timing error’. This curve is obtained in simulation by oversampling a base chirp sequence,

down-sampling with a fractional timing error, and comparing the FFT magnitudes in the adjacent bins versus the primary

frequency bin.

the result by the FFT magnitude in bin fb. This produces a “raw timing error”, TEraw, that

can be converted to a fractional ‘timing error’ by inverting the conversion function plotted on

Figure 9. The ‘timing error’ corresponds to a fraction of the sample duration 1/fsmin and is

an approximation of STOfrac if the residual fractional frequency error is ignored. Figure 9 is

obtained in simulation by measuring the magnitude of the FFT output in adjacent versus desired

bins when the received symbol is sampled with a fractional timing offset.

Recall however that this ‘timing error’ is produced by simultaneous fractional time and fre-

quency offsets which cannot be distinguished. As explained in [19], thanks to the time/frequency

equivalency of chirps, small time misalignments can be compensated by a proportionally small

frequency offsets. Two compensation methods are therefore used simultaneously to correct this

‘timing error’: Part of this error can be compensated in the decimation chain of the receiver’s

digital front-end (DFE). For example, suppose that a factor of 10 decimation is applied before

the samples are produced at the minimum sampling rate fsmin . Fractional timing offsets that

are multiples of 1/10 can easily be created by shifting the decimation operator’s input by a

corresponding number of undecimated samples. The remaining part of the ‘timing error’, t̂e,

can be converted to a frequency error by applying the time to frequency conversion allowed
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by the time/frequency equivalency of chirps: f̂ e = (BW × t̂e)/N . Frequency compensation can

then be applied by applying a constant frequency offset to the base chirp used in (13) as follows:

B[k]′ = B[k]× e−j2πkf̂e/BW , k = 0, .., N − 1 (15)

In [19], it is proposed that this error tracking loop can be activated starting from the very first

block of samples received. The idea is that, since the effect of this compensation is to recenter

symbol energy onto a single bin, the loop should ease the detection of the preamble and frame

synchronization symbols.5 As stated in [19], since block b is processed at the same time as block

b + 1 is being sampled in the DFE, the fractional timing compensation can be updated in the

decimation chain only for block b+ 2.

6) Data demodulation: Thanks to the above tracking loop, at this point in the algorithm, we

can successfully compensate for ĈFOint, ĈFOfrac, ŜTOint and ŜTOfrac. Data demodulation

can now start. Since STOint has been found in step 3, it can be used to perform the correct

alignment of the contents of the next processed block on the start of the data samples, illustrated

by the block r7′′[k] in the middle plot of Figure 6. Symbol demodulation can be achieved in the

following manner:

fsymbol = {argmax(|FFT (r′b[k]×B[k]∗× e−j2πk(ĈFOfrac+f̂e)/BW )|)− ĈFOint×
N

BW
} mod N

(16)

7) Sampling frequency error compensation: As discussed in II-C, even after compensating

for both STO and CFO, a sampling frequency error will gradually introduce an error in the

samples contained in consecutive blocks, with the symbol energy associated with a complete

chirp incrementally spreading to a duration greater or lesser than N×fsmin . If the RF carrier and

the sampling clock are generated from the same crystal-based reference clock, CFO and SFO

are related by the expression SFO = fsmin × CFO/fc, where fc is the RF carrier frequency.

Thus, once CFO has been estimated in steps 3 and 4 above, the corresponding SFO estimate,

ŜFO, can be calculated. Depending on the sign of ŜFO, the received signal will suffer from

5This claim has not been verified in this present work.
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an incremental delay (or advance) of SFOdelay = N × ŜFO/fsmin samples every block of N

samples. The fractional part of this delay (or advance) can be compensated by the error tracking

loop by summing SFOdelay and the timing error calculated in step 5 above. The integer part

of this delay (or advance) can be compensated by removing (or duplicating) a sample when

necessary, as proposed in [16]. However, differently from [16], compensating the fractional

timing error using the error tracking loop avoids having to over-sample the signal by a factor of

2, an approach which comes at a very high energy and complexity cost.

The compensation of the incremental delay (or advance) is necessary to avoid losing symbol

synchronization while demodulating the data symbols. However, the presence of SFO means

that the slope of the received chirp will be slightly different from the expected one. This will

tend to shift the demodulated symbol energy away from a single frequency bin, hence lowering

demodulation performance. In order to recenter the symbol energy, it is possible to adjust the

frequency slope of the reference base chirp B[k] used in (16) to match the slope of the received

chirps, as discussed in [19] and [16].

V. LORA FRAME SYNCHRONIZATION FOR ULP-SDR

The frame synchronization and demodulation algorithm presented above can certainly be

further improved, i.e. using soft demodulation [19] or adding CFO and SFO drift compensation

mechanisms for very long frames, etc. However, the aim of this section is to discuss the inherent

computational complexity of the above algorithm and the adaptations that would be required in

an ULP-SDR implementation.

A. Discussion on algorithm complexity

While the algorithm described in IV-B can appear relatively complex, we observe that, for

each block, the basic algorithm consists in a multiplication of the block’s samples with some

variant of the base sequence B[k], followed by an FFT of size N , followed by an absolute

value calculation on the FFT outputs and, finally, the search for the argument of the resulting

maximum. This is true in all phases of the algorithm (with small variants, e.g. IIR filtering

during preamble detection). Computational complexity therefore essentially consists of N sine
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and cosine calculations to adjust the angle of the base sequence B[k] with respect to f̂ e, ĈFOfrac,

and SFO, followed by N complex multiplications, a complex FFT of size N , and N magnitude

calculations.

B. Algorithm variants in the ULP-SDR context

Part of the difficulty in the synchronization algorithm presented above is due to the fact that

sampling at fsmin makes it more difficult to distinguish timing and frequency errors due to the

folding over of the frequency signal. In an SDR context, since oversampling avoids this effect, at

first thought, oversampling might be considered a good approach for lowering the complexity of

the synchronization algorithm. However, higher sampling rates necessarily increase the required

digital baseband (DBB) processing clocks, potentially leading to greater energy expenditure.

The main difficulty in implementing the above algorithm in an ULP-SDR context lies in real-

izing the error tracking loop feedback signal that adjusts the delay at the input of the decimation

block in the receiver’s digital front-end. Implementing a decimation block in software would

imply a large power burden. Alternative approaches for compensating STOfrac include adding

a linear interpolation block at the input of the baseband receiver6 or by using a compensation

approach as in (15) but this time with a frequency error coefficient corresponding to the complete

‘timing error’. The analysis of these approaches is left to future work.

In the following sections, we propose several ideas that might be exploited by the research

community to improve or create variants of the above algorithm, especially in the context of

low complexity receivers.

C. Alternative preamble synchronization algorithm

The preamble synchronization algorithm proposed in step 1 above is designed to capture frames

in which the preamble is as short as possible, the worse case being a single complete preamble

symbol. In favorable SNR conditions, the ability to achieve very quick synchronization lowers

frame transmission and reception energy overheads and link latency. In less favorable conditions

6A first order interpolation would require two multiplications, one sum and one division (or shift) per I and Q sample.
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as shown in Figure 7, the probability of error in the value of fb obtained using (13) without the

noise reduction effect of the IIR filter can be important, potentially leading to many dropped

frames due to the incorrect frame synchronization detection in step 2.

Using a larger number of preamble symbols improves performance in low SNR conditions

thanks to the IIR filter discussed above. In this context, another approach that could be used

to improve the preamble synchronization phase, especially in the absence of an error tracking

feedback loop, consists in using a pattern matching algorithm on the successive outputs of (13):

{f1, f2, f3, ...}. Detecting that these values have stabilized around a single value (or two adjacent

bin values since fractional time and frequency errors can lead to FFT outputs that fall between

two bins) can be an alternative mean for detecting the presence of a preamble with high certainty.

D. Alternative fine frequency synchronization algorithm

Again in a context where expected frames contain more than two preamble symbols, we

observe that the estimation of ĈFOfrac, previously performed in step 4 using blocks containing

the two down-chirps, can now be operated in the preamble synchronization phase of the algorithm

since identical symbols are being received. This has the advantage of producing a higher precision

estimate of CFOfrac since the successive estimates can be averaged, reducing the impact of

noise. In addition, applying an early ĈFOfrac correction will improve both the frame and coarse

synchronization phases.

To study the impact of ĈFOfrac estimation precision in various Eb/No conditions, infinite

precision Monte-Carlo simulations are run in which frame synchronization is performed assuming

frames affected by a CFO randomly chosen in the range of ±34 ppm. CFOfrac estimation is

performed on the preamble symbols using the method described in Section II-E. For comparison,

this plot also shows the accuracy of the CFOfrac estimation method proposed in [16], equation

(9). We see that, not only does this last algorithm perform less accurately at low Eb/No, the

algorithm itself requires 2SF additional complex multiplications and sums per symbol employed.

Finally, we observe that it is also possible to estimate CFOfrac using the blocks containing

the two frame synchronization symbols, assuming the two symbols are identical. This estimate

could be averaged with the one extracted from the two down-chirp symbols.
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Fig. 10. Standard deviation of the CFOfrac estimation error versus the number of symbols over which the estimation is

averaged (BW = 125 kHz, SF = 7)

E. Alternative frame (sync word) synchronization algorithm

In an alternative approach to the frame synchronization algorithm presented in step 2 above,

rather than searching for the frame synchronization symbols after realizing a time realignment

by f1, the search for these symbols can be done using the next, un-realigned blocks (r2[k] and

r3[k] in the bottom plot of Figure 6). Assuming that the frame synchronization symbols employ

a modulation value of 2, initial frame synchronization will be achieved if the receiver finds the

sequence {..., f1, f1 + 2, f1 + 2, ...}. However, since at this point STOfrac (and potentially also

CFOfrac) errors remain and thus FFT outputs can fall between two bins, the pattern matching

algorithm should accept ±1 bin errors on the extracted bin indices. Alternatively, the output

of this bin pattern matching search could also be combined with the output of the magnitude

pattern matching search of the original algorithm.
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F. An algorithm for resolving data start block ambiguity

We observe that the samples corresponding to the two and a quarter down-chirps can be spread

over 3 or 4 blocks (for example, in the middle plot of Figure 6, they are contained in blocks r′4[k],

r′5[k] and r′6[k]). This means that, even once coarse time synchronization has been performed

in step 3 and thus ŜTOint has been calculated, there remains some uncertainty as to the block

index which contains the very first data (header or payload if there is no header) symbol sample.

Resolving this uncertainty is necessary for correctly applying the final block alignment (e.g.

r′′7 [k] in the middle plot of Figure 6). Of course, it is possible to rigorously lift this uncertainty

by re-aligning, thanks to ŜTOint, the samples contained in all of the blocks employed to search

for the down-chirps (assuming these have been stored in memory) and repeating step 3. The

perfect time alignment between blocks and down-chirps then makes it easy to identify the two

complete down-chirps contained in the frame using the FFT magnitude. This is the approach

used to obtain the ideal synchronization result shown in Figure 11. However, in a low complexity

receiver, all of these additional computations should be avoided.

Here, we present a low complexity technique for resolving this ambiguity: Once steps 2, 3 and

4 have been performed, since ŜTOint and fdown are known, it is easy to calculate the expected

number of down-chirp samples that will be contained in the M successive blocks suspected

of containing down-chirp samples. These values are stored in the expected samples vector7.

Assuming the FFT magnitudes for these M blocks have been stored in memory, a second vector

named measured magnitudes is constructed by extracting the FFT magnitude outputs at the

index fdown for these M blocks. At high SNR, we indeed expect that this vector reflect the

proportion of down-chirp samples contained in each block. Finally, if we apply a convolution

of expected samples with measured magnitudes, the maximum of the convolution result can

be used to identify the block index containing the start of the data symbols.

As a further improvement, if we are certain that at least the first two of the M blocks do

not contain down-chirp samples (e.g. this is the case if they contain frame synchronization

7Precisely, expected samples = [.., 0, N − ŜTOint, N, 1.25×N − (N − ŜTOint), A, 0, ..], where A = 0.25×N − (N −

ŜTOint) if A > 0 or 0 otherwise. For example, if N=128, M=6 and ŜTOint = 0, expected samples = [0, 0, 128, 128, 32, 0].
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samples), the content of the vector that is convolved with expected samples can be improved

using an approach similar to Dixon’s test for outlier detection [21]: for a given dataset, outliers

are detected by dividing the gap between each value and the values’ expected range. In our

case, we define the range as the absolute value of the difference between the two first values of

the measured magnitudes vector. Indeed, since down-chirps are not present, we expect these

values to contain only noise. For each other element of the measured magnitudes vector, a new

value is calculated (and stored in a vector called Dixon magnitudes) by dividing the distance

(gap) between the value (if positive) and the largest of the first two values. In a noisy context,

this means that blocks containing down-chirp samples will be identified as outliers. Finally, the

expected samples vector can be convolved with the Dixon magnitudes vector to identify the

block containing the start of the data samples.

In Figure 11, we present simulation results of frame synchronization failure, meaning that the

algorithm was unable to identify the first data sample hence leading to complete frame loss, for

different synchronization algorithms. Simulations are run in the following conditions: BW=125

kHz, SF = 7, frames contain 6 preamble symbols and the two frame synchronization symbols

(sync word) are set to 0. CFO is chosen randomly in the range ±34 ppm, STOint is chosen

randomly in the range [0, 127], SFO and STOfrac are set to 0. The proposed low complexity

algorithm employs the alternative techniques described in Sections V-C and V-D as well as

the technique based on Dixon’s test presented above (M=6). We compare the performance of

this algorithm with the ideal, high complexity, synchronization algorithm discussed above and

with another low complexity algorithm based on a simple heuristic rule for choosing the block

containing the first data sample: the two largest values of the measured magnitudes vector,

presumably corresponding to blocks containing the largest number of down-chirp samples, are

compared. If these values increase with block index, the block index following that of the greater

value is assumed to contain the first data sample. If these values decrease with block index, the

block index of the smaller value is assumed to contain the first data sample. Such a simple rule

is shown to result in very poor results.

The good performance of our proposed low complexity algorithm lies in the fact that, if fup

and fdown are extracted with high certainty (which is the case when the frame contains more than
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Fig. 11. Simulation results of frame synchronization failure (BW = 125 kHz, SF = 7)

two preamble symbols), then so is ŜTOint and so is the expected samples vector. Since the

convolution with the Dixon magnitudes vector gathers information from several blocks, this

leads to very high synchronization accuracy even in very low SNR conditions. The computing

cost of this technique is very low and is essentially due to the memory that is required to store

FFT magnitude outputs for the M blocks.

VI. CONCLUSION

The importance of the LoRa physical layer for the IoT community has prompted the authors’

efforts to provide a clear explanation of the timing and frequency synchronization algorithms

required to detect LoRa-modulated frames in the context of minimum sampling rate optimum

receivers. We describe how robust frame detection can be performed while focusing on minimal

complexity implementations of the proposed algorithms. In particular, for the first time, a method

for resolving integer symbol timing and carrier frequency offset ambiguity is described. We

also provide simulation and measurement results showing the relationship between number of

received preamble symbols and both frame detection performance and fractional CFO estimation

error. Finally, we propose several ideas for lowering the complexity of certain synchronization
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mechanisms, allowing these to be implemented on recently proposed ultra-low power software-

defined receivers.
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