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Abstract.  

High-Z impurities production is often observed during Ion Cyclotron Range of 

Frequencies (ICRF) waves’ injection, which are likely due to RF sheath formation on Plasma 

Facing Components (PFCs). Based on Extreme UV (EUV) spectrometry data, this study takes 

profit from the diversity of materials in the Experimental Advanced Superconducting Tokamak 

(EAST) to extract local information on plasma-surface interactions during ICRH (Ion 

Cyclotron Resonance Heating). Intensities of the different spectral lines normalized to 

line-integrated plasma density, exhibit different parametric dependencies over scans of ICRH 

and LH (Lower Hybrid) power and for different toroidal phasing between straps. Materials 

close and magnetically-connected to an active antenna tend to show better correlation with 

ICRF parameters – such as power and feeding scheme – than those which are far away or not 

connected. ICRF phasing however did not have significant influence on impurity sources, 

probably due to the absence of feedback control. It is further shown that the plasma content in 

impurities from divertor region (W line intensity) better correlates with the total injected power 

rather than with ICRF power.  

 

 

1. Introduction.  

In view of future experiments on larger devices like ITER and CFETR, the 

Experimental Advanced Superconducting Tokamak (EAST) aims at long pulses at high power 

in steady state. Higher power demand nevertheless comes with challenges in terms of plasma 

surface interaction and impurity mitigation. Methods for optimizing high power scenarios 

using more of the 12MW ICRF power available at the generator depend a priori on where the 

impurities are produced, and on which physical mechanism is at play for their production. This 

study specifically investigates impurity production issues in discharges with ICRH in EAST, 

depending on their spatial origin in the vacuum chamber.   

As ICRF wave coupling can be quite poor in EAST [1], on top of thermal sheath present on any 

PFC intercepting a magnetic flux tube, RF sheaths form and are known for enhancing 

interactions particularly at proximity of antennas due to strong near-fields. This is also true 

further away to a smaller extent, and sometimes even  in non-magnetically connected regions 

due to far-field [2] as observed on many devices like Tore Supra [3] [4], Alcator C-Mod [5] [6] 

[7], JET [8], ASDEX Upgrade [9] or LAPD [10]. ICRF wave absorption efficiency – estimated 

with combining break-in-slope technique with ITER89-P scaling law [11] – is believed to be of 

the order of 35%, therefore a significant part of unabsorbed power might as well lead to 

far-field-induced interactions in unexpected locations, motivating the need to localize and 

characterize impurity sources at least qualitatively [12] [13]. One difficulty of the this study 

comes from the lack of appropriate edge diagnostic to characterize impurities sources, like 

visible spectroscopy [14] [8], meaning that high-Z impurities can in EAST only be seen in the 

core using an Extreme UltraViolet (EUV) spectrometer [15] [16]. The present study proposes 

to take profit from the diversity of materials in EAST to extract local information on 

plasma-surface interaction. Even if we mostly focus on the characterization of ICRF-related 

sources of impurities, a secondary objective is also to identify dominant mechanisms in 

different regions. Titanium was also added in a precise and unique location to serve as trace of 

plasma-material interactions in a specific area. The first section introduces the experimental 

mailto:guillaume.urbanczyk@cea.fr


protocol before discussing the influence of magnetic connections, RF power and phasing on 

impurities presumably produced from different regions.  

 

 

 Figure 1. Toroidal-Poloidal (ф-Ѳ) 2D map of EAST showing magnetic connections between 

objects, materials, heating systems and EUV spectrometer, seen from center of the torus. 

 

 

2. Experimental conditions and protocol in EAST.  

EAST is a superconducting tokamak equipped with two divertors allowing double null, 

lower (LSN) and upper single null (USN) configurations with following parameters of this 

study: toroidal magnetic field Bt≈2.3T, plasma current Ip≈500kA, major radius Ro≈1.85m, 

minor radius a≈0.44m, triangularity δ≈0.5 and elongation κ≈1.65. Plasma isotopic ratio 

(H/H+D) rarely decreasing below 5% in EAST, strong lithium coating is daily applied before 

each session mainly to keep low-Z impurity like oxygen and carbon down to acceptable levels 

in terms of radiated power. Lithium can however also have mitigating effects on high-Z 

impurity contamination like tungsten [17], which effect changes along the experiments as Li is 

eroded and redeposited elsewhere. This can make comparison of data from different days and 

hour less consistent, so that we group cases in series of shots during same days. In this study all 

plasmas were in L-mode and USN configurations. Auxiliary heating systems include two 

Lower Hybrid Current Drive (LHCD) grills located in E-port (4.6 GHz and 2<n||< 3) and 

N-port (2.45 GHz and 1.8< n|| <2.5) [18], and two ICRF antennas heating hydrogen minority in 

deuterium plasmas, the one is located in B-port (31.5 MHz) and composed of two arrays of two 

straps and the other is located in I-port (35 MHz) and composed of an array of four straps (Fig. 

1) [1, 2, 18]. When not mentioned, all straps in a given antenna were fed with RF currents of 

comparable magnitude. The phase difference between RF currents in toroidally-adjacent straps 

was set at 180° (“dipole phasing”), but is not feedback-controlled.  

Using a EUV spectrometer [20], the brightness of various high-Z impurities lines (20Å 

to 150Å) was investigated with wavelength resolution defined as full width at half maximum of 

about 0.22-0.3Å and at 100-200Å respectively. These brightness values mostly emitted from 

plasma core are systematically normalized by line-integrated plasma density, and their 

parametric variations from pulse to pulse within the same experimental session are interpreted 

as a change in the sources of impurities rather than their transport. This assumption is fairly 

good for most species which radiate relatively close to the edge and easily penetrate inside 

plasma. Note this can be questionable for tungsten coming from divertor region, as it is not 

only expected to be better screened and moreover whose emissivity mainly comes from plasma 

center, therefore more sensitive to transport in both SOL and confined plasma. As far as edge 

turbulent transport is concerned, it was shown both in Alcator C-Mod and that it does not 

change much in presence of ICRH [21, 22] and neither did electron temperature (<10%).  

 

 

 



Ions λ (Å) Te (keV) ρ 

Ti
17+

 144.76 0.6 < 0.7 

Fe
21+

 132.85  1.98 < 0.6 

W
45+

 126.99 4  < 0.2 

Wuta=W
28->46

 45->70  3  6 < 0.85 

Table 1. Spectral lines observed by EUV spectrometer in the present study with the 

corresponding emitted wavelength λ, minimal temperature Te and normalized radius ρ at which 

ionization occur 

 

Different lines, corresponding to different materials summarized under Table 1 are seen as 

footprints of plasma-material interaction in a relatively precise location on the inner surface of 

the device; Iron is found on antenna Faraday screens (underneath a boron carbide coating),  and 

upper divertor is made of tungsten (noted W for WUTA, which is an average of all spectral lines 

from W
27+ 

until W
45+

). In addition, two titanium passive plates were installed on purpose at one 

toroidal location of the outer midplane to serve as impurity trace (ф ~ -90° and -30° < Ѳ < 30°). 

Titanium was found appropriate mainly for three reasons; a spectral line could easily be 

distinguished with EUV spectrometer from those of others species present in EAST, it can be 

used as a permanent plasma facing component without affecting the vacuum conditions and its 

cost is reasonably low.  

The blue region in Fig. 1 shows that only B-port ICRF antenna is magnetically 

connected to the Ti plates. Such location was chosen to confirm the role of magnetic 

connections in RF sheaths formation [23] and ICRH-enhanced plasma-surfaces interactions. In 

the following, the different spectral lines are monitored over scans of ICRF and LH power by 

several combinations of both antennas, with several toroidal phasing between straps. 

 

 

3. Role of magnetic connection to the active RF antenna  
The objective of the following series of shots is to provide a first picture on how 

different species behave according to the magnetic connections of the different plasma-facing 

materials with active ICRF antennas. Two different scenarios are preliminary discussed to 

assess materials dependences on any physical effects, before trying to conclude on 

ICRF-related ones. Black curves in Fig. 2 provide levels of impurities in a typical discharge 

only heated with 1.4MW LH power while red curves stand for a case when B-port and I-port 

ICRF antennas were also powered successively in dipole phasing and with 5Hz power 

modulations between 0.5 and 1MW as shown in graph 2d. All metal impurity signals increase 

fairly similarly during application of LH power. When the ICRF antennas are activated, Ti and 

Fe contents in the plasma increase in magnitude and react to power modulations visible on both 

signals. As the Fe and Ti-covered objects are both magnetically connected to B-port antenna, 

strongest interactions occurred when this antenna was active. Fe is also well connected to the 

I-port antenna, so we would expect similar levels in both cases, but as B-port antenna is much 

smaller, higher power densities are expected for same antenna loading and power. Finally W 

seems to react to both ICRH and LH power. In the following sections are discussed the 

impurities dependences with ICRF power and phasing. 



 

 
Figure 2. Time traces of spectral lines brightness from EUV spectrometer normalized by 

line-integrated density for; Ti XVIII (a), Fe XXIII (b), W (c), for EAST ohmic pulse #70899 

and RF heated pulse #69950 

 

 

4. Impurity correlation with ICRF power.  

To study metallic impurity behavior with ICRF power, three series of shots with both 

antennas powered together and scans of total ICRF power PICRF = PI + PB = 2 PI at generator 

and different conditions were analyzed. From Fig. 2, we know that PICRF is not a fully relevant 

parameter in itself to estimate impurity levels as power from I (PI) and B ports (PB) have 

different influence on different impurities. It consequently matters to have a relatively constant 

ratio PI/PB over power scan, which is kept close to unity (PI≈PB). EUV spectral lines intensities 

were systematically normalized to line-integrated density from interferometer and averaged 

over small periods of time (between 0.02 and 0.1s) and noted Imp. For each species and shot, 

ICRF-related impurity production Yshot is calculated as 

. .( ) / max( )shot withIC withoutIC withIC withoutIC over all shotsY Imp Imp Imp Imp   and represented in Fig. 

3. In the blue series only PICRF increased, while in the black series PICRF increased together with 

PLH. In the red series, power balance on B-port antenna straps is changed over the scan: one of 

the four radiating straps is switched off as the power is increased. 

 

 
Figure 3. ICRF-related impurity production (Yshot) as a function of ICRF power for (a) Ti, (b) 

Fe and (c) W. In the blue series, LH power remained constant while it changed in the black 

series. Power balance on straps was changed in the red series. Green dot corresponds to a 

discharge only heated with ICRF power (balanced on all straps) 

 



Graph (a) shows that Ti is very sensitive to discharge conditions as each series behaves 

differently, whereas Fe and W have different behaviours but both globally increase with PICRF.  

At constant LH power and same ICRF power on each strap (blue series), all impurities 

follow a linear trend. For a same amount of ICRF power on straps, we observe much higher 

titanium content when it is unbalanced (red series) than when it is balanced (blue series). On 

the contrary for tungsten, red and blue series follow similar evolutions with PICRF, suggesting 

that divertor region is insensitive to the antenna settings and only depend on the power injected. 

Furthermore looking at the cases when ICRH increases together with LH power (black series), 

W content increases strongly hinting that divertor region is sensitive to the total power injected 

rather than ICRH power alone. Ti on the contrary remains constant, showing that interactions 

in regions closely connected to B-port antenna may not only depend on ICRH power but also 

on how it is launched (antenna design, power balance on straps). Iron from antenna Faraday 

screens always increases with ICRH power in a similar fashion in all cases showing a generally 

good correlation. Fe sensitivity to one single antenna settings is however less obvious than for 

Ti since Fe can come from both antenna Faraday screens.  

 

 

5. Impurity correlation with total injected power 
Characteristic of divertor region, tungsten is badly correlated with ICRH settings. This 

hints that divertor region is not specifically sensitive to PICRF but to total injected power PTOT, 

which can be confirmed by representing the impurity increase as a function of PTOT for all shots 

(Fig. 4). Impurity increase is defined as |Imp during IC –Imp before IC| with ICRH (red series) 

otherwise |Imp during LH –Imp before LH| (black series). Tungsten concentration clearly correlates 

with PTOT, whereas no consistent link between Fe and Ti with PTOT can be established. For 

these two species, in the absence of ICRH, the impurity concentration is quite independent of 

the LH power in the range 1-2.5MW. 

 

 
Figure 4. Normalized spectral line brightness increase as a function of total injected power for 

Ti (a), Fe (b) and W (c). Red and black series stand for shots with and without ICRH. 

 

 

 

6. Impurity correlation with ICRF phasing.  

The second key parameter of ICRF system to investigate is the phase difference between RF 

currents on toroidally adjacent straps. In EAST, only phases of I-port antenna were changed 

whereas B-port always operated in dipole phasing. A series of shots with same power and 

loadings on both antennas and different phases on I-port antenna were studied. Ti, Fe and W 

remained relatively insensitive to the phase variation, which is surprising as results in other 

devices show that impurity production generally increases as phasing tend to deviate from 

dipole towards monopole [24, 25]. The absence of real time feedback control of EAST ICRF 

phases [26] is likely to account for inconsistent observations along phase scan.  

 

 

 

 



7. Discussions and prospects 
By using EUV spectrometer to characterize the presence of high-Z metallic impurities 

in the core, and taking profit from the multiplicity of materials in EAST, we were able to 

deduce local information about ICRF-related plasma surface interactions. Magnetic connection 

between objects of specific materials and active antennas undeniably plays a role which 

becomes more and more complex as distance from active antenna increases. Iron from antenna 

Faraday Screens typically correlates well with ICRF power, which is believed to be the result 

of near-field enhanced interactions, so far consistent with most observations elsewhere [3, 4, 5, 

6, 7, 8, 9, 10]. Rectification effects are then transported along magnetic field lines from active 

antenna to connected regions, as observed through the titanium content evolution when 

degrading the power balance on antenna straps (red series in Fig. 3a). This observation is 

consistent with uncompensated image currents induced on antenna limiters, leading to stronger 

potential rectification at the Ti plates [9]. Besides, for well-balanced power on straps, 

ICRH-induced rectification can be inhibited in the same region (black series in Fig. 3a). This 

could additionally be the result of improved wave absorption by increasing total injected power 

which will be discussed more in detail in a future study including wave absorption efficiency 

calculations. Characteristic of the divertor region, tungsten shows much better correlation with 

total injected power (Fig. 4c) rather than ICRF power, or settings like power balance (red series 

in Fig. 3c) or phasing between straps. Divertor outer target was identified in others devices to 

be an important source of impurities [13, 27] but not specifically due to ICRH [12, 14]. In 

EAST, despite evidences from divertor Langmuir probes of potential rectification [28], our 

results indicate that the divertor region is sensitive to total power regardless from which system 

and how it is injected. This suggests RF sheath play a negligible role, whereas heat fluxes on 

divertor target apparently matter the most, as far as these level of power are concerned. Most 

metallic impurities were moreover insensitive to ICRF phasing which was not feedback 

controlled [26]. Difficulties still arise on a poor estimation of ICRF power injected in the vessel 

as losses in transmission lines cannot be neglected. It should be pointed out that the two ICRF 

antennas have different designs and sizes, meaning that not only the magnetic connection can 

play a role for the impurity increase, but also the antenna design. B-port is quite systematically 

the principal cause of impurity production, which can be partially understood considering its 

smaller size compared to I-port, leading to higher power density for similar generator power 

and loading.  

To complete the studies presented here, the titanium plate has been moved to B-port and 

silver plates were added to I-port so that each material is characteristic of interactions around 

one antenna. More information is expected from the upcoming campaign. 
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