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In the context of present and future long pulse tokamak experiments yielding a growing size of 

measured data per pulse, automating data consistency analysis and comparisons of measurements 

with models is a critical matter. To address these issues, the present work describes an expert 

system that carries out in an integrated and fully automated way i) a reconstruction of plasma 

profiles from the measurements, using Bayesian analysis ii) a prediction of the reconstructed 

quantities, according to some models and iii) a comparison of the first two steps. The first 

application shown is devoted to the development of an automated comparison method between 

the experimental plasma profiles reconstructed using Bayesian methods and time dependent 

solutions of the transport equations. The method was applied to model validation of a simple heat 

transport model with three radial shape options. It has been tested on a database of 21 Tore Supra 

and 14 JET shots. The second application aims at quantifying uncertainties due to the electron 

temperature profile in current diffusion simulations. A systematic reconstruction of the Ne, Te, 

Ti profiles was first carried out for all time slices of the pulse. The Bayesian 95% highest 

probability intervals on the Te profile reconstruction were then used for i) data consistency check 

of  the flux consumption and ii) defining a confidence interval for the current profile simulation. 

The method has been applied to one Tore Supra pulse and one JET pulse. 

 

 

1. Introduction 

 

As tokamak experiments produce large quantities of data (50 Gbytes of data per second is 

expected for an ITER pulse), automated processing will be required to systematically analyze 

these data. Physicists are usually interested in computing a number of plasma physical quantities 

from the measured data and this is typically done by a chain of codes for “plasma 

reconstruction”. What is done quite rarely is a systematic comparison of the results obtained 

from experimental data to the ones produced by physics models verified for other shots (and 

possibly other tokamaks). 

In most of present experiments, only a small part of the Plasma Reconstruction Chain is really 

automated. Typically, it consists in reconstructing the plasma equilibrium and elementary 

processing of individual diagnostic data (i.e. conversion of raw data into physically meaningful 

and calibrated data, mapping of the measurements onto the reconstructed equilibrium). More 
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detailed analysis such as reconstruction of radial density or temperature profiles or tests of 

experimental data consistency involving multiple diagnostics, calculation of heat/particle/current 

sources is nowadays carried out with human intervention and therefore in a non-systematic way. 

Owing to both the large quantities of data produced by an ITER experiment and its cost, methods 

that can help to automatize the work of the physicists in 1) reconstructing higher order data from 

measurements and 2) comparing models to the reconstructed quantities will enable an optimized 

usage of the experiment. Indeed, as pointed out in (Lister J.B., 2003), “in today’s experiments, 

the data flow is already too high for regular human appreciation and only a small fraction is 

analyzed in depth”. This reference militates for the development of “knowledge model filters” to 

“reduce the data flow to its useful minimum, developing methods to assimilate this information 

by a research team”. The present work is proposing methods to assist the exploitation of an 

experiment which could help in this regard, although not limiting to reducing experimental data 

size but also including the automation of the comparison of physical models to experiments. 

Such comparison, using application-specific criteria to judge the quality of the agreement, may 

be used to detect unexpected phenomena in an experiment (if validated models are available) or 

for systematic model validation against experiments. Automated data consistency checks can 

also be integrated to detect issues on measurements or on their processing by the plasma 

reconstruction chain. 

To implement these functionalities, we developed an expert system carrying out in an integrated 

way: 

1. The plasma reconstruction from the measurements, using Bayesian methods. This 

includes a first level of internal consistency checks of the experimental data and validity 

of the reconstruction. An example of high order consistency check on the diamagnetic 

energy is shown in this paper.  

2. The prediction of the reconstructed quantities, according to the chosen integrated models. 

An application is shown in this paper for simple heat transport models 

3. An intelligent comparison of the first two steps providing an automated analysis and 

reporting on the quality of the comparison according to a set of well-defined criteria 

In such a procedure, it is interesting to use Bayesian methods for the plasma reconstruction since 

it provides a rigorous framework for quantifying the error bars on the reconstructed quantities 

and thus for the comparison to a model’s prediction.  

Model predictions should be in the general case evaluated using integrated modelling tools since 

they provide a self-consistent and close to the measurements approach. Although the Bayesian 

methods are used for about 15 years in the analysis of fusion experiments (Dinklage A., 2012) 

(Fischer, 2010) (von Toussaint, 2011) (Verdoolaege G., 2010) (van Milligen & al., 2011) 

(Fischer & al., Flexible and reliable profile estimation using exponential splines, 2006), the 

novelty of the overall method lies in the integration of the three steps listed above and in the 

design of comparison criteria between predicted and reconstructed quantities allowing the 

automation of the physical analysis. 

Another key interest of coupling Bayesian methods and integrated modelling tools is to provide a 

rigorous framework for propagating experimental uncertainties in simulations. This allows 

uncertainty quantification on quantities that may be difficult to obtain in a direct way from 

measurements. An original example of such uncertainty quantification on current diffusion 

simulations is described in this paper.  

In the present paper we are demonstrating our concept of automated comparison to dynamic 

simulations and simultaneous reconstruction of multiple profiles (namely electron density, 



electron and ion temperatures). We first include time dependence in the prediction of 

temperature profiles, i.e. the reconstruction part is time independent, but we aim at validating 1D 

heat transport models which implies solving the time-dependent transport equations. In addition 

to the heat transport model validation, data consistency is checked by a simultaneous 

reconstruction of the electron density, electron and ion temperature profiles and comparison to 

the measured diamagnetic energy content. The analysis is done for 21 Tore Supra and 14 JET 

shots. 

In the second application presented in this paper the analysis is fully time dependent, i.e. the 

reconstruction of the electron temperature profiles are done throughout the whole shot and used 

as an input to a current diffusion simulation. The statistics obtained by the Bayesian 

reconstruction of the electron temperature profiles is used to quantify the resulting uncertainties 

on current diffusion. Data consistency checks on the flux consumption and comparison to 

experimental MHD markers are then carried out in the frame of these uncertainties. This 

application is demonstrated for one Tore Supra and one JET pulse.    

 

Section 2 describes the Bayesian profile reconstruction of plasma profiles. Section 3 describes 

the integrated analysis tools used in the comparison. Section 4 describes the temperature profile 

reconstruction and validation of heat transport models. Section 5 presents the application of the 

developed system to the quantification of uncertainty on current diffusion. Conclusions are 

presented in the section 6. 

 

2. Reconstruction of plasma profiles 

 

2.1 Profiles involved in the analysis 

 

We carried out a reconstruction of three profiles: electron density and electron and ion 

temperatures. The three profiles are then used in the current diffusion model validation procedure 

and calculation of the diamagnetic energy discussed in this paper. 

 

2.2 Radial profile parameterization 

 

To parameterize a temperature profile, we used 3
rd

 order splines on the grid of normalized flux 

coordinate (ρ). Such parameterization gives us N+2 coefficients where N is the number of grid 

points (N values of splines in grid points, derivative values in the core and at the edge of the 

plasma). Given a toroidal geometry, the first derivative in the center is fixed to be 0. Thus we 

have N+1 parameters to describe the radial profile at a given time slice. The ρ values of the grid 

and the number of grid points N are calculated for every case so that there is a constant number 

of measurement points in between two grid points (4 measurement points for Tore Supra and 7 

for JET). Typically, N = 3 or 4 was resulting from this rule and we have tested that larger values 

would lead to overfitting. The last bin should contain twice more points as there are two 

parameters at the boundary to be estimated. 

 

  

2.3 Principles of Bayesian analysis 

 



The fundamental part of the Bayesian analysis is the Bayes’ formula that can be written as 

follows (Berger, 1985): 

 

       
           

    
 

(2.1) 

 

where A and B are some events and P(•) is the probability that the event occurs. 

We may think of A and B as of profile parameters and measurements (experimental data points) 

correspondingly: 

                       
                                

               
 

(2.2) 

 

 

Assuming that both the experimental data points and parameters are internally independent, we 

then can rewrite the equation 2.2 as follows: 

 

              
         

   
                  

              
 
   

 
   

      
 
   

 
(2.3) 

where n is the total number of data points D and k is the total number of profile parameters 

Params. 

The denominator of the equation 2.3 depends on experimental data only and it is equal to the 

integral of the numerator over the whole parameter space. 

 

We are looking for the posterior distribution of parameters (the spline coefficients described in 

the previous paragraph) given experimental data. Such distribution is defined by the following 

formula: 

 

              

   
           

                        

   
 

 

   

            

   

   

 (2.4) 

 

where Params are N+1 parameters described in the previous paragraph, Data are M 

experimental data points. 

The right hand side of the equation consists of two parts (a product over i and a product over j), 

the former is called likelihood, and the latter is a prior distribution. 

 

2.4 Diagnostics involved in the Profile Reconstruction 

 

In this work we reconstruct profiles for electron density, electron temperature and ion 

temperature. 

Two diagnostics are used in the electron density profile reconstruction, namely interferometry 

and Thomson scattering (TS). Interferometry (Gil & al., 2009) provides measurements of 

electron density integrated along lines of sight, while Thomson scattering provides local 

measurements (Beurskens & al., 2011). 

For the electron temperature profile reconstruction, Thomson scattering and electron cyclotron 

emission (ECE) diagnostics have been used. The ECE was used for the Tore Supra dataset only 



since its measurements are consistent with the Thomson scattering data, while for the JET 

dataset the diagnostic gives two branches of measurements for low-field side and high-field side 

parts and features some consistency issues with Thomson scattering.  

To reconstruct the ion temperature profile an active charge exchange diagnostic was used. 

 

 

2.5 Prior distribution and likelihood assumptions 

 

We assume that the prior probability distributions for the N+1 parameters of spline interpolation 

(described in II.a) are uniform, since we do not have a strong prior knowledge of the solution. 

 

The likelihood used in our analysis is normal as we assume the normality of the errors 

distribution for all the diagnostics. Since the prime focus of this work is not on sophistication of 

Bayesian analysis but rather on its combination and automated comparison with integrated 

modelling, no sophisticated modelling of e.g. the detector transfer function or other uncertainties 

e.g. uncertainty in diagnostic position or alignment have been taken into account in a detailed 

manner. These additional sources of errors are simply accounted for in the unique global error 

distribution.  

 

Further details on the assumptions, specific to the reconstructed quantity, are provided below. 

 

2.5.1 Electron density 

The error bars used for the electron density reconstruction are presented in table 1. Note that this 

anomalously high value for the JET interferometer error bar has been chosen to reduce the 

weight of some lines of sight which apparently have large systematic errors and could not be 

reconciled otherwise with the measurement of the other ones and the HRTS measurements (it 

can be a signature of plasma asymmetry). We chose not constant error bar for the high resolution 

Thomson scattering (HRTS) for JET data because the examination of the experimental 

measurements showed that the error bar at plasma edge tends to be higher than the one in the 

center. 

 

On Tore Supra, the Thomson scattering (TS) diagnostic has large error bars in its absolute 

calibration. Therefore an additional “recalibration” parameter is introduced in the Bayesian 

analysis. The TS measurements are simply multiplied by this scalar parameter (which does not 

change their relative values). The prior distribution for this recalibration parameter is chosen to 

be uniform with wide boundaries (from zero to ten) as we have no prior information on it. A 

typical posterior distribution for this parameter is shown in Fig. 1. 



 
Figure 1. Posterior distribution of the Thomson scattering recalibration parameter obtained for 

Tore Supra pulse 47176 at t = 8.1 s.  

 

Table 1. Error bars for the electron density reconstruction using the Bayesian analysis 

 
 Tore Supra JET 

Interferometry 5*10
17

 m
-3

 20% 

Thomson scattering 20% 10%*(central_density/measurement_density)
2
 

 

2.5.2 Electron temperature 

 

Boundaries of the prior distribution for each spline parameter are based on the temperature 

measurements. To be prudent about the outliers we define the center of the uniform distribution 

for a parameter as a median of the local measurements in the corresponding grid interval and 

then define the boundaries of the distribution as [0.5*median; 1.5*median]. Although one 

shouldn’t normally use measured data to define the prior in Bayesian theory, this shortcut 

provided a simple way to define an adequate prior distribution, without having to use much 

wider boundaries to avoid restricting the solution. The drawback of using very large boundaries 

is a penalty on the convergence time of the sampling of the posterior distribution (see 2.6). Since 

we are using a uniform prior distribution, the exact choice of the prior is anyway not critical for 

the solution as long as its boundaries are wide enough to describe the posterior distribution 

without cutting it. 

 

The error bars for electron temperature profile reconstruction are presented in the Table 2 below. 

All the error bars include but are not necessarily equal to the instrumental error bars. They were 

chosen by comparing models with different values of error bars using Bayesian methods and 

choosing among them the values of error bars that describe the experimental data in the best way 

(it is a so called model selection task in Bayesian analysis theory).  

 
 Tore Supra JET 



Thomson Scattering 20% + 0.1keV 20% + 0.1keV 

ECE 5% + 0.05keV Not used 

Table 2. Error bars for the electron temperature reconstruction using the Bayesian analysis 

 

2.5.3 Ion temperature 

 

For the ion temperature profile reconstruction instrumental error bars specified in the 

experimental database were used. They were typically of the order of 50-100 eV, representing 

less than 10%. 

 

 

2.6 Markov chain convergence 

Then using a Monte Carlo Markov chain (MCMC) algorithm (Andrieu & al., 2003) implemented 

in a Python module pymc (Pymc) which makes sampling from the posterior distribution 

according to the equation (2.4) we get the samples for all the parameters. The sampling is done 

with a Metropolis-Hastings algorithm. The step width is tuned during the burn-in period (which 

duration is equal to 20% of the total number of iterations) so that the acceptance ratio was not too 

low neither too high. The proposal distribution is symmetric. Convergence assessment is done 

primarily by looking at the sample path (Figure 2, left top plot), secondly by using Geweke 

diagnostic (Geweke, 1992). Autocorrelation has been assessed for every sample (Figure 2, left 

bottom plot) and it has been checked that it decays rapidly with the increase of the distance 

between the elements in the Markov chain. Finally, the length of the sample was chosen high 

enough (typically 50 000 samples) to allow the convergence to be reached and the MCMC error 

stay low. A thinning of the sampled Markov chain was done with the factor of 2. Although not 

efficient in terms of calculation time (the calculation time was of the order of a minute for one 

profile), it is important in the frame of an automated and systematic analysis to make it robust 

and to minimize the number of cases where the convergence would not reached due to too small 

sample length. 

Figure 2 and 3 show sampling results for one of the coefficients in the reconstruction of electron 

density profile for the JET shot 77922. The upper left plot shows the trajectory of the sample 

(values of the parameter calculated at each iteration of the MCMC algorithm). The sampling 

reaches rapidly a stationary state, indicating that the Markov chain has converged. The bottom 

left plot shows the autocorrelation and we can see that the dependence between two values of the 

Markov chain vanishes quickly enough (one of the properties of Markov chains) and the right 

plot shows the final histogram of the sample.  



 
Figure 2. Sample of one of the coefficients in the reconstruction of an electron density profile 

for the JET shot 77922: the upper left plot shows the trajectory of the retained sample (value of 

the parameter calculated at each iteration of the MCMC algorithm, after thinning and without 

the burn-in period, as a function of the iteration). The bottom left plot shows the autocorrelation 

(the abscissae show the distance between the elements for which the autocorrelation function is 

calculated, i.e. from the thinned trace). The right plot shows the histogram of the sample. This is 

a case of good convergence of the Markov chains. 

 

 
Figure 3. Same as figure 2, but showing the trace including the burn-in period and without 

thinning.  

 



Based on the samples obtained, we can calculate statistics on any quantities of our interest (for 

example, peaking and line-average temperature). The statistics also gives us 95% highest 

probability density intervals, equivalent in our case to 95 % credible intervals, which are used in 

the comparison with the temperature profile predictions. Further in the paper we will discuss the 

model used for the prediction of electron temperature profile and current diffusion. 

 

 

3. Integrated modelling tools 

 

The novelty of the developed expert system lies in the systematic and automated comparison of 

plasma reconstruction results with models. In this work, heat transport models predictions are 

compared to experiments, via the resolution of heat transport equations within an integrated 

modelling code. A fast integrated modelling code, METIS (Artaud & al., 2010), has been used. 

The key feature of METIS is to solve the heat transport equations in a simplified way, separating 

the treatment of the time and radial dimensions to be faster than real time (more details are given 

in section 4.1). Although in principle any other integrated modelling tool could have been used, 

the speed and robustness of METIS are key advantages in view of automated analysis of a large 

amount of data.  

 

The expert system that is discussed in this work has been implemented within the framework of 

the European Integrated Tokamak Modeling Task Force (ITM-TF) (Falchetto & al., 2014). The 

two main motivations for this choice are i) the ITM-TF data Model is tokamak-generic (Imbeaux 

& al., 2010), thus the methods can then be applied to any experiment ii) the link with integrated 

modelling tools, namely equilibrium identification codes and METIS for this particular 

application. Moreover, the ITM-TF framework provides also methods for accessing data from 

various experiments, Tore Supra and JET in this application.   

 

 

4. Temperature profile reconstruction and validation of heat transport models 

In this section we develop automated comparison criteria between reconstruction and modelling 

for the detailed shape of temperature profiles. One of the simple heat transport models used in 

METIS, with three variations of one of its parameters, is tested against a chosen experimental 

dataset. This illustrates an application of the method to model validation.  

 

4.1 Heat transport and prediction of temperature profiles in METIS 

 

The METIS code implements a simplified treatment of the heat transport equation in order to be 

a faster-than-real-time transport solver (an ITER pulse is simulated in about 1 minute of CPU 

time). To achieve this performance, METIS treats separately the time and radial dimensions of 

the transport equation. The time dimension is treated by solving a simple 0D equation for the 

plasma thermal energy content Wth: 

 
    

  
  

   

  
       (4.1) 

 



where τE is energy confinement time, and Ploss is the total power transported through the plasma 

separatrix by diffusion or convection mechanisms. 

The radial dimension is treated by solving a 1D time independent transport equation for the 

electron and ion temperature profiles: 

 

   

  
 

      
 

 

             
  

   

  
 

      
 

 

             
  

(4.2) 

 

where Qe and Qi are the sums of all the electron and ion heat source terms, including the 

equipartition term Qei that is proportional to (Te-Ti);    is derivative of the plasma volume 

enclosed in a magnetic surface with respect to the normalised minor radius x, while         is 

the surface average of the squared gradient of the toroidal flux coordinate. The diffusion 

coefficients e and i are assumed to be as follows: 

 

                 if KE>0  

          if KE=0 

               if KE<0 

           

(4.3) 

 

where μe,i is a scalar that is prescribed to be constant. Three different values of the parameter KE 

are used in this work in order to test the automated comparison with three different heat transport 

model assumptions. The constant κ0 is found by solving the following equation, which allows a 

normalization of the temperature profiles to the thermal energy content of the experiment: 

 

 

 
     

   

  
  

 

 

    
   

  
  

 

 

   

 

   

          (4.4) 

Where W0 is an offset related to the pressure boundary condition at the LCFS. 

 

The electron density profile is calculated from simple scaling expressions for its edge value and 

peaking factor (using a model that assumes that the peaking factor is proportional to the ratio 

between saturation density and average density), while being constrained to follow the 

experimental line averaged density. 

 

Although METIS is predicting both the electron and ion temperatures, we focus the comparison 

on the electron temperature since it is measured during the whole pulse while we have very few 

Ti measurements from charge exchange in our L-mode/ohmic data set.  

 

 

4.2 Steps of the analysis 

 

The analysis was done in the following steps: 



1. we first run the METIS code for the whole duration of the pulse to get predictions of 

electron and ion temperature profiles for three models of electron diffusion coefficient 

(see Formula 4.3) 

2. we run an equilibrium identification code (Equinox (Blum & al., 2012) in this 

application) to have a description of plasma equilibrium 

3. map experimental measurements on the equilibrium 

4. run Bayesian analysis 

5. Run comparison of predicted (step 1) and reconstructed (step 4) temperature profiles  

 

4.3 Database for the analysis 

 

A database of 21 Tore Supra (Table 3) and 14 JET (Table 4) shots has been selected. We chose 

one time slice per shot to perform the analysis in a stationary phase (i.e. plasma pressure does not 

evolve over several characteristic transport times). All analyzed time slices were taken in ohmic 

or L-mode phases of the discharge. Summary tables for the Tore Supra and JET databases are 

presented below. 

 

 

 

 

 
Table 3: Summary of the shots characteristics for the Tore Supra dataset: the data are taken 

from the METIS code, which in turn takes it from the Tore Supra database (the central density is 

estimated based on the peaking factor scaling laws, the central temperature is estimated based 

on the solution of time-independent transport equation). 

 

Shot Time, s

Toroidal 

field, T

Plasma 

current, MA

Central electron 

temperature, keV

Central density, 

x1019, m-3

NBI power, 

MW

LH power, 

MW

ICRH power, 

MW

Ohmic heating 

power, MW

45175 9.5       3.84       1.00              1.32                           7.47                       0.00 1.47 0.00 1.42

45552 9.5       3.84       1.00              1.82                           3.79                       0.00 0.59 0.00 0.84

46982 11.1    3.83       0.61              1.64                           2.75                       0.00 1.82 0.00 0.28

47011 10.0    3.84       1.00              1.69                           4.94                       0.00 0.00 0.72 1.20

47067 10.0    3.79       0.71              1.94                           3.12                       0.00 3.05 0.00 0.16

47092 10.0    3.74       1.00              1.78                           4.81                       0.00 0.00 0.83 1.10

47096 4.0       3.74       1.00              1.47                           4.49                       0.00 0.00 0.00 1.41

47160 3.3       3.84       1.00              1.53                           4.06                       0.00 0.00 0.00 1.17

47170 8.6       3.69       1.00              2.37                           3.78                       0.00 0.00 0.00 0.75

47171 9.7       3.69       1.00              2.23                           3.46                       0.40 0.00 0.00 0.73

47310 27.6    3.77       0.70              1.97                           3.13                       0.56 0.13 0.00 0.44

47324 10.5    3.81       1.06              2.70                           5.82                       0.62 1.44 0.00 0.61

47327 10.5    3.81       1.07              2.87                           5.80                       0.00 1.69 0.00 0.50

47654 12.1    3.78       0.91              2.93                           3.96                       0.60 3.77 0.00 0.23

47657 10.0    3.78       1.50              2.06                           5.90                       0.00 0.83 0.00 1.30

47658 4.0       3.77       1.30              2.48                           5.27                       0.00 2.34 0.00 0.75

47659 5.0       3.78       1.30              2.33                           5.51                       0.00 2.74 0.00 0.57

47663 7.9       3.78       1.21              3.24                           5.28                       0.59 4.28 0.00 0.45

47666 11.0    3.78       1.50              1.40                           5.23                       0.00 4.06 0.00 0.58

48102 3.1       3.68       1.00              2.45                           2.82                       0.00 0.00 0.00 0.75

48317 10.2    3.74       0.71              2.93                           3.86                       0.00 3.76 1.48 0.17



 
Table 4: Summary of the shots characteristics for the JET dataset: the data are taken from the 

METIS code (the central density is estimated based on the peaking factor scaling laws; the 

central temperature is estimated based on the solution of time-independent transport equation). 

The shots ##75225-77933 are the ones with carbon wall and the shots ##82120-84796 are the 

ones with ITER-like wall. 

 

4.4 Development of automated comparison for Tore Supra and JET 

 

Here METIS is used in a purely predictive way, we are not using any of the reconstructed 

profiles as input and thus we do not have prior distribution of the inputs: the result of METIS is a 

pointwise prediction. Therefore we are basing the comparison on checking whether this 

pointwise prediction lies within or very close to the 95% highest probability density (HPD) 

interval provided by the Bayesian analysis for various quantities that characterize the 

temperature profile shape. The situation would have been different if we would have reused e.g. 

the reconstructed electron density profile as an input to METIS. In that case it would be possible, 

from the probability distribution of the input, to obtain a probability distribution of the model’s 

response and to use acceptance criteria based on the comparison of the two distributions. Note 

that such an approach would have been computationally much more intensive and thus less 

attractive in view of a systematic application to experiments.  

 

The comparison criteria are based on the 95% HPD intervals of various quantities that are 

characteristic of the accuracy of the transport model, typically the capability to predict correctly 

the temperature and its gradients. Although the comparison criteria have been established from a 

human experience of what is considered as an acceptable agreement in tokamak transport 

modelling, they have been “calibrated” in the sense that they have been designed on a few pulses 

from our dataset and then applied to the full dataset, with a verification that the resulting 

classification is still consistent with a human judgement of the comparison. The dataset 

considered here is too small anyway to apply an automated classification scheme.  

 

Shot Time, s

Toroidal 

field, T

Plasma 

current, MA

Central electron 

temperature, keV

Central density, 

x1019, m-3

NBI power, 

MW

Ohmic heating 

power, MW

75225 47.5    2.03         1.69               4.55                           3.87                       7.34 0.61

77895 43.0    2.69         1.47               1.05                           1.88                       0.00 0.92

77914 45.0    2.32         2.43               1.94                           2.12                       0.00 1.33

77922 45.4    2.32         2.25               1.45                           2.14                       0.00 1.46

77933 45.8    2.34         2.65               1.52                           2.38                       0.00 1.99

82120 47.9    2.20         1.97               1.39                           3.62                       0.00 1.61

82536 52.9    2.69         2.45               1.81                           4.32                       0.00 2.06

82541 52.0    2.64         2.46               1.51                           5.05                       0.00 4.23

84541 43.5    1.73         1.57               1.11                           2.11                       0.00 1.23

84543 43.5    1.73         1.57               1.10                           2.08                       0.00 1.21

84545 43.5    1.73         1.57               1.12                           2.10                       0.00 1.20

84792 43.5    1.73         1.58               1.06                           2.09                       0.00 1.19

84795 43.5    1.72         1.59               1.04                           2.08                       0.00 1.19

84796 43.5    1.72         1.58               1.11                           2.08                       0.00 1.17



The discrepancy estimators used for the automated comparison involve the local temperature 

values but also the slope of the profiles via a “gradient” and peaking factor discrepancy 

estimators: 

 relative gradient discrepancy: a ratio between minimal distance of profile gradient 

predicted by METIS and one of its 95% HPD boundaries (the “gradient” is calculated as 

T(0.3) – T (0.7) / rho(0.3) – rho(0.7) between =0.3 and =0.7) 

 relative peaking discrepancy: a ratio between minimal distance of predicted peaking 

factor (a ratio between central temperature and the average one) and one of its 95% HPD 

boundaries 

 relative integral discrepancy: a ratio between minimal distance of METIS line-average 

integral and one of its 95% HPD boundaries 

 relative squared profile discrepancy on the interval [0; 0.8] for the normalized flux 

coordinate : a sum of squares of ratios between predicted profile and the closest 

boundary of 95% HPD interval (0 if the predicted profile is within the HPD interval 

boundaries) 

 

These discrepancy estimators are equal to zero when the related quantity predicted by METIS is 

within the 95 % boundaries of the reconstructed experimental profile. A small tolerance has been 

added in the “comparison acceptance” criteria from the consideration of a few Tore Supra cases 

which were marginally outside of the 95 % HPD and would have been accepted in a “by the 

eyes” comparison.  

 

In addition to these comparison discrepancy estimators, the quality of the experimental profile 

reconstruction is judged from the width of the 95 % HPD interval for gradient of the 

reconstructed profile: a ratio between upper and lower bound of the 95% HPD for gradient. If it 

is too high, it may point to troubles in the experimental data. 

 

The exact value of the criteria used to consider the agreement as acceptable (see Table 5) have 

been derived from a few pulses from the Tore Supra database only. Then they have been applied 

as such to the full dataset (including JET pulses). They also provided a satisfying classification 

of the various pulses for the JET case, which emphasizes the tokamak-generic character of the 

analysis. 

 

 

Quantity Value 

relative gradient discrepancy  3% 

relative peaking discrepancy  2% 

relative integral discrepancy  8% 

relative squared profile discrepancy on the 

interval [0; 0.8] 
 0.06 

width of the HPD interval for gradient  3 

Table 5: Summary of the analysis criteria to classify the agreement as “acceptable” 

 

Examples of acceptable and not acceptable quality agreement are shown correspondingly on 

Figures 4 and 5. Figure 4 illustrates a case where the predicted electron temperature profile lies 

on almost all radial points within 95% highest probability range or is very close to it and 



therefore the analysis concludes that the predictions and experimental data are in agreement. 

Conversely, on Figure 5 is shown an example of not acceptable agreement. The predicted 

electron temperature profile is visibly significantly outside of the 95 % HPD range and the 

profile slope is also strongly outside its 95 % HPD range.  

 

 
Figure 4: Example of acceptable agreement: electron temperature profile for the shot 47171. Left 

plot shows the mean (read) profiles and 95% HPD interval (blue area) obtained by Bayesian 

analysis and METIS result (dashed magenta line); right plots show distribution for the peaking 

factor and average integral, their 95% HPD interval (range between dashed lines) and the 

METIS values (red lines). 

 



 
Figure 5: Example of not acceptable agreement: electron temperature profile for the shot 47092. 

Left plot shows the mean (read) profiles and 95% HPD interval (blue area) obtained by 

Bayesian analysis and METIS result (dashed magenta line); right plots show distribution for the 

peaking factor and average integral, their 95% HPD interval (range between dashed lines) and 

the METIS values (red lines). 

 

4.5 Application of the method for model validation 

 

Using the criteria derived in the previous part, we applied the analysis for the diffusion 

coefficient model validation. We used three models as per Formula 4.3 with KE equals to 3, 0, 

and -1.5. The results of our analysis are presented in the Tables 6 and 7 for Tore Supra and JET 

correspondingly.   

 



 
Table 6: Results of the automated comparison for Tore Supra database with three METIS runs: 

with KE equals to 3, 0, and -1.5. “OK” means that the agreement is acceptable, “NO” 

corresponds to not acceptable agreement. 

 

 
Table 7: Results of the automated comparison for JET database with three METIS runs: with KE 

equals to 3, 0, and -1.5. “OK” means that the agreement is acceptable, “NO” corresponds to not 

acceptable agreement. 

 

A summary on the results of our analysis is presented in the Table 8. We may see that all three 

models for diffusion coefficient as per Formula 4.3 with KE equals to 3, 0, and -1.5 give not 

acceptable agreement in most of cases. 

Shot 3 0 -1.5

45175 OK NO NO

45552 NO NO NO

46982 NO NO NO

47011 NO NO NO

47067 NO NO NO

47092 OK NO NO

47096 OK NO NO

47160 NO NO NO

47170 NO NO NO

47171 OK NO NO

47310 NO NO NO

47324 NO NO NO

47327 NO NO NO

47654 NO NO NO

47657 NO OK NO

47658 NO NO NO

47659 NO NO NO

47663 NO NO NO

47666 NO NO NO

48102 NO NO NO

48317 NO NO NO

KE

Shot 3 0 -1.5

75225 NO NO NO

77895 NO NO NO

77914 NO NO NO

77922 NO NO NO

77933 NO NO NO

82120 NO NO NO

82536 NO NO NO

82541 OK NO OK

84541 OK OK NO

84543 NO NO NO

84545 NO NO NO

84792 NO NO NO

84795 NO NO NO

84796 NO NO NO

KE



 
Table 8: Summary table on results of the automated comparison for Tore Supra and JET 

databases with three METIS runs: with KE equals to 3, 0, and -1.5. 

 

The conclusion of this analysis is the following: first no pulse/time slice has been rejected from 

too large width of the gradient HPD interval, which indicates that all experimental temperature 

profile reconstructions could be done in a successful way. Second, all three options tested for the 

transport model poorly fail to adequately reproduce the experimental profiles in most cases, 

although the first option (KE = 3, i.e.                  as per Formula (4.3)), has slightly 

better statistics than the others (20 % of successful cases on the Tore Supra dataset, 14 % on the 

JET data set). This is not surprising, since the heat transport models used in METIS are rather 

simplistic while our comparison criteria were rather demanding in terms of agreement quality on 

the value and shape of the temperature profiles. While such simplified, scaling-based models are 

usually sufficient for fast scenario simulation (the main purpose of the METIS code), more 

sophisticated and first-principles based models are necessary for a detailed prediction of the 

temperature profile shape. Although it would require a longer computation time, it would be 

possible to apply the same automated comparison method and criteria replacing METIS with a 

classical Integrated Modelling suite such as CRONOS (Artaud & al., 2010) enabling solving 

rigorously the heat transport equations with advanced heat transport models.  

 

4.6 Data consistency check of multi-profiles reconstruction with the energy 

content 

 

The Bayesian reconstruction of the Te, Ti and Ne profiles already allowed for consistency 

checks for each profile. An interesting further check is to verify their overall consistency at a 

global level, namely by checking the plasma energy content. From these profiles and 

assumptions on the ion species densities, one can reconstruct with Bayesian statistics the thermal 

energy content 

    
 

 
                           

  

  
    (4.5) 

where  is the normalized toroidal coordinate, V is the volume enclosed within the surface of 

coordinate , ne, Te, ni, Ti are electron density, electron temperature, ion density and ion 

temperature profiles respectively.  

The ion densities are calculated by METIS assuming the proportionality to the electron densities 

profiles, the coefficient of proportionality is calculated from the condition of electroneutrality 

which takes into account the effective charge (experimental one for the Tore Supra shots and the 

one calculated using the scaling law from (Cordey, 1985)), composition of the plasma 

(Deuterium in all cases) and the impurity accumulation (calculated using neoclassical simplified 

Tokamak Agreement 3 0 -1.5

Tore Supra Acceptable 4 1 0

Not acceptable 17 20 21

21 21 21

JET Acceptable 2 1 1

Not acceptable 12 13 13

14 14 14

KE

Total

Total



formula depending on density peaking and temperature peaking from (Helander & Sigmar, 

2002)). 

The thermal energy is not measured directly but can be compared to the diamagnetic energy 

content measurement, provided an assumption (or a modelling) of the fast particle contribution to 

the diamagnetic energy. This can again be estimated by METIS (or any other integrated 

modelling code). The comparison can be used or interpreted in two ways, either as a data 

consistency check if the models have been validated for the conditions of the pulse or as a model 

validation check. 

The dataset of Tore Supra and JET shots used for the calculation of the diamagnetic energy 

content is presented below (table 9). 

 

 

 
Table 9: Summary of the shots characteristics for the dataset for the calculation of the 

diamagnetic energy content: the data are taken from the METIS code (the central density is 

estimated based on the peaking factor scaling laws, the central temperature is estimated based 

on the solution of time-independent transport equation). The JET shot #75225 is one with carbon 

wall. 

 

To calculate the probability distribution of the thermal energy we used the statistics obtained in 

the profile reconstruction part for all the coefficients of electron density, electron and ion 

temperature profiles. We then approximated the statistics of every coefficient with the 

continuous distribution functions using kernel density estimation technique. Using the 

Metropolis-Hastings algorithm we sampled from the continuous distribution functions to obtain 

the probability distribution for thermal energy. We calculated 95% highest probability ranges 

and compared them to the measured diamagnetic energy content minus the modelled fast particle 

energy. The quality of the agreement is determined. When this quantity is within the Bayesian 

range or when the discrepancy with respect to its closest bound does not exceed the uncertainty 

of the diamagnetic energy (typically 10 %), the quality of the agreement is judged to be 

acceptable. If the discrepancy is between 10 and 20 %, the agreement is judged marginally 

acceptable, while it is “not acceptable” if the discrepancy exceeds 20 %.  

This procedure has been applied to selected time slices from four Tore Supra shots and three 

time slices of a JET shot. The results of the comparison are presented in the Table 10. 

 

 

  

Tokamak Shot Time, s

Toroidal 

field, T

Plasma 

current, 

MA

Central 

electron 

temperat

ure, keV

Central 

density, 

x1019, m-3

NBI 

power, 

MW

LH 

power, 

MW

Ohmic 

heating 

power, 

MW

Tore Supra 47655 10.3 3.77 0.61 2.37 3.39 0.41 4.59 0.02

Tore Supra 47656 10.4 3.78 1.21 3.75 4.82 0.62 4.48 0.42

Tore Supra 47176 8.1 3.38 1.30 1.91 5.38 0.59 0.00 1.16

JET 75225 5.0 2.04 1.75 3.65 2.36 7.08 0.00 0.60

JET 75225 7.5 2.03 1.69 5.40 3.85 7.35 0.00 0.44

JET 75225 10.0 2.02 1.68 5.51 3.63 7.18 0.00 0.24



 
Table 10: Summary table on results of the quantification of uncertainty on energy content. The 

columns G and H indicate the 95% highest probability range for Wth obtained by sampling from 

the reconstructed profiles. The column F presents the values of the thermal energy as difference 

between the measured diamagnetic energy (from local tokamak database) and fast particles 

energy calculated by the NEMO (Schneider & al, Simulation of the neutral beam deposition 

within integrated tokamak modelling frameworks, 2011) and the SPOT (Schneider & al., On 

alpha particle effects in tokamaks with a current hole, 2005) codes. The last column contains the 

discrepancy between the closest bound of the HPD range (columns G and H) and the column F 

(if the values from the column F are outside the range). 

 

The six analyzed time slices indicate a good agreement, thus confirming the consistency of the 

profile reconstructions.  

 

 

5. Quantification of uncertainty on current diffusion 

Simulations of current diffusion using prescribed temperature and density profiles obtained from 

experimental measurements is the basic kind of analysis carried out for a tokamak pulse. It 

allows in particular obtaining details of the current profile that are not always measured with 

enough details in some experiments. Current diffusion results strongly depend, among other 

parameters, on the electron temperature profile through the neoclassical resistivity. Therefore 

uncertainties in the electron temperature profile reconstruction (which is fed as an input to such 

“interpretive” simulations) have a large impact on the results of the current diffusion. In this 

paragraph, we present an application of our automated analysis ideas to the quantification of the 

uncertainties on current diffusion. 

 

5.1 Steps of the analysis 

 

To validate current diffusion models we continued our analysis in the following way (for a given 

plasma discharge): 

 

1. We reconstruct the electron temperature and density profiles from Bayesian analysis for 

multiple time slices of the discharge, covering its full duration with a time slice every 0.1 

s. Time slices are analyzed independently and no attempt is made to correlate 

measurements in time. 

2. we made three METIS simulations of the whole plasma discharge using the following 

types of electron temperature profiles: the mean profiles, the upper bound of 95% highest 

probability density interval profiles (i.e. “the highest possible profiles”), and the lower 

from to Quality
A B C D E F=D-E G H F vs. closest G or H of agreement

Tore Supra 47655 10.3 260.0 0.0 260.0 261.8 293.1 1% OK

Tore Supra 47656 10.4 472.4 0.0 472.4 459.0 522.7 0% OK

Tore Supra 47176 8.1 336.7 0.0 336.7 296.9 345.9 0% OK

JET 75225 5.0 2309.7 1420.0 889.7 895.6 1037.0 1% OK

JET 75225 7.5 4687.1 1450.0 3237.1 2984.9 3565.3 0% OK

JET 75225 10.0 4851.8 1460.0 3391.8 3286.5 4056.3 0% OK

Wth

(Wdia-Wfast), 

kJ

Wth (bayesian 

range), kJ

Discrepancy, %Tokamak Shot

Time 

slice, s

Wdia (local 

database), 

kJ

Wfast (NEMO 

and SPOT 

codes), kJ



bound of 95% highest probability density interval profiles (i.e. “the lowest possible 

profiles”) For all the simulations we use the mean electron density profiles. At every time 

slice, the simulation with the highest temperature will also have the lowest flux 

consumption (lowest resistivity and highest non-inductive current drive efficiencies) and 

the slowest current diffusion, therefore representing the lowest/slowest possible result 

given the uncertainty on the electron temperature profile.  

3. we made a comparison of the poloidal flux consumption trends and MHD activity 

markers obtained from three runs with the experimental one. Here the comparison is 

made on the appearance time of sawteeth on the ECE diagnostic and the occurrence time 

of the q = 1 surface in the simulation.  

 

 

5.2 Prediction of current diffusion 

 

The current diffusion model in METIS is the same as was implemented in CRONOS 1.5D code 

(Artaud & al., 2010) (Hinton & al., 1976). It solves the following equation for the poloidal flux 

 on a uniform normalized toroidal flux coordinate norm grid (which consists of 21 nodes from 

norm = 0 (magnetic axis) to norm = 1 (last closed flux surface) and does not depend on time): 

 

   

  
 
     

 
 
     

   

      
  

 

   

   

      
   

 
     

   

      
  

 

   

 

      
    

  

      
 
     

   

 
    

     

  

   

  
 

     

   

   

  
 

  

      
  

  

    
 

   
      

(5.1) 

 

where  
  

  
 
     

 is a time derivative of the poloidal flux at a given radial position      ,     

denotes the parallel conductivity (calculated according to the Sauter model (Sauter & al., 1999)), 

F is the diamagnetic function, jni is the current density driven by the non-inductive sources, R is 

the major radius, 0  is the magnetic permeability of free space,    the value of the un-

normalised toroidal flux coordinate  at the last closed flux surface, B0 the value of the toroidal 

magnetic field involved in the definition of the toroidal flux coordinate and the normalised 

toroidal flux coordinate 
m

norm



  . The notation  indicates a magnetic flux surface average, 

defined as the volume average of a quantity around a flux surface of radial coordinate , i.e. in 

an elementary volume dV enclosed between two magnetic surfaces distant of d
The line-average effective charge measurement from bremsstrahlung is used to prescribe the 

effective charge, assuming a flat profile. 

Non-inductive current drive external sources (NBI for the JET shot, LHCD for the Tore Supra 

one) are calculated self-consistently by the models included in METIS. The model for LHCD 

efficiency is the empirical model described in (Goniche & al, 2005). 

METIS also implements a sawtooth model that accounts for the time-averaged effects of 

sawteeth. Applied here to the current diffusion, it prevents the q-profile from going below 1 by 

clamping it to the q = 1 surface.  

 



5.3 Results 

 

First we analyse Tore Supra pulse #47658, an L-mode pulse featuring two plateaus of LHCD 

power, (~4.5 MW from t = 5 to 10 s, then ~3.3 MW from t = 10 to 12 s, see fig. 6).   

 

 
Figure 6: Overview of the Tore Supra shot #47658. The upper plot shows plasma current and its 

components throughout the length of the shot. The middle plot shows the heating scheme. The 

bottom plot shows other important parameters like loop voltage, li, p 

 

A first global analysis of the flux consumption is shown on the Figure 7. The flux consumption 

of the simulation using the mean temperature profiles are in excellent agreement with the 

experimental measurement, which provides a simultaneous validation of the current diffusion 

model used (including the LH current drive efficiency) and the reconstructed Te profiles during 

the various phases of the pulse. The two other simulations with highest and lowest profiles in the 

95% HPD interval introduce a confidence interval around the simulation with mean profiles. 

Nonetheless such a global view is integrating the instantaneous flux consumption over the whole 

pulse. There can be cases where the flux consumption is overestimated during a particular phase 

of the pulse, then this overestimation is later on compensated by an underestimation of the flux 

consumption in another phase, always staying within the confidence interval. Therefore the 

global analysis should be supplemented by an instantaneous analysis of whether the modelled 

flux consumption is consistent with the confidence interval of the electron temperature at a given 

time slice. To do this, we have calculated the time derivative of the consumed flux and smoothed 

it using Savitzky-Golay filtering procedure implemented in MATLAB (MathWorks, 2014), with 

polynom order = 2 and a window with is equal to 51 points for the JET pulse and 5 for the Tore 



Supra shot (the difference comes from the fact that the JET METIS run has a higher time 

resolution than the Tore Supra one). The results are presented on Figure 8. 

 
Figure 7: Consumed poloidal flux comparison for the Tore Supra shot #47658. The blue lines 

shows the results of the METIS run with HPD interval profiles as an input; the red line is the 

result of the METIS run with the mean profiles as an input. The greed line is the experimental 

measurements. Note that the offset poloidal flux consumption is unknown thus it was determined 

as the difference between the mean METIS run and experimental trend in the beginning of the 

shot. 



 
Figure 8: Comparison of filtered time derivatives of the consumed poloidal flux for the Tore 

Supra shot #47658. The blue lines shows the results of the METIS run with HPD interval profiles 

as an input; the red line is the result of the METIS run with the mean profiles as an input. The 

green line is the experimental measurements. 

 

To develop an automated method for the comparison of derivatives of consumed flux we 

calculated the discrepancy between i) the experimental values and the closest boundary of the 

highest probability density range and ii) the experimental values and the mean temperature 

simulation. The discrepancy then was normalized to the maximum loop voltage that would be 

obtained in a steady state where the current would be fully inductively driven, which is equal to 

the plasma current times plasma resistivity (estimated using the mean electron temperature). The 

results are presented on the Figure 9. The first discrepancy estimator is zero when the flux time 

derivative within the confidence interval and therefore allows determining whether the 

experimental flux consumption is within or outside the Te errorbars. The second one allows the 

relevance of a single simulation, done with the mean Te. The normalized discrepancy is chosen 

instead of the relative discrepancy, for two reasons. First, in phases with large non-inductive 

current drive, the flux consumption tends towards zero, making the relative discrepancy very 

large. Moreover, in such a case, the discrepancy would be due essentially to the non-inductive 

current models, for which the temperature dependence is weaker than for the resistive flux 

consumption in ohmic phases, i.e. the discrepancy has less probability to arise from the electron 

temperature uncertainties.  



A threshold of +/- 0.3 is chosen to define an acceptable agreement in the automated comparison 

process. This value is chosen so that the system would detect the flux consumption deviation 

between the experiment and the simulation with mean Te occurring around t = 12 s on this Tore 

Supra case. Indeed, a human judgment of figure 7 would conclude that this is the only time 

where a significant deviation is observed. The idea is that the comparison criterion value 

provides the same conclusion, in a quantified way so that it can be automatized.   

 

 

 Figure 9: Normalized discrepancy between experimental values for the consumed flux 

derivative and the closest boundary of the highest probability density range simulations (in blue) 

and the normalized discrepancy between experimental values and the mean simulation (in red) 

for the Tore Supra shot #47658. The cyan lines show the boundaries of acceptable agreement 

(+/- 0.3). 

 

For the Tore Supra case, the discrepancy with the confidence interval (red curve on Figure 9) is 

almost always within the acceptability threshold, indicating that the experimental flux 

consumption is consistent with the electron temperature uncertainties. It does not imply that the 

Te uncertainties are necessarily the cause of the discrepancy between experiment and the mean 

Te simulation, but they could potentially explain it. 

When the discrepancy with the confidence interval is within the acceptability threshold, one can 

use the two HPD simulations to determine the confidence interval on the safety factor profile. 

This is illustrated for the Tore Supra case at t = 2 s in figure 10.  



 
Figure 10: q-profiles at t = 2 s for the Tore Supra shot #47658. The red line corresponds to the 

METIS simulation with the mean Te profiles. The two blue lines correspond to the METIS 

simulations with the highest and lowest possible Te profiles 

 

We can also verify that MHD markers dynamics, e.g. the time of appearance of sawteeth, are 

consistent with the confidence interval (table 11). 

 

 

 
 Table 11: Summary table on results of the comparison of sawteeth onset time for the Tore 

Supra shot #47658. The second column indicates what type of temperature profiles are used as 

an input to the METIS code. The experimental sawteeth onset time is determined from ECE 

Shot

Te profiles 

used in METIS

Sawteeth 

onset time, s

TS@47658 HPD up 3.4

mean 2.3

HPD low 1.8

Experiment 1.9



measurements, while in METIS it is determined by the onset of the q-profile clamping to the q = 

1 surface.   

 

We now apply the same analysis to the carbon wall JET shot #75225 (hybrid scenario). An 

overview of its scenario is shown on the Figure 11. A high level of NBI power is injected just 

after a plasma current overshoot in order to optimize the current profile and freeze it as long as 

possible during the H-mode phase (from t ~ 45 s to 50.5 s). The flux consumption in this phase is 

close to 0, owing to almost fully non-inductive current drive. It is even negative (transformer 

recharge) during the reduction of the plasma current after the overshoot.  

 

 
Figure 11: Overview of the JET shot #75525. The upper plot shows plasma current and its 

components throughout the length of the shot. The middle plot shows the heating scheme. The 

bottom plot shows other important parameters like loop voltage, li, p 

 

Applying the same procedure as in the Tore Supra case, a set of three simulations is carried out 

using the recommended Zeff processing that can be found in the JET database, namely the values 

in PPF/KS3/ZEFV, corresponding to a vertical line of sight of bremsstrahlung measurement. The 

results are indicated on the Figures 12-14 (the consumed flux, the time derivative, and the 

absolute discrepancy).  



 
Figure 12: Consumed poloidal flux comparison for the JET shot #75225. The red line 

corresponds to the METIS simulation with the mean Te profiles. The two blue lines correspond 

to the METIS simulations with the highest and lowest possible Te profiles. The green line is the 

experimental flux consumption. Offset calculated at the initial time of the simulation and profile 

reconstruction 

 



 
Figure 13: Comparison of filtered derivatives of consumed poloidal flux for the JET shot 

#75225. The blue lines shows the results of the METIS run with HPD interval profiles as an 

input; the red line is the result of the METIS run with the mean profiles as an input. The green 

line is the experimental measurements 

 



 
Figure 14: Normalized discrepancy between experimental values for the consumed flux 

derivative and the closest boundary of the highest probability density range simulations (in blue) 

and the relative discrepancy between experimental values and the mean simulation (in red) for 

the JET shot #75225. The cyan lines show the boundaries of acceptable agreement (+/- 0.3). 

  

In this case, the discrepancy between the experimental values and the HPD range simulations 

(the blue line on the Figure 14) stays within the acceptable threshold throughout the whole pulse 

except for the transitional phases where the neutral beam injection was switched on and off 

(around t = 5 s and t = 11 s) and a few time slices in between where the discrepancy is 

explainable by the noise in the effective charge measurements. 

Figure 15 illustrates the confidence interval on the q-profiles obtained at t = 7.0 s. Table 12 

shows the comparison with the sawteeth onset time, which appear in the experiment at a time 

consistent with the determined errorbars of the simulation.  

 



 
Figure 15: q-profiles at t = 7.0 s for the JET shot #75225. The red line corresponds to the 

METIS simulation with the mean Te profiles. The two blue lines correspond to the METIS 

simulations with the highest and lowest possible Te profiles. 

 

 

 

 
Table 12: Summary table on results of the comparison of sawteeth onset time for the JET shot 

#75225. The second column indicates what type of temperature profiles are used as an input to 

the METIS code. The experimental sawteeth onset time is determined from HRTS 

measurements, while in METIS it is determined by the onset of the q-profile clamping to the q = 

1 surface.   

 

 

 

 

 

6. Conclusion  

 

Shot

Te profiles 

used in METIS

Sawteeth 

onset time, s

JET@75225 HPD up 8.0

mean 5.4

HPD low 4.6

Experiment 5.2



The present work was devoted to the development of an automated comparison method between 

Bayesian reconstruction of plasma profiles and time dependent solutions of the transport 

equations. Two major applications have been shown: the former is aimed at comparing electron 

and ion temperature profiles to heat transport modelling. This quite classical type of analysis has 

been fully automated and the highest probability density intervals coming from the Bayesian 

reconstruction have been used to define various comparison criteria on the temperature profile 

shape (average gradient, peaking factor,..). This method can be applied to model validation of a 

simple heat transport model with three radial shape options. It has been tested on a database of 

21 Tore Supra and 14 JET shots. All three choices of the radial shape parameter have been found 

not to meet the “acceptable agreement” criteria, indicating that more sophisticated, physics based 

transport models should be used for such detailed comparison of the temperature profile shape. 

Another application of the multi-profile reconstruction which has been carried out (ne, Te and 

Ti) is a data consistency check on the plasma energy content.  

The second application aims at quantifying uncertainties due to the electron temperature profile 

in current diffusion simulations. A systematic reconstruction of the Te profiles is first carried out 

for all time slices of the pulse. The Bayesian 95% highest probability density intervals on the Te 

profile reconstruction are then used for i) data consistency check of  the flux consumption and ii) 

defining a confidence interval for the current profile simulation. The latter can be further used to 

compare with possible MHD markers such as the onset time of sawteeth. The method has been 

applied to one Tore Supra pulse and one JET pulse.  

The implementation of both applications is tokamak-generic as was performed using the ITM-TF 

framework. The proposed method therefore provides a combination of automated comparison 

between simulation and experiment, data consistency checks and uncertainty quantification in 

simulations, all based on the highest probability density intervals arising from Bayesian profile 

reconstruction.  

Although Bayesian analysis is an attractive and rigorous method to calculate error bars, it is not 

employed in a routine way in most present fusion experiments. Our hope is that our work will 

help to spread its usage. The idea of a unique integrated modelling platform for deploying both 

plasma reconstruction and predictive tools provides the opportunity of using a whole range of 

predictive models and even to integrate some of them directly in the reconstruction if some 

measurements are missing. It also allows a variety of high order data consistency checks, such as 

the diamagnetic energy content which involves three profile reconstructions and assumptions on 

the impurity and fast particles content, and the verification of the consistency of the flux 

consumption. Our work provides a prototype implementation of this idea, resulting in a tokamak 

generic and automated tool to deal with the massive amount of data to be produced by long pulse 

plasma experiments. 
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