
HAL Id: cea-02193684
https://cea.hal.science/cea-02193684v1

Submitted on 24 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

AES datapath optimization strategies for low-power
low-energy multisecurity-level internet-of-things

applications
Duy-Hieu Bui, Diego Puschini, Simone Bacles-Min, Edith Beigné, X.-T. Tran

To cite this version:
Duy-Hieu Bui, Diego Puschini, Simone Bacles-Min, Edith Beigné, X.-T. Tran. AES datapath
optimization strategies for low-power low-energy multisecurity-level internet-of-things applications.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2017, 25 (12), pp.3281-3290.
�10.1109/TVLSI.2017.2716386�. �cea-02193684�

https://cea.hal.science/cea-02193684v1
https://hal.archives-ouvertes.fr

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 25, NO. 12, DECEMBER 2017 3281

AES Datapath Optimization Strategies for
Low-Power Low-Energy Multisecurity-Level

Internet-of-Things Applications
Duy-Hieu Bui, Student Member, IEEE, Diego Puschini, Simone Bacles-Min,

Edith Beigné, Senior Member, IEEE, and Xuan-Tu Tran, Senior Member, IEEE

Abstract— Connected devices are getting attention because
of the lack of security mechanisms in current Internet-of-
Thing (IoT) products. The security can be enhanced by using
standardized and proven-secure block ciphers as advanced
encryption standard (AES) for data encryption and authenti-
cation. However, these security functions take a large amount of
processing power and power/energy consumption. In this paper,
we present our hardware optimization strategies for AES for
high-speed ultralow-power ultralow-energy IoT applications with
multiple levels of security. Our design supports multiple security
levels through different key sizes, power and energy optimization
for both datapath and key expansion. The estimated power
results show that our implementation may achieve an energy
per bit comparable with the lightweight standardized algorithm
PRESENT of less than 1 pJ/b at 10 MHz at 0.6 V with throughput
of 28 Mb/s in ST FDSOI 28-nm technology. In terms of security
evaluation, our proposed datapath, 32-b key out of 128 b cannot
be revealed by correlation power analysis attack using less than
20 000 traces.

Index Terms— Advanced encryption standard (AES), Internet-
of-Things (IoTs), low energy, low power.

I. INTRODUCTION

THE fast development of Internet-of-Thing (IoT) devices
enables the massive integration of technologies from

sensing technology, communication technology, data process-
ing, to cloud computing, and artificial intelligence. In this
scenario, sensors in the perception layer collect data from
the environment and do fast processing. Then, these data are
transmitted through the network layers over the Internet to
the cloud. In the cloud, data are further processed by different
applications, for example, big data applications or data mining
applications to make decisions and/or to notify users, etc.
However, IoT devices and data transmitted through multilayer
networks may contain private data or secrete data; while the

Manuscript received January 21, 2017; revised April 15, 2017; accepted
May 25, 2017. Date of publication July 6, 2017; date of current version
November 22, 2017. This work was supported by Vietnam National Founda-
tion for Science and Technology Development under Grant 102.02-2015.20.
(Corresponding author: Duy-Hieu Bui.)

D.-H. Bui, D. Puschini, S. Bacles-Min, and E. Beigné are with Greno-
ble Alpes University, CEA-LETI, MINATEC Campus, 38054 Grenoble,
France (e-mail: hieubd@vnu.edu.vn).

X.-T. Tran is with VNU University of Engineering and Technology, Hanoi
123106, Vietnam (e-mail: tutx@vnu.edu.vn).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSI.2017.2716386

Internet environment exposes security issues such as personal
privacy, cyber-attacks, and organized crimes. This recently
raises the concerns about the security and privacy of the
IoTs [1]–[3].

The solution to security and privacy problems is to include
security features such as device identification, device/user
authentication, and data encryption. These security functions
are often based on the cryptographic algorithms, including
public-key cryptography and symmetric cryptography, which
occupy processing power and increase power and energy
consumption. In contrast, IoT devices are supposed to be
constrained low-cost devices with limited processing power,
limited memory footprint, and even limited power/energy
budget, for example, power-harvesting devices and battery-
based devices. This leads to the importance of optimizing
cryptographic algorithms in hardware for cost, throughput,
and especially power and energy consumption. However, cost,
throughput, and power/energy consumption are different fea-
tures which are hard to achieve at the same time. In this
paper, we chose to find a good tradeoff among them for
advanced encryption standard (AES) [4], a widely-used block
cipher for emerging IoT proposals, such as IEEE 802.15.4 [5],
LoraWAN [6], Sigfox [7], and ZWave [8]. We also made com-
parison with an extreme lightweight data encryption algorithm
PRESENT [9], a candidate for highly constrained devices.
PRESENT is a hardware-oriented block cipher with reduced
security level but it has small area footprint and very low-
power consumption. However, to the best of our knowledge,
lightweight block ciphers, such as PRESENT, are not yet
adopted to any IoT proposals.

From its standardization in 2001 by the U.S. National
Institute of Standards and Technology (NIST) to replace data
encryption standard, AES has been studied by researchers in
terms of security, performance, and hardware/software imple-
mentations. In terms of security, different IoT applications may
require different security levels with different power/energy
budgets and different throughputs. At the algorithmic level,
security level depends on the design of the algorithm and
the length of the key. AES supports multiple security levels
by providing three different key sizes. AES is proven to
support long-term and very long-term security. Because of
its popularity and proved security, AES is widely used in
data encryption, security protocols, and secure applications.

1063-8210 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

3282 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 25, NO. 12, DECEMBER 2017

The optimization for AES in hardware is not only beneficial
to IoT applications but also to other applications, which have
the same constraints.

In terms of implementation and performance, AES is
designed to benefit from software optimization in modern
computing systems. However, AES implementation in soft-
ware not only introduces delay to data processing and trans-
mission, but also increases the power and energy consumption.
This is the main limitation of AES to constrained devices. This
leads to the needs of hardware implementation of AES for
constrained devices and very high-performance applications.
For high-performance applications, hardware AES is often
designed using full-parallel architectures [10], unroll architec-
tures [11], or pipeline architectures [12]. These architectures
can provide high performances, but they have a high occu-
pied area and large-power consumption. In contrast, the AES
implementations that are optimized for constrained devices
often use serial architectures such as 8-b architectures with
one [13] or two S-boxes [14] to save implementation area and
to reduce power consumption. The disadvantage of these archi-
tectures is the low throughput because of serialization. To opti-
mize for power and/or energy consumption, the architecture
for constrained devices can be used with the technology opti-
mizations such as subthreshold voltage and back-biasing [14].

In this paper, we focused on the optimization strategies for
32-b datapath architecture to achieve low-power, low-energy
high-throughput hardware AES encryption module providing
multiple levels of security with small area footprint. The area
is saved by reorganizing the encryption datapath to minimize
the number of data registers and combinational logics. Power
and energy consumption are reduced by minimizing activities
in the datapath and in the key expansion; and by applying
a clock gating strategy to data and key storage registers.
Because of the 32-b datapath architecture, the throughput in
our system is at least four times more than the one of the
best 8-b datapath at the same frequency. With the multiple
optimizations and by using FDSOI 28-nm technology, we can
achieve very high throughput (about 28 Mb/s at 10 MHz)
with multiple levels of security at extreme low power (less
than 20 µW at 0.6 V, 25 °C with FDSOI 28-nm technology)
and extreme low energy per bit (less than 1 pJ/b). This
shows that our AES 32-b datapath architecture can be used
for ultralow-power IoT applications with multiple levels of
security. In comparison with the lightweight block cipher
PRESENT [9] in 128-b security mode in the same technology
node, our proposed architecture can achieve the same energy
per bit as the one of PRESENT at normal condition.

The rest of this paper is organized as follows. Section
II is the overview of the current possible solutions for IoT
security and the reason why we chose to do optimization for
AES. It also contains a brief introduction to different AES
architectures and the current hardware implementation status
of AES. Section III describes our proposal and our detail
optimization strategies. Section IV presents our experimental
results including the power and energy estimation results based
on ST FDSOI 28-nm technology. Finally, there are some
conclusions and perspectives in Section V.

II. OVERVIEW OF SECURITY IN IoT DEVICES

The current issues on security of the IoTs may be solved by
using the current available cryptographic primitives. Devices
and protocols with proper usage of identification, authenti-
cation, and data encryption will reduce the risk of exposing
secrete or personal data to attackers. These cryptographic
primitives contain two main categories: asymmetric cryptogra-
phy (or public-key cryptography) and symmetric cryptography.

Asymmetric cryptography is more flexible in the application
point of view, but it takes more processing power, more data
storage, and much more power consumption even when the
cryptography modules are implemented in hardware.

In contrast, symmetric cryptography including block cipher
and stream cipher is adapted to data encryption because of its
fast operations (mostly XOR and permutations). Between two
types of symmetric cryptography algorithms, stream ciphers
are capable of generating the encrypted data stream very fast,
but they are limited to only stream data encryption. On the
other hand, block ciphers can be configured for different secu-
rity functions using the operation modes to be used as a stream
cipher, a block cipher, or a mechanism for authentication. It is
more flexible for applications to use block ciphers for different
security purposes. Among block cipher algorithms, AES [4]
is a well-studied algorithm which is widely used in the current
standards not only for IoT but also for other applications, such
as network protocols, data encryption, storage encryption, and
so on.

Recently, there has been the emergence of new block cipher
algorithms that are lightweight in terms of hardware or soft-
ware implementation and memory footprints but they come
up with reduced security levels such as PRESENT [9] or
CLEFIA [15]. They have small hardware implementation area
but use more encryption rounds and smaller block sizes which
leads to lower throughput. More importantly, these lightweight
algorithms are not adopted in the new IoT proposals yet
because of the lack of their studies in terms of security and
protocols. AES is still currently selected as the main primitive
for security mechanism in the emerging proposals targeting
IoT applications, such as IEE802.15.4 [5], LoraWan [6],
Zigbee [16], and in other Internet standards.

In this paper, we focused on AES encryption because it is
not only proved to provide long-term security but also has
a wide range of applications and protocols. It is possible to
build a complete secure system using just an AES encryption
module [6]. Our paper was focused on the tradeoffs among
cost, throughput, and power/energy consumption, which are
relevant to constrained IoT applications. A brief introduction
to AES encryption is presented in Section II-A, while the most
recent outstanding works in hardware implementation of AES
are discussed in Section II-B.

A. Brief Introduction to Advanced Encryption Standard

AES is a round-based block cipher with the block size
of 128 b supporting the key size of 128, 192, and 256 b
with 10, 12, and 14 rounds, respectively. It has been stan-
dardized in 2001 under the name FIP-197 by the U.S. NIST

BUI et al.: AES DATAPATH OPTIMIZATION STRATEGIES FOR LOW-POWER LOW-ENERGY MULTISECURITY-LEVEL IOTs APPLICATIONS 3283

and then included in ISO/IEC 18033-3. First, 128-b data
block is divided into 16 B and arranged into a matrix of
4 × 4 B so-called the state matrix. All AES operations work
on this state matrix. There are four basic operations in a
round of AES encryption datapath including AddRoundKey,
SubBytes, ShiftRows, and MixColumns. AddRoundkey step
is the XOR of the state matrix with the 128-b round key.
SubBytes transform the state matrix bytes by bytes using a
nonlinear mapping function. This function can be used as
lookup table (LUT) or using arithmetic in finite field GF(28),
and an affine transformation. ShiftRows transform the state
matrix by rows. Each row is rotated by a different number
of bytes, while MixColumns transform the state matrix by
its columns. In these steps, only SubBytes contain nonlinear
operations, while the other steps are linear operations.

Each round needs a different round key generated by the
key expansion algorithm. The key expansion is composed of
three operations: RotWords, SubWords, and XOR. SubBytes
and SubWords are similar because they both implement
substitution box (S-box) operations, while RotWord is similar
to ShiftRow operation. RotWords and SubWords are only
applied to the specific column in the key matrix and in the
specific steps.

In AES algorithm, in each round, the order of steps can
be changed without changing the output of the algorithm. For
example, ShiftRows and SubBytes can be changed without
changing the output of the algorithm. In our design, we chose
to rearrange the order of these steps to achieve the best
efficiency in terms of power, energy, and throughput. Our AES
encryption architecture supports all the supported key sizes
specified in AES standard [4]. The next section is the current
state of the art of AES hardware implementation.

B. State of the Art of HW Implementation and Low-Power
Techniques for AES

Recently, because of the importance of security, there
has been a large number of works on optimizing AES
for various purposes. The best current works on optimizing
area and power/energy consumption of AES are summa-
rized in Fig. 1. For high-speed applications such as optical
links or high-speed networks, AES is implemented in hard-
ware with the round-based implementation [10] or pipeline
architecture [12] or unrolled-round architecture [11]. These
kinds of architectures can provide Gb of throughput but they
also require high-power consumption, which is not suitable
for embedded systems or constrained devices. For example,
in [12], Mathew et al. present a two-stage pipeline architec-
ture which can provide the throughput of 53 Gb/s with the
power consumption of 125 mW. These designs often require
more than 15 000 2-input NAND gate equivalences (GEs)
to hundreds of thousand GEs. The biggest part in parallel
architecture is the S-box. In round-based architecture, there
are 16 S-boxes for the encryption path and four S-boxes for
the key expansion. In this case, the S-boxes may occupy a
half of the total area. Round-based architectures often require
ten cycles/encryption, unrolled implementations take from one
to five cycles/encryption, while pipeline architectures can

Fig. 1. State of the art AES implementation.

complete the encryption of a block in one cycle after the
pipeline is fulfilled.

Most of the designs for low-cost and low-power AES
focus on 8-b datapaths. 8-b datapath designs can reduce
hardware implementation area significantly with the cost
of reducing throughput because they use one [13] or two
S-boxes [14], [17]. The theoretical limit of 8-b datapath
is 160 cycles/encryption. Extreme small designs, such as
in [13] and [17], require more than 200 cycles/encryption.
Reduction in size also benefits for low-power feature. The
activities in 8-b datapath are reduced because there are only
8 b processed in a clock cycle with the cost of additional
registers for MixColumns and additional gates for control
logics. The additional registers for MixColumns are needed
because MixColumns work on 4-B column data that are
available only when the whole column is processed. To achieve
medium and high throughput, 8-b datapath architectures have
to run at high frequency up to GHz.

The further area reduction for 8-b datapath is done by opti-
mizing the S-box. In AES standard, the straightforward imple-
mentation of the S-box is to use a LUT. However, LUT-based
implementations require large area footprint. Furthermore,
AES standard describes AES S-box as arithmetic operation in
finite field GF(28) and GF(2): find an inverse of the input value
in GF(28) and followed by an affine transform in GF(2) as
specified in the standard [4]. Many works tried to optimize the
S-box further by using the tower field which is the decompo-
sition of GF(28) into GF(((22)2)2) [18], [19]. This can reduce
the area of the S-box to about 290 GEs/S-box, while the
LUT-based implementations require at least 400 GEs/S-box.
Another decomposition of GF(28) is to use the normal basis
of GF((24)2) as in [13]. These methods reduce the size

3284 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 25, NO. 12, DECEMBER 2017

of the S-box but the unbalanced datapath of the S-boxes
introduces more activities. In [20], Bertoni et al. present
a method to synthesize the S-box for low power by using
decode–switch–encode (DSE) method. This can achieve the
lowest power consumption but requires more area than the
previous methods.

Another option is to use 32-b datapath. AES algorithm is
designed for software implementation in modern computers
with 32-b instruction set architectures. Therefore, AES
in 32-b datapath has a number of advantages. The number
of S-boxes is reduced; instead of 20 S-boxes in round-based
architectures, 32-b datapath uses only four S-boxes (in case
of sharing the S-box between the encryption path and the key
expansion) or eight S-boxes (without sharing). The number of
cycles required for one encryption is about 44–54 cycles [19],
which is at least four times higher than 8-b architectures.
Thirty-two-bit datapath architectures also use less registers
than 8-b datapath because the MixColumn step may have
data of the whole column in one clock cycle. This opens
an opportunity to optimize the architecture further for area,
throughput, and power/energy efficiency.

In this paper, we focused on the optimizations for 32-b
datapath to achieve extreme low-power and low-energy oper-
ations but with much higher throughput when compared with
8-b datapath architectures. This is achieved by multiple opti-
mizations. First, the number of needed registers is minimized
by using a special structure for loading encryption keys and
loading data. Second, the logic is minimized by removing
the ShiftRow step, then processing the data by columns after
ShiftRows and minimizing the control logic. Third, a low-
power S-box is selected with the penalty of area to increase the
power consumption efficiency. Finally, a clock gating scheme
is proposed for the data storage registers to further minimize
the power consumption. Our architecture is implemented using
ST FDSOI 28-nm technology, a technology for low-power
devices.

III. OUR PROPOSED ARCHITECTURE

Our proposed architecture is presented in Fig. 2. The
encryption path includes four parts: a state register; four
S-boxes; a MixColumn; and an output register which also
acts as a temporary register to store intermediate results.
The key expansion consists of two key registers and a key
transformation module to support all key sizes specified in
AES. Our design is a 32-b datapath architecture, which means
the input data and the input key are divided into 32-b chunks.
Each pair of 32-b data and 32-b key is loaded together. This
takes four cycles to load the 128-b key and 128-b data and
XOR them into the state register. For 192-b keys and 256-b
keys, after the first 128 b are loaded, the encryption is started
while the other bits of the key are continuously loaded to
maximize the throughput. There are two feedback paths, one
in the key expansion and the other in the encryption path. The
state register needs to be updated every four cycles with new
128-b data, while the previously expanded word is sent back
to the key registers to generate the new expanded key. The
details of the optimizations in our proposed architecture are
presented in the next sections.

Fig. 2. Our proposed AES architecture.

A. Thirty-Two-Bit Datapath Optimizations

To reduce area and power consumption in the datapath, we
minimized the number of flip-flops and control logics in the
datapath by using shift registers with a special organization.
Shift registers help simplify loading data and loading key
steps. The 32-b of both plaintext and key are loaded at the
same time into the state register and the key register by
using shift operations. By minimizing the number of flip-flops,
we also reduced the number of clock buffers and the power
consumption of the clock tree because clock buffers in the
clock tree consume a large amount of power. A further opti-
mization is to select S-boxes with minimal power dissipation.

Fig. 3 shows the organization of our proposed state register.
The state register is organized so that after loading the input
data and the input key, the encryption is done by shifting
the data 32 b in each clock cycle. The state register consists
of sixteen 8-b registers (forming a “state matrix”) which are
further divided into four 4-stage shift registers. AES standard
specifies that ShiftRow is a permutation operation on the
rows of the state matrix, while MixColum is an operation
on the columns. However, in our design, based on ShiftRow
specification, we completely eliminated ShiftRows by select-
ing the diagonal of the state matrix (from lower-left corner
to upper-right corner). The output of the state register after
each shift operation is one column of the state matrix after
ShiftRow. This reduces the control logics for the state register,
and completely removes the logic for ShiftRow steps. In
our datapath, in contrast with 8-b architectures, MixColum is
designed as pure combinational logics to reduce the number of
flip-flops. Thanks to this structure, the state register’s contents
will be updated by next state data which are the contents of the
output register concatenated with four last bytes of the round
operation every four cycles (or after each round finishes) as
described in Fig. 4. Consequently, we saved a 32-b register
because we need to store only 3 × 4-B temporary data from
the encryption path in the output register, while the last 32-b
data are written back directly into the state register. The output
register is a simple 4 × 3-stage shift register to save area and
power.

BUI et al.: AES DATAPATH OPTIMIZATION STRATEGIES FOR LOW-POWER LOW-ENERGY MULTISECURITY-LEVEL IOTs APPLICATIONS 3285

Fig. 3. Our proposed state register.

Fig. 4. Our proposed output register.

In between the state register and the output register, there are
four S-boxes followed by the MixColums to enable processing
4 B in each clock cycle. The temporary results are stored in
the output register. When the encryption finished, the results
are written out from the output register. In the 128-b key con-
figuration, AES encryption module needs ten rounds, which
leads to 40 cycles to finish the encryption for a 128-b block
of data. The total number of cycles to encrypt a block in our
architecture is 44 cycles. For other key configurations, our
architecture needs 52 and 60 cycles to encrypt a data block
for 192- and 256-b key modes, respectively.

Clock gating technique is applied on the state register and
the output register separately to save the dynamic power
consumption. For example, in data loading state, the clock
to the output register is disabled to save power because there
are no valid data to the output register. Furthermore, when in
the inactive state, the output of these registers is not changed,
which means that there is no activity in the encryption path.
The power estimation results show that even in the highest
throughput mode (44 cycles/encryption for 128-b key mode)
the applied clock gating technique can save more than 13%
of power. Certainly, with smaller throughput the clock gating
technique can even save much more power consumption.

B. Substitution Box

The S-box has a big impact on area and power consumption
of the AES design. In our architecture, we chose S-box
implementation for the lowest power consumption. S-boxes
may occupy up to 60% of the total cell area, while they
consume about 10%–20% of the total power consumption.
The smallest implementation of S-boxes until now is from
Canright [18]. Canright S-box demonstrates optimized area
(292 gates/S-box) but needs more power/energy consumption

Fig. 5. Our DSE S-Box.

because it creates more activities especially in architectures
with eight S-boxes. The most popular and straightforward
S-box implementation is the LUT-based S-box. LUT-based
S-box is bigger in terms of area (434 gates/S-box) but smaller
in power/energy consumption than Canright S-box. The most
efficient S-box in terms of power consumption is DSE S-box;
however, it occupies a larger area. DSE S-box can be further
optimized for power consumption using the structure proposed
in [20] and described in Fig. 5. The idea is to use an onehot
decoder to convert S-box inputs into onehot representation.
The nonlinear operations are done by using wire permutation
as in lightweight cryptography algorithms. After that, the
S-box output in onehot encoding is converted back into the
original field.

DSE S-Box can reduce the power consumption because it
minimizes the activity inside the S-box circuit. After decoding
state, only one signal changes its value to go to the encoding
state. Most of the area lost is because of the size of encoder and
decoder circuits. This optimization can leads to 10% power
reduction to the whole design. Our synthesized DSE S-box
has the size of 466 GEs/S-box that is 7% increase in size
in comparison with LUT-based S-Box or 1.6 times the size
of the smallest S-boxes. The S-boxes in our design consume
only 10% of the total power consumption.

C. Key Expansion Optimizations

The key expansion deploys the same mechanism as in the
encryption path with further optimizations for S-boxes and
loading data into the key registers for different key sizes. The
S-box inputs are masked by constant values when not used to
save the dynamic power consumption. The expanded key is
calculated on-the-fly and fed back directly to the key registers
to save area. Key expansion module consists of two 4×4-stage
shift registers, and a key transform module, which includes
four S-boxes, and an XOR.

3286 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 25, NO. 12, DECEMBER 2017

Fig. 6. Key registers.

The structure of the two registers is presented in Fig. 6.
For 128-b key mode, only the first shift register is used,
the clock signal to the second shift register is disabled to
save power. For 192-b key mode, the first shift registers and
a half of the second shift register is used, while for 256-b key
mode, both shift registers are used. The last expanded word
of the key expansion output is sent back into the first key
register to continue generating the round key. Depending on
the key size, the last word may need to be transformed using
RotWord, SubWord, and XOR with RCON, a round constant,
before being added with other key words. In 128-b key mode,
these three operations are applied to the last word every four
clock cycles, while in 192-b key mode and 256-b key mode,
they are applied every six and eight clock cycles, respectively.
The 256-b key mode needs one additional SubWord in the
middle of eight clock cycles. The second key register outputs
two different key modes: 192-b key mode and 256-b key
mode. In 128-b key mode, the second key register is disabled,
while the output of the first key register is selected to XOR

with the output from the key transform module. In 192-b key
mode, the second stage in the second key register is chosen;
and in 256-b key mode, it is the output of the last stage in
the second key register.

The key transform module is shown in Fig. 7. The input
of the key transform module is the last word from key
registers. Based on the key expansion specification, four
S-boxes are used in one cycle among four cycles of a round in
128-b key mode and 256-b key mode while in 192-b key mode;
the four S-boxes are used every six cycles. Furthermore, during
the loading of the key into the key register, these S-boxes are
not used. During the idle time, the inputs to these S-boxes are
gated by a mask to save the dynamic power. These S-boxes
are enabled for the first cycle of a round for 128- and 256-b
keys and every six cycles for 192-b key. After that, they remain
inactive. This leads to 30% reduction in power consumption
of the S-boxes in the key expansion. RotWord step can be
removed because it exchanges the position of bytes in a 32-b
signal. The RCON constant can be modeled as a shift register
as in [13] but in our architecture, we designed it as a LUT
of ten constant values to minimize the number of registers
in order to reduce the power consumption and minimize the

Fig. 7. Key transform.

clock network. The XOR of the RCON with the output of
the S-boxes after RotWord is minimized by XORing only the
necessary bits.

The 32-b output of the key expansion is sent directly to the
encryption path to be XORed in the AddRoundKey step. The
clock gating technique is also applied in the key expansion to
save power consumption. During the idle state, the key register
and the S-boxes will not create any activities.

IV. EXPERIMENTAL RESULTS

Our proposed architecture and a lightweight cryptography
algorithm PRESENT are modeled in VHDL, synthesized using
Synopsys DC Compiler, and fully implemented using Cadence
Innovus into the test chip SNACk using ST FDSOI 28-nm
technology. The maximum target frequency is set to 60 MHz
that provides the maximum throughput of 170 and 106 Mb/s
for AES encryption core and PRESENT encryption core,
respectively. This throughput meets the demand of medium-
and high-throughput IoT applications. AES encryption module
and PRESENT encryption module are combined into the block
cipher module in SNACk test chip for comparison. The power
consumption at different corner cases is estimated using the
post signoff extraction. The following sections present our
power estimation results on SNACk chip and the security eval-
uation that we implemented using Synopsys PrimeTime Power.

A. Configuration and Test Environment of SNACk

Fig. 8 shows the interface of the encryption module in the
SNACk test chip. It contains the test environment for our
proposed AES encryption architecture and also a lightweight
cryptography algorithm PRESENT for comparison. It has a
32-b data interface with the possibility of selecting different
key sizes and the cipher type between AES encryption core
and PRESENT encryption core. AES encryption core supports
all the encryption modes specified in AES standard including
128-, 192-, and 256-b keys. PRESENT encryption core with
the same interface contains two modes: 80- and 128-b keys.
The two designs were implemented using the same technology.

The test environment for block cipher module in SNACk
chip is presented in Fig. 9. The plaintext and the key are loaded
from the host through SPI interface. Inside SNACk chip, there
is an SPI decoder with the APB-like interface to write the test
data into the correct memories including the configuration reg-
isters, the key memory, the plaintext memory, and the reference
memory. After loading all necessary data, the encryption test
is done by activating the control finite state machine. If the
encryption is done correctly, the running signal will toggle.

BUI et al.: AES DATAPATH OPTIMIZATION STRATEGIES FOR LOW-POWER LOW-ENERGY MULTISECURITY-LEVEL IOTs APPLICATIONS 3287

Fig. 8. Block cipher module in SNACk test chip.

Fig. 9. Block cipher module in SNACk test chip.

The encryption process continues running repeatedly until the
control finite state machine receives the stop signal through
the SPI interface. All the power estimation results in the next
section are obtained using this test configuration.

B. Power Estimation Results

Using the test environment in SNACk chip, it is possible to
test two encryption cores with different key lengths at different
supply voltages and different operating frequencies. The same
key and the plaintexts were sent to each encryption module.
The activity of the post signoff timing simulation for each
encryption module was captured for the whole encryption
period. Then, the activity data were used to do power esti-
mation in PrimeTime with FDSOI 28-nm technology libraries
provided by ST. The technology libraries were characterized
for the supply voltage from 0.6 to 1.3 V for different working
conditions. Figs. 10 and 11 show the leakage power and the
dynamic power of different encryption modes at 10 MHz with
the supply voltage ranging from 0.6 up to 1.3 V at different
corners at 125 °C.

It is obvious that the worst case in terms of power consump-
tion is the fast corner. Furthermore, it is clear that there are
different leakage powers at different corners, while dynamic
powers stay unchanged across different corners. The leakage
powers increase significantly when we increase the supply
voltage especially in the fast corner. Within the same algo-
rithm, the leakage power has minor differences for different
key sizes; however, the leakage power of AES module is from
2.5 to 3 times the leakage power of PRESENT module. This

Fig. 10. Leakage power at 10 MHz at different supply voltages at different
corners.

Fig. 11. Dynamic power at 10 MHz at different supply voltages.

corresponds to the difference in area of two modules. AES
module occupies 3.6 times more area than PRESENT module.

In terms of dynamic power, because of our optimization
for different configuration by using separated clock gating for
different key storage, AES module with 128-b key has 20%
less dynamic power than AES module with 192- and 256-b
keys, while the difference between AES 192- and AES 256-b
keys is a small margin. The difference among three corners
tested is small. The power consumption decreases gradually
when we decrease the supply voltage. The best case in our
power estimation results is at 0.6 V where the leakage in
different key configuration for the two algorithms is close to
each other. At the supply voltage of 0.6 V at typical corner
in the worst case of power consumption (at 125 °C), AES
module consumes the power from 61.5 to 65.6 µW in total and
the PRESENT module consumes the power of about 24 µW;
while in the typical case at 25 °C, our AES module and our
PRESENT module consumes only less than 20 and 12 µW,
respectively.

3288 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 25, NO. 12, DECEMBER 2017

TABLE I

COMPARISON WITH OTHER AES IMPLEMENTATIONS

Furthermore, Fig. 12 shows our estimation of energy per
bit for two designs. It is clear that our design can achieve
extremely low energy per bit at 0.6 V. In typical case at
25 °C, our AES module achieves 0.65, 0.78, and 0.81 pJ/b for
128-, 192-, and 256-b keys, respectively. The energy per bit
of different key configurations in AES module varies because
different key modes require different number of cycles to
finish the encryption. In SNACk test chip, 128-b key AES
needs 45 cycles to finish one encryption, 192-b key AES
needs 53 cycles, while 256-b key AES needs 61 cycles. The
lightweight algorithm PRESENT consumes nearly the same
amount of energy per bit as AES because PRESENT needs
74 cycles to finish the encryption of 128-b data in 128-b
key mode. In the worst case at 125 °C, our AES consumes
less than 3 pJ/b, while PRESENT needs less than 2 pJ/b.
The difference in energy per bit in two working conditions
is caused by the different leakage power contributed to the
total power consumption.

A comparison of our architecture with the state of the art
is shown in Fig. 13 and in Table I. From the area point of
view, our AES architecture with only 128-b key is 1.5 times
bigger than the design in [14] in the same technology node,
and four times bigger than the design in [13]. However, our
design has four times more throughput than the design in [14]
and about eight times more throughput than the design in [13]
at the same operating frequency. In comparison with the same
32-b datapath, according to our optimization, our architecture
achieve 20% improvement in power consumption in TSMC
65 nm compared with the work in [21] with a small increase in
terms of gate counts. At the same throughput of about 28 Mb/s,
our architecture consumes the least power (20 µW at 0.6 V)
when compared with the 8-b datapath designs such as in [13],
[15], and [23]. At this throughput, our proposed architecture
has about three times less power consumption than the best 8-b
datapath design for low power and low energy in [14]. In terms
of energy efficiency, our design consumes the least energy per
bit among the low-cost designs [10], [13], [14], [21], [22] with
only 0.65 pJ/b (at 0.6 V, 25 °C); and approaches the energy
per bit of the high-performance design in [12] (0.511 pJ/b at
409 µW, 0.34 V).

Fig. 12. Energy per bit of our AES implementation at typical corner at
different working temperatures.

C. Security Evaluation

We also perform correlation power analysis (CPA) attack,
one of the most effective side channel attacks, on our design
using the last round key hypothesis. The attack is based on

BUI et al.: AES DATAPATH OPTIMIZATION STRATEGIES FOR LOW-POWER LOW-ENERGY MULTISECURITY-LEVEL IOTs APPLICATIONS 3289

Fig. 13. Comparison with other low-cost AES implementations.

Fig. 14. Number of correct guessed key bytes (in 128-b key mode) by last
round CPA attack.

the power trace extracted through the post signoff power
estimation. A simulation of 20 000 encryptions of our design
in 128-b key encryption mode is executed to capture the
ciphertext and the power traces. For comparison, we do the
same hardware implementation process with a full parallel
design from OpenCores [23]. In general, the more parallel
level of the datapath, the harder it is to attack the design
because parallelism is one way of hiding countermeasures.
8-b datapath without protection is more exposed to this type
of attack because the number of traces required to perform
the attack is very small. According to DPA contest [24], even
a round-based datapath with full 128-b parallel computation
on field-programmable gate array, with good measurement
equipment, only 800 traces are required to reveal the key
of the cryptographic devices. Fig. 14 presents the results of
our experiment on post signoff power traces. The AES 128-b
datapath needs about 4000 traces to reveal 16 B of the secrete

key while with our architecture, even with 20 000 traces, only
12 B are revealed. Four bytes are hidden because at the end of
each round, the data registers are overridden with new data.
This hides the correlation of the activity of the last 4 B of
the key which increase the resistance of our design to the last
round CPA.

V. CONCLUSION

In this paper, we presented multiple optimization strategies
for AES 32-b datapath to achieve a low-cost high-throughput
ultralow-power ultralow-energy design with multiple levels of
security.

The area of our proposed architecture is saved by a reor-
ganization of both datapath and key expansion to minimize
the number of registers and control logics. The power con-
sumption is reduced by choosing the S-boxes for low power,
by minimizing the activity in the key expansion and in the
datapath, and by applying a clock gating strategy to data
storage registers. The throughput is maximized by using
eight S-boxes and doing key expansion in parallel with the
encryption path. Multiple key sizes of the encryption module
provide different security levels which help IoT applications to
adapt to a wider range of security protocols and mechanisms.

We also showed that our optimization strategies are not
only beneficial for area, throughput, and power/energy con-
sumption but also the security feature. With the optimization
in the encryption datapath, 32 b of the secrete key cannot
be revealed through CPA attacks with 20 000 traces using last
round hypotheses. In terms of power and energy consumption,
at 0.6 V at 25 °C, our design can achieve a power consumption
of less than 20 µW for all key configurations with the energy
consumption of less than 1 pJ/b with the throughput of 28 Mb/s
at 10 MHz. In this condition, our AES implementation has
nearly the same energy consumption in comparison with the
lightweight cryptography algorithm PRESENT on the same
technology node: ST FDSOI 28-nm technology. With high-
throughput ultralow-power, ultralow-energy consumption, our
design is obviously suitable for future ultralow-power IoT
applications.

REFERENCES

[1] R. Roman, P. Najera, and J. Lopez, “Securing the Internet of Things,”
Computer, vol. 44, no. 9, pp. 51–58, Sep. 2011.

[2] A. Barki, A. Bouabdallah, S. Gharout, and J. Traoré, “M2M security:
Challenges and solutions,” IEEE Commun. Surveys Tuts., vol. 18, no. 2,
pp. 1241–1254, 2nd Quart., 2016.

[3] S. L. Keoh, S. Kumar, and H. Tschofenig, “Securing the Internet of
Things: A standardization perspective,” IEEE Internet Things J., vol. 1,
no. 3, pp. 265–275, Apr. 2014.

[4] Advanced Encryption Standard, Gaithersburg, MD, USA, U.S Nat.
Institute of Standards and Technology, 2001.

[5] IEEE Standard for Local and Mtropolitan Area Networks—Part
15.4: Low-Rate Wireless Persional Area Networks (LR-WPANS),
IEEE Standardization Group, Piscataway, NJ, USA, 2011.

[6] LoraWan Specification, LoRa Alliance, Inc., San Ramon, CA, USA,
2015.

[7] Sigfox. Sigfox Technology Overview—Security, accessed on Nov. 15,
2016. [Online]. Available: https://www.sigfox.com/en/technology/
security

[8] Z-Wave Device Class Specification, Sigma Designs, Milpitas, CA, USA,
2016.

3290 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 25, NO. 12, DECEMBER 2017

[9] A. Bogdanov et al., “PRESENT: An ultra-lightweight block cipher,” in
Cryptographic Hardware and Embedded Systems—CHES 2007 (Lecture
Notes in Computer Science), vol. 4727, P. Paillier and I. Verbauwhede,
Eds. Berlin, Germany: Springer, 2007, pp. 450–466.

[10] P. C. Liu, J. H. Hsiao, H. C. Chang, and C. Y. Lee,
“A 2.97 Gb/s DPA-resistant AES engine with self-generated random
sequence,” in Proc. Eur. Solid-State Circuit Conf. (ESSCIRC), Sep. 2011,
pp. 71–74.

[11] P. Maene and I. Verbauwhede, “Single-cycle implementations of block
ciphers,” in Lightweight Cryptography for Security Privacy (Lecture
Notes in Computer Science), vol. 9542, T. Güneysu, G. Leander, and
A. Moradi, Eds. Cham, Switzerland: Springer, 2016, pp. 131–147.
[Online]. Available: https://link.springer.com/chapter/10.1007/978-3-
319-29078-2_8

[12] S. Mathew et al., “53 Gbps Native GF(24)2 composite-field
AES-encrypt/decrypt accelerator for content-protection in 45 nm high-
performance microprocessors,” IEEE J. Solid-State Circuits, vol. 46,
no. 4, pp. 767–776, Apr. 2011.

[13] S. Mathew et al., “340 mV—1.1 V, 289 Gbps/W, 2090-gate nanoAES
hardware accelerator with area-optimized encrypt/decrypt GF(24)2 poly-
nomials in 22 nm tri-gate CMOS,” IEEE J. Solid-State Circuits, vol. 50,
no. 4, pp. 1048–1058, Apr. 2015.

[14] W. Zhao, Y. Ha, and M. Alioto, “AES architectures for minimum-energy
operation and silicon demonstration in 65 nm with lowest energy per
encryption,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), May 2015,
pp. 2349–2352.

[15] T. Shirai, K. Shibutani, T. Akishita, S. Moriai, and T. Iwata, “The 128-bit
blockcipher CLEFIA,” in Proc. 14th Int. Conf. Fast Softw. Encryption,
2007, pp. 181–195.

[16] Zigbee Alliance. Zigbee Specification, accessed on Aug. 1, 2016.
[Online]. Avilable: http://www.zigbee.org/wpcontent/uploads/2014/11/
docs-05-3474-20-0csg-zigbee-specification.pdf

[17] A. Moradi, A. Poschmann, S. Ling, C. Paar, and H. Wang, Pushing
the Limits: A Very Compact and a Threshold Implementation of AES
(Lecture Notes in Computer Science), vol. 6632. Berlin, Germany:
Springer, 2011, pp. 69–88.

[18] D. Canright, A Very Compact S-Box for AES (Lecture Notes in Computer
Science), vol. 6632. Berlin, Germany: Springer, 2005, pp. 441–455.

[19] A. Satoh, S. Morioka, K. Takano, and S. Munetoh, “A compact
rijndael hardware architecture with S-box optimization,” in Advances
in Cryptology—ASIACRYPT (Lecture Notes in Computer Science),
vol. 3659. Berlin, Germany: Springer, 2001, pp. 239–254.

[20] G. Bertoni, M. Macchetti, L. Negri, and P. Fragneto, “Power-efficient
ASIC synthesis of cryptographic sboxes,” in Proc. 14th ACM Great
Lakes Symp. (VLSI), vol. 2248. 2004, pp. 277–281.

[21] S. Banik, A. Bogdanov, and F. Regazzoni, “Exploring energy efficiency
of lightweight block ciphers,” in Proc. 22nd Int. Conf. Select. Areas
Cryptogr., 2016, pp. 178–194.

[22] Y. Zhang, K. Yang, M. Saligane, D. Blaauw, and D. Sylvester,
“A compact 446 Gbps/W AES accelerator for mobile SoC and IoT in
40 nm,” in Proc. IEEE Symp. VLSI Circuits (VLSI-Circuits), Jun. 2016,
pp. 1–2.

[23] Opencores. AES128, accessed on Nov. 15, 2016. [Online]. Available:
https://opencores.org/project,aes_crypto_core

[24] Telecom ParisTech. Dpa Contest V3, accessed on Nov. 15, 2016.
[Online]. Available: http://www.dpacontest.org/v3/

Duy-Hieu Bui (S’13) received the B.Sc. degree in
electronics telecommunication technology from the
Vietnam National University-University of Engineer-
ing and Technology (VNU-UET), Hanoi, Vietnam,
in 2010, and the M.Sc. degree in network and
telecommunications from the University of Paris-
Sud, Orsay, France, in 2012. He is currently pursuing
the Ph.D. degree with the University of Grenoble
Alpes, MINATEC Campus, Grenoble, France.

From 2010 to 2015, he was a Researcher with the
VNU-Key Laboratory for Smart Integrated Systems,

VNU-UET. His current research interests include hardware/software codesign
and verification, embedded systems, VLSI system/circuit designs for infor-
mation security, and hardware security.

Diego Puschini received the Diploma degree in elec-
tronic engineering from the Universidad Nacional
del Sur, Bahia Blanca, Argentina, in 2004, and
the Ph.D. degree in microelectronic from Université
Montpellier II, Montpellier, France, in 2009.

In 2009, he joined CEA-LETI, MINATEC Cam-
pus, Grenoble, France, as a Research Engineer. He
has authored or co-authored more than 30 scientific
contributions to international conferences, journals,
and book chapters concerning power management
in distributed architectures. He holds two interna-

tional patents. His current research interests include energy-aware design and
emergent control techniques for energy management in multicore embedded
systems.

Simone Bacles-Min received the M.S. degree in
microelectronics from the Grenoble Polytechnical
Institute, Grenoble, France, in 2006.

In 2014, she joined CEA-LETI, Grenoble. Her
current research interests include hardware–software
codesign and low-power and adaptive security circuit
techniques.

Edith Beigné (SM’13) was with CEA-LETI, Greno-
ble, France, in 1998. Since 2009, she has been a
Senior Scientist with the Digital and Mixed-Signal
Design Laboratory, where she involved in low power
and adaptive circuit techniques, exploiting asyn-
chronous design, and advanced technology nodes,
such as FDSOI 28 and 14 nm, for many differ-
ent applications from high-performance MPSoC to
ultralow-power Internet of Things applications. She
is an SSCS Distinguished Lecturer from 2016 to
2017. She has authored or co-authored more than

100 publications.
Ms. Beigné has been a part of ISSCC TPC since 2014 and VLSI Symposium

since 2015.

Xuan-Tu Tran (M’06–SM’13) received the B.Sc.
degree in electronics engineering and communica-
tions from the Hanoi University of Science, Hanoi,
Vietnam, in 1999, the M.Sc. degree in electron-
ics engineering and communications from Vietnam
National University (VNU), Hanoi, in 2003, and
the Ph.D. degree in micro nano electronics from
Grenoble INP (in collaboration with the CEA-LETI),
Grenoble, France, in 2008.

He was a Lecturer with VNU from 1999 to
2003. He was a Research Engineer with CEA-LETI,

MINATEC, Grenoble, from 2003 to 2008. He was an Invited Professor
with the University Paris-Sud, Orsay, France, in 2009 and 2010, and a
Visiting Professor with Grenoble INP in 2011. He is currently an Associate
Professor with the Faculty of Electronics and Telecommunications, VNU
University of Engineering and Technology, Hanoi, and also the Director
of VNU-Key Laboratory for Smart Integrated Systems. He is in charge
for CoMoSy, VENGME, ReSoNoC, and ADEN4IOT projects for embedded
systems and multimedia applications. His current research interests include
design and test of systems-on-chips, networks-on-chips, design-for-testability,
asynchronous/synchronous VLSI design, low-power techniques, and hardware
architectures for multimedia applications.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

