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Abstract: In this work, we present two-dimensional beam steering in the near-infrared using 
a SiN integrated circuit, containing optical phased arrays. Beam steering was achieved over a 
range of 17.6° × 3°, at a fixed wavelength of 905 nm. The first dimension was steered via 
phase differences between the optical phased array channels. The second dimension was 
accessed by actively switching between various optical phased array sub-devices containing 
output diffraction gratings with different periods. The characterisation was performed on a 
wafer-level test station. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Optical phased arrays (OPAs) have gained significant attention over the past decade due to 
their potential use in a broad range of advanced technological applications including light 
detection and ranging (LIDAR), free space communication and holographic displays [1]. This 
interest arises from the advantage that OPAs enable non-mechanical, arbitrary beam shaping 
and steering. Furthermore, it has been shown that OPAs can be implemented using integrated 
photonics, creating a path for low-cost systems with a small physical footprint [2–4]. OPA 
integration has been explored on various photonic platforms, of which silicon photonics is 
particularly attractive due to its CMOS compatibility and high refractive index contrast [5]. 
Advanced OPA circuits have been demonstrated using silicon, such as a fully integrated 
device for two-dimensional beam scanning [6], ultra-low divergence beams [7,8] and 
coherent LIDAR circuits [9,10]. However, the use of silicon provides some limitations in 
terms of wavelength transparency and maximum optical power. Here, silicon nitride (SiN) 
presents an interesting alternative as outlined in the following. 

SiN has recently become of interest for waveguiding in integrated photonics [11,12]. In 
comparison to silicon, it provides a number of advantages such as more control over its 
structural properties during the fabrication process and a higher tolerance to process 
variations due to a lower refractive index contrast (nSiN ~2, nSiO2 ~1.5). Furthermore, its 
transparency window is much larger and is suited for applications at wavelengths down to at 
least 500 nm. Lastly, weak non-linear losses allow SiN circuits to operate at high optical 
powers, which is important for time-of-flight LIDAR. SiN has recently been demonstrated for 
OPA integration [8,13,14]. 

For LIDAR applications the steering of an optical beam in two dimensions is desirable. 
Two-dimensional beam steering of integrated OPAs has been achieved using various 
methods. The first dimension is usually steered by introducing a phase difference between the 
OPA channels. The second dimension can be steered in the same way, if the array consists of 
a 2-D matrix [15]. The downside of such a matrix is the difficulty of spacing the individual 
antennae closely together to ensure a large field of view. For the case of 1-D arrays of grating 
antennae, steering in the second dimension has be demonstrated using wavelength tuning, 
which in turn changes the grating emission angle [6]. However, with regards to future, fully-
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between the individual OPA channels. The second dimension was accessed by actively 
routing the input light between several OPA devices containing different grating periods and 
emission angles. Beam steering was achieved over a range of 17.6° in φ and over 3° in θ. The 
range limitation was given by the higher order grating lobes in φ and by the number of 
devices available on the circuit in θ. More complex circuits based on active routing systems 
and multiple OPAs may be used to increase the steering range in both dimensions and reduce 
the beam divergence. The characterisation process was performed on a wafer-level test 
station. In the future this will allow statistical characterisation of OPA performance on a 
wafer scale and to select known good devices. 
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