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Abstract: 

 The process of inserting/deleting a particle during Grand-Canonical Monte-Carlo 

(MC) simulations is investigated using a novel, original technique:  the trial event is made of a 

short non-equilibrium molecular dynamics (MD) trajectory during which a coordinate w along 

a 4th dimension is added to the particle in course of insertion/deletion and is forced to decrease 

from large values up to zero (for insertion) or increased from 0 up to large values (for 

extraction) at imposed vw velocity. The probability of acceptation of the whole MC move is 

controlled by the chemical potential and the external work applied during the trajectory. 

Contrary to the standard procedures which create/delete suddenly a particle, the proposed 

technique gives time to the fluid environment to relax during the gradual insertion/extraction 

before acceptation decision. The reward for this expensive trial move is a gain of many orders 

of magnitude in success rate. The power and wide domain of interest of this hybrid "H4D" 

algorithm which marries stochastic MC and non-equilibrium deterministic MD flavors are 

briefly illustrated with hard sphere, water and electrolyte systems. The same approach can be 

easily adapted in order to measure the chemical potential of a solute particle immersed in a 

fluid during canonical or isobaric simulations. It then becomes an efficient application of the 

Jarzynski theorem for the determination of solvation free energy.   
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Introduction   

Within numerical simulations, the ability to measure or to impose the chemical 

potential (CP)  provides valuable extra information. In the first case, the simulation is 

performed in NVT canonical or NPT isobaric conditions (N is the number of particles, V the 

volume, T the temperature and P the pressure) and the objective is the CP of an extra, solute 

particle. This may be a particle of the fluid itself when one wants to complete its equation of 

state (T,) or (T,P) (=N/V is the number density) or is really a unique 

molecular/macromolecular solute immersed at infinite dilution in the bulk solvent in order to 

determine its excess CP exc or solvation free energy. The fundamental Widom's insertion 

technique 1 creates suddenly a solute particle at random position inside a bulk solvent cell, 

calculates its experienced interaction potential vsolute and averages the Boltzmann factor 

ln solutevexc

solvent
e

 
   (=1/kT is the inverse thermal energy). The inverse version starts 

from a solvent+solute simulation cell and follows the difference of energy induced by the 

sudden deletion of the solute, ln solutevexc

solvent solute
e



  . While formally exact, both 

techniques become rapidly inefficient in dense, cohesive systems where the interesting 

configurations which contribute the most to the averages are rarely if not never sampled. The 

Bennett's overlapping distribution technique 2 3 which couples information from both 

simulations improves the precision but is still insufficient for multi-site solute molecules. So, 

a wide spectrum of theoretical approaches has been elaborated in the literature in order to 

circumvent this difficulty and calculate chemical potentials or free energy differences with 

great precision. They all share the use of "partial" solutes which interact with the solvent 

particles through a pair potential v that interpolates continuously between v=0=0 (no solute) 

and v=1=v (full solute, real potential v). Among the possible approaches 4, one briefly cites the 

thermodynamical integration and the free energy perturbation which require performing in 

parallel 20-40 simulations, each at a different intermediate fixed state . Other techniques 

treat  as an extra degree of freedom, subject to a prescribed dynamics, and construct the 

potential of mean-force from the measured -distribution 5 6. Finally, the Jarzynski's approach 

7  imposes a time-dependent law (t) during a non-equilibrium simulation joining the two 

opposite states =0 and 1, and construct the CP from the external work W exerted on the 

solvent+partial solute system, lnexc We    .  

In the second case, the simulation is performed in VT Grand-Canonical (GC) ensemble 

which imposes the value of the solvent CP  through exchanges of particles with a reservoir. 

This type of simulation is needed in heterogeneous interfacial or porous media in equilibrium 

with a bulk solvent. In homogeneous systems, it provides direct access to fundamental 

thermodynamical quantities from the particle number fluctuations <N2> around the mean 

value <N>. The repeated trial addition/subtraction of particles along the simulation suffers 

from the same difficulties as above: a trial random instantaneous insertion in a cell containing 

N particles will mainly conduct to an overlap and miss the interesting N+1 configurations, 

leading to a sure rejection. Inversely, a randomly chosen particle in the cell experiences a 

favorable (highly negative) energy inside its environment, not compatible with its sudden 
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deletion. The probability of acceptation is for instance 10-7 for a hard sphere fluid just below 

crystallization and less than 10-4 for a bulk water system. Admittedly, cavity-bias 8 and 

orientational-bias 4 techniques optimize the search for the very rare interesting locations for 

insertion or the very rare unhappy molecules for deletion and provide a reasonable increase in 

effective acceptation rate, but with known side-effects when the fluid has no time to relax 

between successive N±1 events 9. The direct use of "partial" particles as above, with stochastic 

or deterministic  trajectory 10 during the simulation, is not satisfactory here except if one 

accepts to explore the phase space with a non-integer, continuous N number in the cell. 

Grand Canonical H4D algorithm 

 In the present work, we propose a different, new strategy for changing the particle 

number N. For a simple introduction, we ask the reader to think about the way a triangular 

rack is progressively filled with balls at the beginning of a billiards game: the balls can be 

considered as 2D disks which collide inside the horizontal, partially filled cell. How to add an 

extra ball? A standard naïve "GC" procedure would freeze a configuration and try to create 

suddenly a new disk at a 2D position on the plane, chosen randomly or in a biased fashion. 

The success would be obviously rather poor. On the other hand, the clear procedure in real 

life restores the 3D character of the balls, the extra one is pushed down from above the table 

while the horizontal fluid is still moving and the collisions in 3D space between all N+1 

spheres guarantees the on-the-fly creation of a 2D cavity and relaxation of the fluid. With this 

simple picture in mind, we now return to the 3D GC numerical simulations: a coordinate w 

(say, w≥0) along a 4th dimension 11 6, let us still call it the altitude, is added to the "flying" 

particle in course of insertion/deletion. A trial Monte-Carlo (MC) N change is made of a short 

Molecular Dynamics (MD) trajectory of the whole fluid performed under non-equilibrium 

conditions characterized by a time-dependent w(t) imposed descent/ascent law. The external 

work needed to maintain this law from w=+∞/0 up to w=0/+∞ is combined with the imposed 

CP  and monitors the probability of acceptation according to the GC MC recipe. Note that 

the use of a "partial" particle characterized by finite w which interpolates continuously 

between ideal and full coupling is here only transitory and limited to the trial MC event. Such 

type of "hybrid" 12, non-equilibrium MC-MD combination has already been used in the 

literature in order to favor giant steps and overcome energy barriers in canonical simulations 

13 14 15. We call our present strategy for GC particle exchanges "Hybrid 4 Dimension" or H4D. 

The details of the procedure are the following. 

The 3D fluid molecules interact via site-site spherically symmetric pair potentials of the form 

vij(rij) where ij i jr r r   is the ij separation. The configuration space is explored with standard 

MC translations/rotations. During a particle exchange with the reservoir, the interaction 

potentials become  2 2( )ij ij i jv r w w   where the altitude wi remains 0 for a site of the fluid 

and is w for a site of the flying particle at the altitude w. At the beginning of a trial insertion, 

the "old" configuration contains N particles with the total potential energy Uo. The GC weight 

of the configuration is 
1

!
oUN

op e e
N

 
 . An extra particle is put at a random 3D 

position/orientation in the cell and at the finite altitude w=wmax>0 (free). In case of molecules, 
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wmax is common to all sites. In case of flexible molecules, the intra configuration is drawn 

from the distribution in vacuum. wmax is the first of a long list of free parameters which can be 

chosen at will in order to optimize the efficiency of the technique. wmax=0 corresponds to the 

usual procedure with instantaneous creation. Too short values, say less than the site diameters, 

would provoke probable overlaps since the beginning. Too large values are unnecessary and 

would require very long MD trajectories. At time t=0, the N+1 3D old velocities old

iv  are 

drawn from the probability density ( )insertion ip v (free). In all cases, we have chosen the natural 

Maxwell-Boltzmann distribution 
2

( ) exp
2

i
insertion i

mv
p v

kT

 
  

 
 where m is the mass. In /kT m  

units used in the following, the 3D velocities are of the order one.  For rigid molecules, the 

angular velocities are drawn from similar distribution involving the inertia moments. Then, 

the 3D trajectory followed by the N+1 particles is provided by a non-equilibrium MD 

simulation during which the altitude w decreases with an imposed, constant –vw descent 

velocity (vw>0, free). Again, vw=∞ corresponds to the standard creation process. The opposite 

limit vw→0 would characterize a quasi-static insertion. For hard systems, the trajectory is 

made of successive elastic collisions in 4D space. For continuous potentials, the equations of 

motion are integrated with a finite time step t (free) and a time-reversible, area-preserving 

algorithm 16. The N fluid particles are forced to stay always on the "horizontal" 3D space, 

w=0, thank to external "vertical" forces which do not produce work. The force field which 

controls the MD trajectory may derive from a simplified, degraded version (free) of the 

original potentials vij(r) in order to speed up the calculations, like using shorter cut-offs in 

Ewald summations, at the risk of producing a final configuration not favorable for the true 

interaction. Once the flying particle has landed on the ground at w=0, the MD stops and the 

trial "new" (N+1) configuration is characterized by the velocities new

iv , the total potential 

energy Un and weight ( 1)1

( 1)!
nUN

np e e
N

 


 . Inversely, a trial extraction from an old 

configuration starts by choosing randomly the future flying particle among the N fluid ones. 

The N 3D velocities are drawn from a probability density ( )destruction ip v (free), again 

exclusively chosen here as the Maxwell-Boltzmann law. The non-equilibrium MD starts 

while the flying particle takes off from w=0 with the very same constant ascent velocity +vw 

and finishes when w reaches wmax, where the flying particle is finally entirely decoupled from 

the remaining N-1 fluid particles (w=∞). The MD algorithm and the time step t are identical 

to those in the insertion process. 

We are now ready to express the probability of acceptation of the trial particle exchange. The 

transition matrix from the old to the new configuration (o→n) depends only on the choice of 

the initial velocities since the MD is a deterministic process (and the algorithm conserves 

phase space volumes): 

 
1/

/

1

( ) ( ) o

N N
Kold

ins des i

i

o n p v e







    (1) 
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where Ko is the kinetic energy of the old configuration. Since the MD algorithm is time-

reversible (in fact, one just requires that the two algorithms used during insertion and 

destruction for integrating the equations of motion are time-inverses one to each other), the 

inverse transition matrix which produces the old configuration from the new one reads: 

 
1/

/

1

( ) ( ) n

N N
Knew

des ins i

i

n o p v e







     (2) 

where Kn is the kinetic energy of the new configuration. According to the detailed balance 

condition 4, the Metropolis probability of acceptation of the trial particle exchange becomes 

finally:  

 

( )
( ) min 1,

( )

min 1, insertion
1

min 1, destruction

on

on

n

o

H

H

pn o
acc o n

o n p

aV
e

N

N
e

aV









 
   

 

 
  

 

 
  

 

 (3) 

where a=e represents the activity and Hon=Hn-Ho is the change of the total mechanical 

energy H=K+U from the old to the new configuration. In the present adiabatic H4D version 

where the trial non-equilibrium MD trajectory is produced without thermostat, there is no 

exchange of heat with the exterior and the change of total energy is equal to the external work 

W required to maintain fixed the vertical velocity vw despite the numerous 4D collisions with 

the bulk. For continuous potentials, the equations of motion are not integrated exactly due to 

the finite t step and the strict equality Hon=W does not hold. Nevertheless, the MC rule (3) 

always applies 17. The only risk of choosing a too large t value in order to shorten the MD 

simulation is to produce too wild positive departures of Hon and to automatically reduce the 

acceptation rate. 

Compared to the standard procedure (wmax=0 or vw=∞, Hon=Uon), the described H4D new 

technique replaces a very cheap trial exchange (cost=1 particle energy evaluation) by a very 

expensive one (cost=wmax/(vwt) MD time steps for N particles). The reward is that the bulk 

environment has time to react to the smooth insertion/extraction process before acceptation 

decision and the success rate increases by orders of magnitude. Moreover, when the particle 

exchange has been accepted, the produced configuration is characteristic of the new N value 

(and does not belong to the far positive aisle of the energy spectrum as with the usual 

techniques) and the MD trajectory has not been waste of time because it has enabled to 

shuffle the whole cell. Three preliminary examples of application are briefly presented now. 

Technical details are given in the Supplementary Material (SM). 

Hard-sphere fluid 

For pure hard sphere systems (diameter=), the acceptation rate within the standard 

procedure is easily estimated from the last line of (3) and roughly equals the inverse activity 
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coefficient 1/=/a= e-exc. This explains why the GC equations of state () reported in the 

literature are limited to *=3≈0.7-0.8 (≈103-104) 18 19, well below the fluid-crystal phase 

transition which appears at F*=0.94, ≈107 4. On the other hand, the present H4D technique 

enables to cover the whole fluid range and even a large part of the metastable fluid branch 

beyond F*, up to *≈1 (53% volume fraction), see Figure 1. While the probability of 

acceptation of the standard technique falls off more than exponentially from 10-2 to 10-9 when 

* goes from 0.6 to 1, it only slightly decreases from 55% to 15% with the H4D parameters 

wmax=, vw≈0.1. An overlap is (almost) always experienced during insertion in the former 

case, while it never happens in the latter case. It is interesting to note that when  approaches 

F*, the hard sphere system spontaneously switches between two "phases" of different 

densities, one fluid, the other crystallized! Above F*, the crystal eventually wins. 



Figure 1: Chemical potential  versus density * for the hard sphere system. The 

symbols refer to the present H4D technique (wmax=, vw=0.1) used in GC (diamonds) or 

canonical (triangles) conditions. The cell size is L=5 for *<0.9 (N≈100) and L≈6.3 for 

*>0.9 (N≈235). Dotted line: analytical equation of state of Hall 20. 

Liquid water  

The chemical potential of the popular SPC/E water model at room conditions has been 

recently measured with great precision using canonical, isobaric and standard GC Monte-

Carlo simulations: =-15.37kT (where the activity a is expressed in Å-3) 21. We have repeated 

the GC simulation, this time using the H4D technique, see SM. Figure 2 presents the 

distributions pins(M) and pdes(M) of generalized energy change M observed during the 

trial particle exchanges, where 
1

ln
N

M H kT
V


     for insertion and 

ln
V

M H kT
N

     for destruction (M is always count in the direction of insertion). 
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According to the Crooks theorem 22 (the non-equilibrium version of the Bennett's 2), the two 

distributions verify: 

 ( ) ( ) M

des insp M e p M e      (4) 

and, in particular, cross at M=. While the standard technique experiences very different 

energy transfers in the two directions (mainly excluded volume overlaps at insertion, highly 

negative cohesive energy at destruction), the two H4D distributions explore narrower, 

overlapped energy domains and take much higher values at the crossing point, see figure 2. 

As a consequence, the acceptation rate increases from 9 10-5 at vw=∞ up to 0.38 at vw=0.05. 

An optimal compromise between N exchange success and speed of calculation is obtained 

with vw≈0.2 (14% success rate). 

 

Figure 2: Distributions of generalized energy change M observed during insertion (solid 

lines, right) and destruction (dotted lines, left) in GC simulation of SPC/E water system. Each 

curve is colored and labelled with the value of the vertical velocity vw used in H4D procedure 

(vw=∞ corresponds to the usual technique). All insertion/destruction pairs cross at M==-

15.37kT. 

As an illuminating illustration, a video movie shows the MC/H4D procedure working 

for the insertion of a H2O molecule into a 2D water layer using the 3rd dimension. Figure 3 

presents a snapshot taken at w=1Å (Multimedia view). 
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Figure 3: MC/H4D insertion of a H2O molecule into a 2D water layer through the 3rd 

dimension. Snapshot taken at w=1Å. The video movie illustrates the on-the-fly reorganization 

of the H-bonding network in order to accommodate the extra molecule. A destruction event 

with gradual filling of the growing cavity left by the leaving particle simply corresponds to 

the inverse movie (Multimedia view). 

NaCl electrolyte 

Lastly, we show how the H4D technique can be generalized for a Monte-Carlo 

simulation of NaCl aqueous electrolyte at the molecular solvent level of description, in the 

ensemble NsolventsaltPT. The number of SPC/E H2O molecules is fixed, the volume fluctuates 

at the imposed pressure P=1bar and the number of ion pairs NNa+=NCl-=Nsalt varies through 

exchanges with a salt reservoir which imposes the chemical potential salt=Na++Cl-. To the 

author's knowledge, this is the very first time that a simulation investigates such type of 

ensembles with trial ion transfers in bulk water. The electrostatic coupling is strong, 

especially inside the solvation layers. Moreover, the process must involve the simultaneous 

insertion or destruction of two ions, one cation, one anion in order to preserve the 

electroneutrality. As a consequence, the trial transfer needs to operate very slowly, with a 

small vertical velocity, in order to reach reasonable acceptation rates, in the 1% range, and the 

computational cost is heavy. Nevertheless, the simulation of a 1M NaCl aqueous solution at 

room conditions has been successfully realized. The salt chemical potential has been first 

estimated from measurements during isobaric simulations (see below), salt=-301.1kT. Then, 

the H4D-GCMC simulation has been performed with NH2O=550 solvent molecules, wmax=3Å, 

vw=0.0125 and special tricks, see SM for the details. The resulting ion number fluctuates 

around the average <Nsalt>≈10.2 with a root mean square fluctuation 
2

saltN   ≈2.2. The 

mean densities are <salt>=1.01M, <H2O>=54.4M. The combination of volume + ion number 

exchanges in this two-component mixture is sufficient to account for total density as well as 

composition fluctuations, so for all cross partial density fluctuations, and the full Kirkwood-

Buff theory applies 23.  For instance, the osmotic compressibility is given by: 
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h o2

2

saltsalt
osmotic

osmotic salt,T

V
P






 

 
  

 
 (5) 

and equals osmotic≈0.45±0.03 in the present 1M solution. At the same time, the radial pair 

distribution functions gij(r) are not affected by the so-called explicit finite-size corrections so 

disturbing in the usual canonical or isobaric simulations of mixtures 24 25, which result from 

the absence of fluctuations and prevent the direct determination of the Kirkwood-Buff 

integrals and thermodynamic derivatives. As an illustration, figure 4 plots the 3 "running" ion-

ion structure factors 
0

( ) ( ( ) 1)
R

ij ij salt ijS R g r dr     . They all converge to the common 

asymptote 
osmotic  (the same value as above) in the present ensemble while they are useless 

(without special corrections) in the NiPT ensemble. 

 

Figure 4: Running ion-ion structure factors Sij(R) in 1M NaCl electrolyte.MC simulation with 

NH2O=550. Dashed lines: the number of ions is fixed, Nsalt=10; Solid lines: Nsalt fluctuates 

through H4D exchanges with a salt reservoir, salt=-301.1.   

Canonical or isobaric H4D version 

Up to now, the H4D technique has been described as a Grand-Canonical strategy for 

performing addition/subtraction of bulk fluid particles. It can be used as well for measuring 

the chemical potential or solvation free energy of a solute particle during canonical or isobaric 

simulations. The starting point considers the average of the Markov flux ratio:  
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( ) ( )
( )

( ) ( )

( ) 1

n n
o

o no oo

n n

n o n

p pn o n o
p o n

o n p o n p

p n o p

 


 



  
   

  

   

 

  
 (6) 

From (3)(6), the CP of the fluid is thus given by: 

 

ln ln insertion
1

ln ln destruction

on

on

H M

ins
ins

H M

des
des

V
e e

N

N
e e

V

 

 

    

   

   


   

 (7) 

These expressions, originally established in GC ensemble, can be used as well in canonical or 

isobaric conditions for N fixed to the averaged GC value (with the undesired presence of 

finite-size perturbations in the former case). For the hard sphere system, H4D-NVT data added 

in figure 1 nicely agree with the GC curve on the whole fluid branch.   

Moreover, the same reasoning can be followed for a solvent+solute mixture at infinite dilution 

of the solute and the final expression for the solvation free energy of the solute reads: 

 

exc

solute puresolvent

solvent+solute

ln insertion

ln destruction

M

M

e

e





  

 

 

 
 (8) 

where M=Hon for a H4D insertion of a solute inside a bulk solvent cell and M=-Hon for a 

H4D extraction of the solute from a solvent+solute cell. This is nothing but an application of 

the Jarzynski's theorem. As usual, the combination of the insertion and destruction M 

distribution data with the help of the Crooks theorem (4) and well-developed BAR techniques 

provide better statistic precision. 

Conclusion 

In this letter, we have introduced the bare version of the new H4D technique for efficient 

Grand-Canonical insertions/extractions which enables to treat otherwise unreachable new 

systems. The very same procedure helps in measuring the solvation free energy of solute 

molecules. The detailed application on various solvents, mixtures, solutes and the 

developments of more complex and optimized versions will be described in future papers. 

 

Supplementary material: See supplementary material for the technical details in the hard-

sphere, water and electrolyte applications of the H4D algorithm. 

Acknowledgment: The author would thank A. Thill, D. Borgis and M. Levesque for fruitful 

discussions during the tortuous elaboration of the technique.
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