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ABSTRACT

In high-energy astronomy, spectro-imaging instruments such as X-ray detectors allow investigation of the spatial and spectral prop-
erties of extended sources including galaxy clusters, galaxies, diffuse interstellar medium, supernova remnants, and pulsar wind
nebulae. In these sources, each physical component possesses a different spatial and spectral signature, but the components are en-
tangled. Extracting the intrinsic spatial and spectral information of the individual components from this data is a challenging task.
Current analysis methods do not fully exploit the 2D-1D (x, y, E) nature of the data, as spatial information is considered separately
from spectral information. Here we investigate the application of a blind source separation (BSS) algorithm that jointly exploits the
spectral and spatial signatures of each component in order to disentangle them. We explore the capabilities of a new BSS method (the
general morphological component analysis; GMCA), initially developed to extract an image of the cosmic microwave background
from Planck data, in an X-ray context. The performance of the GMCA on X-ray data is tested using Monte-Carlo simulations of su-
pernova remnant toy models designed to represent typical science cases. We find that the GMCA is able to separate highly entangled
components in X-ray data even in high-contrast scenarios, and can extract the spectrum and map of each physical component with
high accuracy. A modification of the algorithm is proposed in order to improve the spectral fidelity in the case of strongly overlapping
spatial components, and we investigate a resampling method to derive realistic uncertainties associated to the results of the algorithm.
Applying the modified algorithm to the deep Chandra observations of Cassiopeia A, we are able to produce detailed maps of the
synchrotron emission at low energies (0.6–2.2 keV), and of the red- and blueshifted distributions of a number of elements including
Si and Fe K.

Key words. methods: data analysis – techniques: imaging spectroscopy – ISM: supernova remnants

1. Introduction

Beginning in the 1970s, it was realised that the X-ray sky is
full of extended sources, among which we find emission from
the Milky Way itself, other Galactic sources such as pulsar
wind nebulae or supernova remnants (SNRs), and extragalactic
sources such as galaxies and clusters of galaxies. The typical
emission components one can see in X-rays from these types of
objects are thermal emission or accelerated particles radiating
through the synchrotron process. In each case, their spectral sig-
nature is distinctive and recognizable. For example, in SNRs the
shock wave propagating rapidly through the interstellar medium
heats it up to approximately 107 K, resulting in thermal emission
peaking in the X-ray domain.

Spectro-imaging instruments such as those aboard the cur-
rent generation of X-ray satellites XMM-Newton and Chandra
provide data comprising spatial and spectral information: the
detectors record the position (x, y) and energy E event by event,
thereby providing a data cube with two spatial dimensions and
one spectral dimension.

An ability to disentangle the different physical components
in this 2D-1D data cube would allow us to learn more about
their respective spatial and spectral distributions. However, the
different components are frequently superimposed along the line
of sight, or are even physically nested, making such separation
difficult.

In this paper we introduce a new method to disentangle spec-
tral components from X-ray data of extended sources. Separating
a set of components mixed in a set of observations is known in
the field of signal processing as a BSS problem. Our method
is based on an algorithm that uses the ability of wavelets to
provide a sparse representation for astrophysical images to find
a solution to BSS problems. In this context, we consider our
2D-1D data cube as the product between an image and a spec-
trum. This algorithm, the generalized morphological compo-
nents analysis (GMCA), was first developed by Bobin et al.
(2015), and has recently been applied to Planck survey data to
separate the image of the cosmic microwave background (CMB)
from the foregrounds (Bobin et al. 2016). The application of the
GMCA method to X-ray data is nontrivial. While in Planck the
data are obtained in nine fixed frequencies, the X-ray photons
can be binned into an arbitrarily large number of energy bins; the
X-ray photon count is drastically lower at high energies, and has
higher dynamic range. In addition, the X-ray data have Poisson
noise whereas the GMCA method assumes an additive Gaussian
noise.

Here we adapt the GMCA algorithm to the study of extended
sources in X-rays, and test its implementation by applying the
method to SNR data. We first test the method on toy models
reproducing X-ray data of SNRs containing up to three com-
ponents (see Sects. 4 and 7). Although the noise is Poissonian
in our simulated data set, we obtain accurate spectral shapes
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and cleaner images than with any of the typical X-ray analy-
sis techniques. However, we find that a strong spatial correlation
between the components leads to a leakage from the main com-
ponents to the weaker ones, which may be partially linked to the
nature of the noise, and we implement a refinement step in the
algorithm to minimize this effect (see Sect. 5). Although a ver-
sion of the GMCA handling Poisson statistics is currently being
developed, our results show that the existing version can be used
to disentangle extended sources in X-rays. Applying our method
to real data from the Cassiopeia A SNR yields sharp images of
the synchrotron at low and high energy, and images of the dis-
tributions of a number of elements including Si and Fe K (see
Sect. 8). In both cases, one of the images presents the blueshifted
part of the structure, and the other one the redshifted part.

2. Motivations and current methods

The telescopes XMM-Newton and Chandra have provided a
major step forward in effective area and angular resolution, and
have led to nearly 20 years of observations resulting in deep
(Mega-seconds) archival public data sets. As an example, the
deep Chandra ∼2 Ms observation of SNR Cassiopeia A resulted
in about a billion X-ray photons. Despite this breakthrough
improvement in data quality, the analysis techniques used to
extract the wealth of information contained in such data sets have
stalled.

The main analysis challenge lies in the fact that at each posi-
tion, the different spectral components (e.g., synchrotron and
thermal emission from the shocked medium and ejecta) are pro-
jected along the line of sight, and that the observed signal is a
combination of these components.

In the study of SNRs, a typical scientific case is to study
the spatial distribution of a spectral feature (e.g., heavy ele-
ment maps to probe the morphology and asymmetries of the
ejecta). The common methods are to generate maps integrated
around the centroid energy of a line and to subtract the underly-
ing continuum estimated from adjacent energy bands (the con-
tinuum interpolation method). However, if the faint emission
lines are dominated by the continuum or if the adjacent ener-
gies also have emission lines, those methods perform poorly. An
alternative method to study the spatial variations of the spec-
tral properties is to divide the image into subregions and carry
out a spectral analysis in each subregion. One frequently used
method is to define regions of equal photon statistics with for
example the Voronoï tiling method (see Diehl & Statler 2006,
for an adaptation to X-rays). Each cell is then fitted with a
physical model independently from its neighbors and maps rep-
resenting the best-fit parameters are produced. This method is
time consuming and does not take into account the underly-
ing relationship between the spatial and spectral components. In
addition, the best-fit parameter map may suffer from statistical
fluctuations from cell to cell as for practical reasons only one
grid is defined using a reference image in a large energy range
that might not represent the flux of individual spectral compo-
nents.

To summarize, one of the root issues of the methods
described above is that each region (pixels or cell) is treated inde-
pendently. The disentangling process only relies on the spectral
signature of the components in each region considered, whereas
in reality the physical components also have different spatial
signatures. Exploiting both the spectral and spatial signatures
of the components and treating pixels not individually but as a
whole yields more discriminative power to disentangle the dif-
ferent physical components. We note that other methods such

as the principal component analysis (PCA) have already been
applied to SNRs in the past to retrieve entangled components
(see Warren et al. 2005). However, the PCA works in such a
way that it has to retrieve decorrelated components, which usu-
ally makes them not physically significant. We can also cite
Jones et al. (2015), who used Bayesian statistical methods to
infer the number of sources and probabilistically separate pho-
tons among the sources. Yet, these methods work with event lists
(x, y, E), and do not retrieve images or spectra associated with
the sources, as our method does.

3. A BSS method: the GMCA

3.1. Description of the method

Blind source separation methods aim to disentangle mixed
sources in a data set without prior information. A classic way
to do so is to look at the original data in a mathematical space
where the sources will be sufficiently different from one another.
The concept of sparsity helps to determine what kind of space
could be suitable; a sparse signal is a signal in which most of the
coefficients are zero. Thus, two sparse signals will be easier to
disentangle as their signatures will not be correlated. For exam-
ple, to separate periodic signals in a unidimensional data set, it
is much easier to work in Fourier space, where such sources will
be entirely determined by a few coefficients.

In this paper, we introduce a new method to disentan-
gle physical components based on their spatial and spectral
signature. This method is based on the GMCA algorithm, a BSS
algorithm developed to disentangle the CMB from the galac-
tic foregrounds in the data of the Planck satellite (Bobin et al.
2015). The input is a data cube (E, x, y), where E is the spectral
dimension and x and y are spatial dimensions.

The main concept of GMCA is to take into account the
morphological particularities of each component to disentangle
them. Apart from the (E, x, y) data cube, the only input needed is
the number n of components to retrieve, which is user-defined.
To optimize the disentangling process, the signal is projected in
a space where it will have a sparse representation. Thus, two
components that are sufficiently spatially different will have few
coefficients in common, allowing us to separate them more eas-
ily. In the case of images, the equivalent of the Fourier space
would be a correctly chosen wavelet transform, that would con-
centrate most of the image information into a few coefficients
(for more about wavelets, and for an illustration of the interest
of the wavelet space to disentangle components in a data cube
(E, x, y), see Appendix A).

3.2. Mathematical formalism

Here we use the undecimated1 Starlet transform (see Starck et al.
2007, and Appendix A) which is well suited for astronomical
purposes. Each wavelet scale contains information about struc-
tures of a specific size, which allows us to isolate the mor-
phological features of each component more easily. In order
to minimize cross-correlations between components, the two
largest wavelet scales are not used, because in these scales mor-
phological features are harder to differentiate.

For a data cube of dimension (E, x, y), we apply a wavelet
transform with J scales on the images of each energy slice of
the cube resulting in an array X of dimension (E, x, y, J − 2),

1 An undecimated transform produces images of the same size for each
scale.

A139, page 2 of 18



A. Picquenot et al.: Novel method for component separation of extended sources in X-ray astronomy

the two largest wavelets scales being rejected. We note that the
wavelet transform is applied only on images, and that there is no
constraint on the sparsity of the spectra. The aim of the GMCA
is to solve the following problem:

X = AS + N =

n∑
i=1

AiS i + N, (1)

where n is the predefined number of components, the Ai are vec-
tors of size E, in our case related to the spectral information (the
spectra of our mixed components), the S i are the sources rep-
resented in wavelets, of dimension (x, y, J) and related to the
spatial information (the images in wavelets of our mixed com-
ponents), and N is a Gaussian noise. The product here for a
given i is the multiplication of every coefficient of Ai by every
coefficient of S i. The components to retrieve are assumed to be
modeled as the product of an image (S i in the wavelet space)
and a spectrum (Ai). Thus, the retrieved components are approx-
imations of the actual components with the same spectrum on
each point of the image. This problem being an ill-posed inverse
problem, as both A and S are unknown, one needs a constraint
to solve it. The GMCA relies on the assumption that once the
image has been translated into wavelet space, each constituent
can be sparsely represented, thus making the component separa-
tion easier.

The GMCA solves the inverse problem by imposing a spar-
sity constraint: it maximizes the sparsity of the images of each
source in the wavelet domain. The problem being actually solved
by the GMCA is thus the following optimization problem:

min
A,S

n∑
i=1

λi‖S i‖p + ‖X − AS ‖2F , (2)

where λi are regularization coefficients equivalent to thresholds
that aim at rejecting noise samples, and are essential to provide
robustness with respect to noise. They are chosen thanks to an
estimation of the noise level in the sources based on the median
absolute deviation (MAD) method, and progressively decrease
towards the final noise-related level. ‖.‖F is the Frobenius norm
defined by ‖Y‖2F = Trace(YYT ) and ‖.‖p is a lp norm, with p = 0
or p = 1. The l1 norm is defined by ‖Y‖1 =

∑
i, j |Yi, j| and ‖Y‖0

counts the number of nonzero entries in Y . The l0 and l1 norms
are customarily used to measure the sparsity of signals. The first
term of this equation is a sparsity constraint term and the second
is a data-fidelity term.

More precisely, the GMCA is an iterative algorithm repeat-
ing the following two steps:

– Step 1: Estimation of S for fixed A, by simultaneously min-
imizing ‖X − AS ‖F and the term enforcing sparsity in the
Wavelet domain;

– Step 2: Estimation of A for fixed S by minimizing ‖X−AS ‖F .

3.3. Application of the method

When the GMCA was applied to Planck data, the CMB spectrum
was fixed to its theoretical shape. Giving a known spectrum as
additional information fixes a column in A, making the algorithm
work in what is termed a semi-blind mode. However, if the theo-
retical spectrum is not previously known, the algorithm can also
work in a completely blind mode. With our toy model example
(described in the following section), we test both of these modes.

The only input needed is the number n of components to
retrieve. Any prior knowledge of the data can help to choose n
wisely, that is, as the expected number of components visible in

the energy band on which the GMCA is applied. In addition, this
algorithm runs quickly (a few minutes to extract sources from a
200*200*300 single-core personal computer), so we highly rec-
ommend trying different values of n and checking if the outputs
have a physical relevance: as we see in Sect. 4.2, the GMCA
does not produce images of spurious structures.

We see in Appendix B that the Akaike information criterion
(AIC) can be used as a figure of merit to confirm the relevance
of a chosen n. However, this criterion must be used with cau-
tion since it is rigorously valid when computed at the maximum
likelihood. This does not perfectly hold true in this case since:
(i) the underlying cost function that GMCA minimizes contains
an additional sparsity regularization, and (ii) the resulting prob-
lem is not convex and only a local minimizer is guaranteed to be
reached.

The outputs of the GMCA are an array of dimension (nE , n)
containing the spectral information of the components, and an
array of dimension (n, nx, ny) containing the spatial information
of the components. In order to obtain n normalized cubes of
dimension (E, x, y) we multiply each spectrum by its associated
image. By collapsing these cubes along the E axis, images of
the retrieved sources can be obtained, and by collapsing them
along the x and y axes we can obtain their spectra. The spectra
can subsequently be used in Xspec or a similar analysis tool in
order to fit physical models and retrieve physical parameters (see
Sect. 4.3).

4. Method performance

4.1. Toy model definition

To test the performance of the GMCA in disentangling compo-
nents in X-ray data, we designed toy models inspired by real
X-ray observations of SNRs. We chose to simulate a SNR simi-
lar to Cassiopeia A, one of the best-studied SNRs and one which
has benefited from deep megasecond observations.

Our toy models consist of a data cube composed of the sum
of individual components to which we add Poisson noise. Each
component comprises an image multiplied by a spectrum (see
Fig. 1). The images were obtained by applying the GMCA to
real Chandra data from Cassiopeia A (see Sect. 8), and smooth-
ing the output to mitigate the noise. For now, the relevance of
these images is not important: we only want to ascertain if, when
the components are known, the GMCA is able to disentangle
them when mixed together. The spectra we use are the theoreti-
cal spectra folded through the Chandra instrument response; the
energy binning is 43.8 eV (three times the native energy chan-
nel width), and the pixel size is 1.8 arcsec (four times the native
pixel size). We also add a completely flat image associated with
the instrumental background2 to better simulate observed data.
We do not add a cosmic X-ray background, because this back-
ground being isotropic at the scale of CasA, its spatial template
would be a flat image, and therefore the addition of a cosmic
X-ray background and the instrumental background would only
end up being one component, with a slightly different spectrum.
Finally, we generate Poisson noise. In this study we begin by
focusing on two typical observational scenarios (see Table 1):
synchrotron continuum emission entangled with line emission
(Model 1), and synchrotron continuum emission entangled with
thermal emission (Model 2). In both models, we set the syn-
chrotron emission as one with the highest total number of counts.

2 Derived from closed/stowed observations available at: http://cxc.
harvard.edu/ciao/download/caldb.html
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Fig. 1. Presentation of our toy model, consisting in the sum of images multiplied by theoretical spectra. The spatial distribution of the instrumental
background is uniform.

Table 1. Description of the toy models.

Description Parameters

Model 1 Power law + Γ = 2.0
Gaussian Ec = 6.58 keV

σ = 80 eV
Model 2 Power law + Γ = 2.0

Apec kT = 2 keV
Model 3 Power law + Γ = 2.0

Two Gaussians Ec1 = 6.55 keV
Ec2 = 6.64 keV
σ = 0 eV

Model 4 Power law + Γ = 2.0
Two apecs kT1 = 2 keV

kT2 = 0.5 keV

Notes. For all models, NH is set to NH = 0.5×1022 cm−2. For the thermal
model (apec), the ionization timescale is set to τ = 1 × 1010 cm−3 s and
the abundances to solar values.

The results of our method depend on the relative level of the
Poisson noise, and therefore on the total number of counts in the
signal. This parameter is chosen in order to reflect the reality of
the data we get from spectro-imaging instruments. Hence we set
the count rate of the synchrotron and line or thermal emission to
be of the order of that observed in Cassiopeia A. We then simu-
lated two data sets, corresponding to a 1 Ms or a 100 ks observa-
tion with the Chandra ACIS-S instrument.

The ratio between the strength of the main component and
that of the secondary components is also an essential factor. For
Model 1, we define this as the Fe line-to-synchrotron ratio at
6.58 keV (the peak of the Gaussian); for Model 2, it is defined as
the thermal emission-to-synchrotron ratio at 0.85 keV. We pro-
gressively decrease the contrast of the second component rela-
tive to that of the synchrotron emission following 15 ratios.

For both toy models we tested the same ratios. Table 2
presents a conversion table between these ratios and the Fe line-
to-synchrotron flux ratios between 6.2 and 7 keV, or the thermal
emission-to-synchrotron ratio in the 0.5−8 keV band.

Table 2. Equivalence between the max (Fe or thermal emission)-to-
synchrotron ratios and the physically more significant flux ratios for
our four toy models.

Models Model 1 Model 2 Model 3 Model 4

Comp. Ec kT Ec1 kT2
6.2– 0.5– 6.4– 0.5–

Ratios 7 keV 8 keV 7 keV 4 keV
13.35 4.20 2.39 4.36 1.67
8.90 2.80 1.59 2.91 1.11
5.93 1.86 1.06 1.93 0.74
3.95 1.24 0.71 1.29 0.50
2.64 0.83 0.47 0.86 0.33
1.76 0.55 0.31 0.57 0.22
1.17 0.37 0.21 0.38 0.15
0.78 0.25 0.14 0.26 0.098
0.52 0.16 0.093 0.17 0.065
0.35 0.11 0.062 0.11 0.043
0.23 0.073 0.041 0.076 0.029
0.15 0.049 0.028 0.050 0.019
0.10 0.032 0.018 0.033 0.013
0.069 0.0022 0.012 0.022 0.0086
0.046 0.0014 0.0082 0.015 0.0057

Notes. The components are named after their main characteristic
(Ec for the Gaussians, kT for the thermal emissions), as they are listed
in Table 1. The energy ranges listed below each component are those
from which the ratios are calculated.

4.2. Reconstructed image fidelity

To assess the accuracy of the results of the GMCA, we compared
both the similarities between the input and the output images,
and the reliability of the spectral parameters fitted. For the image
benchmarks, we used the structural similarity index (SSIM; see
Wang et al. 2004), which measures the perceived similarities
between two images by incorporating perceptual phenomena and
the idea that close pixels have strong interdependencies, instead
of solely measuring absolute differences. This index takes the
form of a number between zero and one, one being a perfect
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Fig. 2. SSIM coefficients of the input and output images found by GMCA for a total number of counts corresponding to a 1 Ms observation. The
points are the average of all Monte-Carlo realizations at a particular ratio, and the error bars are the standard deviation of those realizations. Left
panel: comparison of the image quality obtained in retrieving the Fe structure in our first toy model for different line emission-to-synchrotron
ratios, between an interpolation method, a GMCA in blind mode, and a GMCA in semi-blind mode. Some images corresponding to the ratios
indicated by arrows are shown in Fig. C.1. Right panel: image quality of the thermal emission structure retrieved for different ratios by a GMCA
in blind mode.

resemblance and zero indicating perfect dissimilarity. In our
case, below an SSIM of 0.75 we can consider that the source
has not been retrieved, the remaining correlations being linked
to the similarities between the synchrotron image, the Fe image,
and the Poisson noise associated to them.

For each line-to-synchrotron ratio we then performed a
Monte-Carlo simulation of 100 different Poisson realizations to
test the robustness of the algorithm. We compared the results of
the GMCA in pure blind mode with that of the GMCA in semi-
blind mode, with the theoretical shape of the Fe line fixed. We
also compared these results to that of an interpolation method
between 6.1 and 7.1 keV (the left panels of Figs. 2 and C.2
show the results for the simulated 1 Ms and 100 ks observations,
respectively). This method consists of estimating the underlying
synchrotron spectrum between 6.1 and 7.1 keV by interpolating
it. The synchrotron image is then determined by integration (e.g.,
between 5 and 6 keV, where the Fe is absent) and the synchrotron
cube is obtained by multiplying this image and the interpolated
spectrum. Subsequently, we subtract the aforementioned cube,
and the synchrotron-subtracted remaining cube constitutes an
estimation of the Fe structure.

For both simulated exposures, we see that Fe line-
to-synchrotron ratio images given by the GMCA have slightly
better SSIM coefficients to those obtained with an interpolation
method. However, a sudden drop in the GMCA results points
out the moment when the algorithm in blind mode is no longer
able to find the Fe structures. The descent is smoother with
a fixed spectrum (semi-blind mode) because the algorithm is
given more information to search for potential sources, but as the
number of counts in the iron line decreases the noise increases.
In blind mode, the GMCA retrieves an image of the Fe spa-
tial structure when it is up to 2.9 times weaker than the syn-
chrotron in the case of a total number of counts corresponding
to a 1 Ms observation (9 times weaker in flux), and up to 1.8
times higher than the synchrotron for 100 ks (1.8 times weaker in
flux).

The GMCA in blind mode does not benefit from the informa-
tion that the Fe line is contained between 6.1 and 7.1 keV, but still

gives very good results. Furthermore, the interpolation method
cannot be used on components whose spectra are extended on
an energy range that is too wide, as we see with our second toy
model. Also, we see in Sect. 8 that with real data, what looks like
a Gaussian can contain some hidden information that a GMCA
in blind mode will be able to retrieve, but an interpolation can
only find the Gaussian as a whole.

The fact that the GMCA gives good images until it is sud-
denly unable to find anything but noise suggests that the algo-
rithm can be trusted; in this particular test the Fe distribution is
found or is not, but the algorithm never gives images of spu-
rious, over-interpreted structures (see Fig. C.1 for an example
of images becoming noisier as the component becomes fainter).
In our test case, when we increase the number of sources, the
first two remain the synchrotron and Fe structure, the rest are
only noise. As our data are Poissonian, the noise component has
a shape similar to that of the main component, here the syn-
chrotron, with large fluctuations.

We proceeded in the same way with our second toy model,
featuring a synchrotron continuum emission and a thermal emis-
sion (see the right panel of Figs. 2 and C.2 for the simulated 1 Ms
observation and the 100 ks one, respectively). Here, the compari-
son with an interpolation method is impossible because the ther-
mal spectrum cannot be subtracted from the synchrotron with a
simple interpolation. The GMCA in semi-blind mode does not
make sense either, because with real data it would be impos-
sible to know the shape of a thermal emission a priori. With
a total number of counts corresponding to a 1 Ms observation,
the GMCA in blind mode applied from 0.5 to 10 keV is able to
retrieve an image of the thermal emission spatial structure when
this component is up to 14.6 times weaker than the synchrotron
(83.3 times weaker in flux). With a total number of counts cor-
responding to a 100 ks observation, it could retrieve an image
up to 4.3 times weaker than the synchrotron (13.7 times weaker
in flux). The thermal emission in our second toy model can be
retrieved with smaller ratios than the Fe line because it is non-
negligible on a wider energy range, providing more counts to the
algorithm.
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Fig. 3. Left: spectra retrieved by GMCA for different Fe line-to-synchrotron ratios in our first toy model with a total number of counts corresponding
to a 1 Ms observation. Retrieved spectra are shown as solid lines, theoretical spectra as dotted lines. The synchrotron spectrum is displayed as an
indication of the relative strengths. The two other plots represent parameters of the Fe K component retrieved by GMCA for 100 realizations of
each of nine different Fe line-to-synchrotron ratios with a total number of counts corresponding to a 1 Ms observation. Center: retrieved Ec and
norm. Right: retrieved Ec and σ. In both cases, the theoretical results are represented by crosses.

We note that the instrumental background was not retrieved
in any of the cases, and that it did not leak on any other compo-
nent. This is due to the fact that the two largest wavelet scales
being eliminated, the instrumental background associated with a
flat image, were automatically suppressed with it.

4.3. Spectral fidelity

For every Fe line-to-synchrotron ratio for which the Fe K dis-
tribution is found by the GMCA in blind mode, the retrieved
spectrum is comparable to the input spectrum with some noise
appearing as the Fe component becomes fainter (see left panel
of Fig. 3). Apart from a slight overestimation of the wings, the
retrieved spectra are accurate and their normalizations well esti-
mated.

In order to obtain a more precise estimate of the spectral
accuracy of the method, we fitted the recovered spectra in Xspec
and compared the parameters thus obtained with a fit of the origi-
nal data without GMCA processing directly in Xspec. Fitting the
retrieved spectra requires estimating the errors for every spectral
bin. In spite of the fact that our input data are Poissonian, we
cannot assume that the results given by the GMCA will still be
such. Therefore, we used the standard deviation of 100 Monte-
Carlo realizations as an estimation of the error.

We tested the accuracy of the spectra retrieved by the GMCA
in Model 1 by comparing their centroids, widths, and normal-
izations to the theoretical ones (see central and right panels of
Fig. 3). The norms are almost perfectly retrieved (left and central
panels of Fig. 3), and even the slight energy shift for the smaller
ones (around 5 eV) is negligible as compared to the instrument
resolution, which is 150 eV (at 5.9 keV) for the ACIS-S camera3.
The wings are a little overestimated in the first norms (Fig. 3, left
panel), while the width σ is underestimated in the last ones (left
and right panels of Fig. 3). It may be due to the fact that in the
fainter part of the Gaussian, the signal is largely dominated by
the synchrotron, which makes the disentanglement harder than
at the peak of the Gaussian.

We made the same comparison with the Gaussians recovered
without using GMCA by fitting a power law and a Gaussian on
the original spectra in Xspec (see Fig. C.3). The retrieved norms

3 http://cxc.harvard.edu/cal/Acis/

and centroids are a little more accurate (Fig. C.3, left panel), but
are relatively similar to the results given after GMCA. However,
the retrieved σ are not underestimated, and are still centered on
the theoretical value for low ratios (Fig. C.3, right panel). Thus,
the GMCA introduces a bias in calculating some physical param-
eters in Xspec, but this bias is minimal compared to the 150 eV
spectral resolution.

Finally, we tested the accuracy of the spectra retrieved
by GMCA in our second toy model, featuring a synchrotron
and a thermal emission (see left panel of Fig. 4). The spec-
tra are mainly well retrieved, even for low thermal emission-
to-synchrotron ratios, but they are always overestimated at high
energies. This reflects the fact that the synchrotron is contaminat-
ing the thermal emission: because of the spatial overlap between
the two structures, there is a leakage from the main one into the
weaker one when the number of counts is too low. This leak-
age strongly impacts the temperature retrieved after a fitting in
Xspec, the necessary information being the slope at high ener-
gies. As shown in the right panel of Fig. 4, the overestimation
of the spectra, greater as the ratio decreases, is directly affect-
ing the retrieved kT . However, kT is a global parameter, relying
on the information contained over the full energy range, thus
highly susceptible to being impacted by an overestimation at
high energies. Local parameters, like NH or τ, are almost per-
fectly estimated for thermal-to-synchrotron ratios as low as 0.52.
For example, the theoretical NH is equal to 0.5 × 1022 cm−2, and
for a ratio of 3.95 we retrieve (0.490 ± 0.001) × 1022 cm−2 and
for a ratio of 0.34, we obtain (0.485 ± 0.008) × 1022 cm−2 where
errors are the standard deviation on 100 Monte-Carlo realiza-
tions. In the same way, the theoretical τ is 1 × 1010 cm−3 s; for
a ratio of 3.95 we retrieve (9.13 ± 0.05) × 109 cm−3 s, and for a
ratio of 0.34, we obtain (9.12 ± 0.27) × 109 cm−3 s.

5. Implementing a new inpainting step in the GMCA

In this section we discuss the introduction of an extra step in the
GMCA algorithm based on an inpainting method. Inpainting is
a process consisting in reconstructing parts of an image that are
lost or willingly removed. In photography, it can be used to clean
the image, removing defaults or inappropriate details. This tool
was shown to be useful to improve our BSS method.
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Fig. 4. Left: spectra retrieved by GMCA for different thermal emission-to-synchrotron ratios with a total number of counts corresponding to a
1 Ms observation. Retrieved and theoretical spectra are shown in solid and dotted lines, respectively. The synchrotron spectrum is displayed as an
indication of the relative strengths. Right: kT retrieved by Xspec by fitting a thermal model on the thermal emission spectra retrieved by GMCA
for different Fe line-to-synchrotron ratios with a total number of counts corresponding to a 100 ks observation. For each ratio, we made a Monte-
Carlo with 100 realizations, fitting in Xspec a thermal model on every realization associated with the error bars given by the Monte-Carlo. The
theoretical kT is 2 keV and is indicated by the blue dotted line.

We previously saw that in the results given by the GMCA
on toy models composed of two physical sources there could be
some leakage from the main component to the other one (e.g.,
leakage of the synchrotron component to the thermal component
in Fig. 4). These leakages are often balanced by negative parts in
the image or spectrum of the main component. In order to correct
that leakage, we added an extra step to the GMCA.

The GMCA being an iterative algorithm, our revised version
retains a loop of about 150 iterations of the usual algorithm, fol-
lowed by a smaller loop with a new step in which each result
of the previous state is treated in a way to forbid negative val-
ues. To do so, a first method would be to define a mask where
the reconstructed images take negative values, and apply those
masks to the wavelet transforms of those images, S , imposing
a zero value on the negative parts before they are processed to
estimate A. The results can be improved by replacing the raw
masking by an inpainting, here a reconstruction of the masked
parts of the image using a wavelet transform (see Fadili et al.
2007). We do this in order to constrain the algorithm to converge
to a more physical solution.

Our new loop can be described thus:
– Step 1 : Estimation of S thanks to X and the previous A.
– Step 2 : Defining masks set to zero where the reconstructed

images are negative, indicating an area where strongly cor-
related components are overlapping, and one elsewhere.

– Step 3 : Inpainting of S (in wavelets) using the previously
defined masks.

– Step 4 : Estimation of A for fixed S by minimizing ‖X−AS ‖F .
As can be seen in Fig. 6, our inpainting step accurately cor-
rects the leakage from the synchrotron to the thermal emission
component in our second toy model: the retrieved spectra are
closer to the truth. The resulting impact on the fitting in Xspec
is also significant, as the temperatures are now more accurately
retrieved for sufficiently high thermal emission-to-synchrotron

ratios (see Fig. 6). The convergence of our new loop is not
mathematically proven, but we empirically noted that the solu-
tion stabilized quickly. In the science cases that we explored,
three iterations were sufficient to recover more accurate spectral
results.

6. Estimating errors with only one realization

The Monte-Carlo method cannot be used to retrieve error bars
with real data, as only one observation is available: the observed
one. Therefore, a resampling method such as the Bootstrap (see
Efron 1979), able to simulate several realizations out of a single
one, is necessary.

6.1. Block bootstrap

The bootstrap is a statistical method consisting of a random sam-
pling with replacement from a current set of data. If the initial
data is a collection of N events, a resampling obtained through
bootstrapping would be a set of N events taken randomly with
replacement amid the initial ones. This method can be repeated
in order to simulate as many realizations as needed to estimate
standard errors or confidence intervals. In order to save calcula-
tion time, we choose to resample blocks of data of a fixed size
instead of single events: this method is named block bootstrap.

In our case, the data is the set of all photons detected by an
X-ray telescope during its observation time, each photon being
considered as a triplet (E, x, y). Because of the massive amount
of events, we use a block bootstrap resampling method. The
ordering variable is time, independent of (E, x, y), and there-
fore defining blocks preserves the random character. There is no
proper way to choose a block length a priori; a few tests seem
to indicate that a length of the order of the cube root of the total
data set size is efficient with our type of data.
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Fig. 5. Correlation between the error bars given by the standard deviation of 100 Monte-Carlo realizations and the error bars given by the standard
deviation of 100 simulated realizations resampled out of a single one thanks to the block bootstrap method, with and without GMCA. Left: spectra
are those of the Fe Gaussian in our first toy model with a total number of counts corresponding to a 100 ks observation and a line-to-continuum
ratio of 5.93 (in the absence of a synchrotron spectrum, this ratio characterizes the norm of the Gaussian and the ratio of 5.93 corresponds to the
fourth norm in our previous tests). Right: Monte-Carlo vs. Block bootstrap error bars on the results given by GMCA on our first toy model, for the
same duration and ratio. In both cases, we made 100 Monte-Carlo realizations and we used a block bootstrap resampling on ten realizations, 100
times each, for a block length of 78 (cube root of the total number of events) in order to evaluate the influence of the initial realization on a block
bootstrap resampling.

Fig. 6. As in Fig. 4 after the inpainting step described in Sect. 5.

The errors on the spectra are calculated as the standard devi-
ation of the values on each energy bin over all new samples. The
error on the ith bin is thus:

error[i] =

√√√√√ n∑
j=1

(
spec[i, j] − spec[i]

)2

n
, (3)

where n is the number of resamples, spec[i, j] the value of the
spectrum in the ith bin of the jth sample, and spec[i] the mean
of the values of the spectra in the ith bin over the n resamples.

6.2. Estimated errors

Our aim in using a block bootstrap resampling method is to esti-
mate errors on the spectral data points that will allow us to fit
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Fig. 7. Spectra retrieved by GMCA in our third and fourth toy models with a total number of counts corresponding to a 100 ks observation. Left:
spectra retrieved by a GMCA with inpainting step of the two Gaussians in our toy model 3, with a first line emission-to-continuum ratio of 5.93
and a thinner binning (14.6 eV). Right: spectra retrieved with an inpainting step of the two thermal emissions in our toy model 4, with a first
thermal emission-to-continuum ratio of 2.64. To compare both error estimation methods, we added the error bars and the kT given by 100 MC
realizations, and those given by 100 block bootstraps resamplings of a single MC realization.

spectra issued from real data in Xspec. In the first place, we
compared the error bars given by 100 Monte-Carlo realizations
of the Fe Gaussian alone to those retrieved by these methods out
of a single one. The data we used were the Fe Gaussian of our
first toy model between 5 and 8 keV for a 100 ks observation and
a ratio of 5.93.

To do so, for every energy bin we looked at the correlation
between the standard deviation of the spectral values as given by
a Monte-Carlo and by the block bootstrap method; by applying
the resampling method to different realizations we were able to
evaluate the errors on the bootstrap error bars (i.e., the uncer-
tainty induced by using one given observation). In Fig. 5, we see
that the error bars obtained through resampling are consistent
with the Monte-Carlo error bars.

To find out if applying the GMCA algorithm introduces a
bias, we also compared the error bars given by the standard devi-
ation of 100 GMCA applied on different Monte-Carlo realiza-
tions and the error bars given by 100 GMCA applied on 100
resamples.

The error bars obtained through GMCA applied on 100 block
bootstrap resamplings are slightly overestimated in comparison
with those obtained with Monte-Carlo, but this does not have a
crucial impact on the best-fit parameters obtained in Xspec (see
Fig. 7).

7. GMCA applied on toy models with more than two
components

We designed two more toy models featuring three sources
instead of two (see Tables 1 and 2 for flux ratios). In our third toy
model, we put a synchrotron and two Gaussians centered respec-
tively on 6.54 keV and 6.63 keV. The one at 6.63 keV has a norm
equal to 0.7 times that of the other one. Here, the Gaussians are
the instrumental responses to a Dirac, hence they have a smaller

width than in the first toy model. This is what we would get if
the first wide Gaussian truly was the sum of two slightly shifted
thinner ones. As we need a more precise definition in energy, the
binning is thinner than in our previous toy models (14.6 eV), but
the total number of counts is of the same order.

In our fourth toy model, we input a synchrotron and two ther-
mal emissions, one with kT equal to 0.5 keV, the other with kT
equal to 2 keV. The norm of the first thermal emission is equal
to 0.7 times that of the second one. For the images, we used the
blue- and redshifted Fe components shown in Fig. 9. As for our
first two toy models, we added to our third and fourth toy mod-
els a flat image associated with the spectrum of an instrumental
noise, and we generated Poisson noise on the whole data cube.
The total number of counts of the synchrotron corresponds to a
100 ks observation, and the second main component (brightest
Gaussian or thermal emission)-to-synchrotron ratios we tested
are the same as before.

The GMCA is able to properly disentangle the three sources
for the highest second-main-component-to-continuum ratios, but
when the sources weaken, it only retrieves the synchrotron and a
second source that is a composite of the two Gaussians, or of the
two thermal emissions. Using the inpainting step helps to disen-
tangle the three sources a little longer and improves the spectra
in the thermal emission case, but the weakest thermal emission
is underestimated: the leakage mechanism is more difficult to
correct with three sources to disentangle than with only two of
them. In Fig. 7, we can see an example of correct disentangle-
ment of the components in both toy models. The presented line-
to-continuum and thermal-to-continuum ratios are the last ones
to give correct images and correct spectra for every component.

We fitted the retrieved thermal emission spectra of our fourth
toy model in Xspec in order to estimate kT . We first used
as error bars the standard deviation of 100 MC realizations;
we then took the standard deviation of 100 block bootstrap
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Fig. 8. Spectra of Cassiopeia A from the deep 2004 observations. The
main emission lines are labeled as well as the energy ranges used for
the GMCA algorithm in Fig. 10.

resamplings of a single MC realization. The temperature of the
first thermal emission is slightly overestimated with MC error
bars, but the overestimation is of the same order as with our
second toy model. However, this temperature is consistently
retrieved with the block bootstrap error bars. The temperature of
the second thermal emission is slightly underestimated in both
cases.

8. GMCA applied to real data

Following the consistency and the robustness tests described
above, we applied the GMCA to the deep Chandra observations
of Cassiopeia A, which was observed with the ACIS-S instru-
ment in 2004 for a total of 980 ks (ObsID : 4634, 4635, 4636,
4637, 4638, 4639, 5196, 5319, 5320). The spectrum from the
whole SNR, together with the main emission features, is shown
in Fig. 8. The event lists from all observations were merged in
a single data cube. For each application described in the sec-
tions below, the spatial and spectral binning were adapted so
as to obtain a sufficient number of counts in each cube ele-
ment. No background subtraction or vignetting correction has
been applied to the data. We note that due to the lack of expo-
sure and background map handling with the current version of
GMCA, the method cannot yet be applied to a large mosaic of
observations.

8.1. Asymmetries of the Fe K distribution in Cassiopeia A

We first applied the GMCA to the Cassiopeia A observation
between 5 and 8 keV, where the prominent features are known
to be the synchrotron emission and the Fe K line complex. To
allow for unexpected sources to be retrieved by the algorithm,
it is recommended to decompose the data into a larger number
of components than expected as a first guess. By doing this, we
obtained three physically meaningful components in Cassiopeia
A: continuum emission and two Gaussian lines that appear to
be slightly shifted with respect to one another, and with respect
to the Fe K average energy. The first component is undoubtedly
the synchrotron emission, for which the image is coherent with
our knowledge of its spatial distribution; the corresponding spec-
trum can be described as a power law (Fig. 9, top panel). The
two other components have spectra corresponding to blue- and
redshifted Fe line emission (Fig. 9, middle panels), and the asso-

Fig. 9. Images and spectra retrieved by the GMCA with inpainting step
in the real data from Cassiopeia A between 5 and 8 keV. The first source
corresponds to a synchrotron emission, while the two following sources
are parts of the Fe distribution; the first of these latter two is a redshifted
part of this distribution, while the second is a blueshifted part of the dis-
tribution. The error bars in both parts of the Fe distribution are retrieved
thanks to a block bootstrap with blocks of size 78. A fitting in Xspec
gives the line energies of 6.726± 0.002 keV for the blueshifted part and
6.561 ± 0.001 keV for the redshifted part. The last image is the one we
identify as noise.

ciated images show clumps typical of the spatial distribution of
Fe in Cassiopeia A (see Fig. 7 of DeLaney et al. 2010). If we
instead require the algorithm to find only two components, it
retrieves the synchrotron emission and a composite of the two
Fe components. If require the algorithm to find more than three
components, the additional retrieved sources are simply noise.
The bottom panel of Fig. 9 shows an image of what we identify
as noise in such a case.
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Fig. 10. Images of the spatial structure of the main line emission in Cassiopeia A as retrieved by an interpolation method (left column), and from
application of GMCA around the respective line emission region (middle and right columns). In all cases, the GMCA algorithm decomposes
the line emission into two images, corresponding to spectra that are slightly redshifted or slightly blueshifted with respect to the rest-frame line
position. The energy ranges used for GMCA are shown in Fig. 8. The energy ranges used for the interpolation method are respectively: 1.7–2 keV,
2.25–2.6 keV, 3–3.35 keV, 3.7–4.1 keV and 6.2–7.1 keV.
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Fig. 11. Images and spectra retrieved by the GMCA with inpainting step in the real data from Cassiopeia A between 0.6 keV and 2.3 keV with a
spectral binning of 14.6 eV and pixels of a 0.9 arcsec size. On the upper left, we recognize the synchrotron emission. On the lower left, the retrieved
component seems to be dominated by Fe L. On the right, we see two components dominated by red- and blueshifted Si, respectively.

The block bootstrap resampling step outlined in Sect. 6.1
allowed us to extract the spectra corresponding to the different
components above. Fitting the Fe K line emission in Xspec
with a Gaussian model, the redshifted part was found to peak
at 6.726 ± 0.002 keV, and the blueshifted part peaks at 6.561 ±
0.001 keV. These energies suggest a relative velocity between
the red- and blueshifted components of 7440 km s−1, a value that
is coherent with the results shown in Fig. 7 of DeLaney et al.
(2010).

Our method allows direct imaging of the red- and blueshifted
Fe K components with unprecedented spatial resolution. In addi-
tion, instead of estimating a mean shift in each line of sight
(such as would be obtained when fitting with one Gaussian),
our method can disentangle the red- and blueshifted components
along a line of sight as shown in Fig. 9, where both emissions
co-exist in the southeast.

8.2. Spatial structures of the main line emissions
in Cassiopeia A

Figure 10 shows an application of the method to the main
line emission bands in Cassiopia A, centred on Si, S, Ar, Ca,
and Fe. In each case, the GMCA was able to retrieve two
images corresponding to a slightly redshifted and a blueshifted
component.

We compared the spatial structures of these components
to what could be retrieved by an interpolation method (see
Sect. 4.2) around these same line emissions. As we can see
in Fig. 10, both methods give consistent results, although the
GMCA retrieves more structures for faint lines (Ar and Ca).
More importantly, the GMCA can probe structures within a
broad line and reveal line shifts, information that cannot be
yielded by the interpolation method. The blueshifted and red-
shifted images in Si, S, Ar, and Ca are very similar (but differ
from Fe). This attests to the robustness of GMCA, because the
energy ranges are completely independent.

8.3. Spatial distribution of continuum components
in Cassiopeia A

We applied our method on Cassiopeia A data between 0.6 and
2.3 keV. The number of counts being higher in this energy band,
we used data with a finer spectral binning (14.6 eV instead of
43.8 eV) and smaller pixels (0.9 arcsec instead of 1.8 arcsec).

Figure 11 shows that the four components were retrieved.
The first corresponds to the synchrotron emission, and is coher-
ent with the image we retrieved between 5 and 8 keV. It is the
first time an image of the synchrotron has been extracted in these
energy bands, where it is dominated by the ejecta emission. Such
a map of the low-energy synchrotron emission is very valuable
for the study of the energy dependence of the synchrotron rim
width. A second component has a spatial distribution highly sim-
ilar to that of the Fe K between 5 and 8 keV, and the line emis-
sion complex at ∼1 keV in the corresponding spectrum seems
to indicate that this component may be dominated by the Fe L
complex.

The final two components have spectra corresponding to
slightly red- or blueshifted Si emission. Their spatial distri-
butions are similar: we can thus deduce that both compo-
nents correspond to Si emission, one being slightly redshifted,
and the other slightly blueshifted. The morphology of the two
parts is globally consistent with previous works but is endowed
with more details (see e.g., Fig. 7 of Willingale et al. 2002,
or DeLaney et al. 2010 for a comparison with optical images).
We note that each thermal component is not completely domi-
nated by a unique line structure. For example, we see that the
Si components (Fig. 11, right panels) also contain oxygen and
magnesium emission in their spectra. Oxygen and magnesium
are grouped together with Si by the algorithm because they
have similar plasma conditions (temperature, abundances, ion-
ization stage) and spatial distributions. More surprisingly, the
component exhibiting Fe L emission (Fig. 11 bottom left panel)
also has strong Mg XII and Si XIV line emission. This indi-
cates that the Fe L is co-spatial with Mg and Si in a higher
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ionization state than in the Si-dominated components. While the
reason for this difference is still unclear, this example shows the
power of GMCA to disentangle physical components in complex
environments.

9. Discussion and conclusions

The separation of entangled components in the X-ray data of
extended sources is a challenging task. Isolation of the morphol-
ogy and associated spectrum of the individual components could
provide new insight into the physical and thermodynamical con-
ditions of the plasma in these objects. In the case of supernova
remnants, those measurements could lead to a better under-
standing of the explosion mechanisms, gas heating, and particle
acceleration.

Here we present a method based on the GMCA, a blind
source-separation algorithm developed to extract the CMB from
Planck data. The method uses all of the information contained in
data cubes (E, x, y), and extracts the unique spatial and spectral
signatures of the entangled components without any prior infor-
mation (neither physical models nor instrument response func-
tions). It has been applied here to X-ray data for the first time,
and we have shown that it provides better results than the usual
methods in use in this field.

The GMCA needs to be applied to data with a large total
number of counts. When such data are available, it can suc-
cessfully disentangle highly spatially correlated sources, as was
shown with our toy models (Sects. 4 and 7). A first applica-
tion to real Chandra data of Cassiopeia A in different energy
bands, detailed in Sect. 8, gave promising results, highlight-
ing the asymmetries in the Si, S, Ar, Ca, and Fe K spatial
distributions by retrieving two maps associated to spectra that
are slightly red- or blueshifted with respect to the rest-frame
line.

The main conclusions of our study are the following:

– Morphological fidelity. In every example we tested, it
appeared that the GMCA yields accurate images of the
sources it retrieves, very close to the original ones we
injected in the toy model. Furthermore, while the cases
we tested were very challenging, the sources being spa-
tially highly entangled, our method succeeded in retriev-
ing detailed disentangled images of each component. Lastly,
the algorithm never retrieved any artifact that did not
belong to the toy model: when the second-component-to-
main-component ratio was too weak, the second compo-
nent was not retrieved, but everything that was retrieved
could be trusted was a bona-fide component, and not a false
detection.

– Spectral fidelity. While the initial GMCA retrieves correct
images, there is a leakage which affects parameters that
depend on a wide energy range when the spectra are fitted
in Xspec. An inpainting step that we added after the inter-
nal loops of the GMCA corrected most of the overestima-
tion of the spectrum caused by the leakage, and improved
the retrieved temperatures.

– Block bootstrap. Spectral analyzing tools such as Xspec
need error bars in order to fit physical models. The block
bootstrap resampling method tested here is a promising way
to estimate error bars from a single set of data.

– Performance. The ability of the GMCA to disentangle com-
ponents depends on the total number of counts in the data,
on the number of counts of each component, and on the
nature of the data itself: performance is very case-specific.
In this paper, we focused on the study of highly spatially
entangled sources, which are frequent in the study of SNRs,
and represent an extremely challenging analysis task. For
that reason, the weakest ratio at which every component
can be successfully retrieved depends on the morphologi-
cal and spectral diversity. We also note that the algorithm
is more successful in finding faint features when applied to
narrow, targeted energy bands rather than when applied to
the full energy range. To conclude, GMCA is a fast-running
algorithm, taking only a few minutes to extract sources
from a 200 ∗ 200 ∗ 300 data cube on a single-core personal
computer.

The version of GMCA we used in this study was originally
developed to handle the Gaussian noise in Planck data. The
method will be enhanced in future work by inclusion of a treat-
ment for Poisson statistics that should help to retrieve fainter
components and diminishing leakages. In addition, exposure and
background cubes will be implemented for application of the
method to large mosaic observations. The use of physically moti-
vated spectral models to guide the component-separation process
could also be envisaged.

New spectro-imaging instruments with increased effective
area and high spectral resolution, such as Athena, will pro-
vide data whose tremendous potential cannot be fully exploited
with existing data analysis methods. The GMCA provides
a new way to leverage all possible dimensions in the data,
thus allowing a maximum of physical information to be
obtained.
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Appendix A: Wavelets and starlets

A wavelet is a square-integrable function of zero mean. Briefly,
a wavelet transform consists in contracting a mother wavelet and
convolving it with an image, each scale providing a new image.
Each wavelet scale contains information about structures of a
specific size. For that reason, a wavelet transform proves useful
to disentangle components using their morphological specifici-
ties. The starlet transform is a special case of bi-dimensional
wavelets, which have been specifically designed to efficiently
represent isotropic structures in images. Therefore, this partic-
ular case of wavelets has proven to be well-adapted to analyzing
astrophysical images.

The starlet transform first builds a sequence of approxima-
tions of an n∗n image c0 at increasingly large scales {c1, · · · , cJ}.
Each approximation is obtained from the previous one through a
convolution with a mother wavelet filter h̄( j) at scale j + 1:

c j+1[k, l] = (h( j) ? c j)[k, l], (A.1)

where the filter h(0) is defined as:

h(0) =
1

256


1 4 6 4 1
4 16 24 16 4
6 24 36 24 6
4 16 24 16 4
1 4 6 4 1

 . (A.2)

According to the “à trous” algorithm, consecutive filters, h( j) ,
are obtained by adding zeroes between the nonzero filter ele-
ments so as to dilate the filter by a factor of two from scale to
scale Starck et al. (2015).

The wavelet coefficient at scale j + 1 is then defined as the
difference between consecutive large-scale approximations:

w j+1[k, l] = c j[k, l] − c j+1[k, l]. (A.3)

This eventually yields a decompostion of the image c0 into a
coefficient set W = {w1, . . . ,wJ , cJ}.

The reconstruction of the initial image c0 is then obtained by
a simple coaddition of all wavelet scales and the final smooth
sub-band:

c0[k, l] = cJ[k, l] +

J∑
j=1

w j[k, l]. (A.4)

In Fig. A.1, we build a very simple toy model to show the
relevance of starlet transforms to separate components in a cube
(E, x, y). The data cube is the sum of two components: an array
of small spatial Gaussians multiplied by a flat spectrum and a
large spatial Gaussian multiplied by a spectral line. A Gaussian
noise with a standard deviation of 2 pixel is added to the cube.
The figure points out the differences between the coefficients of
the two components in the third starlet scale.
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Fig. A.1. Illustration of the relevance of wavelet transforms to separate components in a cube (E, x, y) using a simple toy model. Left: slice of the
cube at the current energy E2. Center: total spectrum. The green line corresponds to E1 while the red one corresponds to E2. Right: representation
of the coefficients of both components in the third wavelet scale at E2 as a function of the coefficients of both components in the third wavelet
scale at E1. The coefficients of the two components are clearly dissociated in the wavelet space, whereas their images are tightly entangled.
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Appendix B: Evaluating the number of components
to retrieve

From a statistical viewpoint, evaluating the number of compo-
nents to be retrieved boils down to a model-selection problem.
Testing for an increased number of components n is equivalent
to testing a model with nx ∗ ny + nE additional degrees of free-
dom and selecting the one with the lowest Akaike information
criterion (AIC).

For a given model, the AIC is defined as twice the difference
between the log-likelihood and a complexity term p :

AIC = −2 log(L) + 2p, (B.1)

where p = (nx ∗ny + nE)∗n is the number of degrees of freedom,
and L, the log-likelihood for n components, is defined as

L = AS − AS log(X), (B.2)

with A and S being the solutions obtained by GMCA for n com-
ponents. For example, in the test presented in Fig. B.1 we applied
the GMCA to Cassiopeia A real data between 5 and 8 keV with a
number of components increasing from 1 to 7 and looked at the
AIC of the different models. The images shown seem to indicate
that after three components, no other meaningful components
are retrieved, which is confirmed by the AIC.

It is important to note that if the couple (A, S ) were the max-
imum likelihood estimate, taking the AIC minimum would be
a reliable criterion to determine n. However, in the case of the
GMCA algorithm, (A, S ) is not exactly a maximum likelihood
since the GMCA algorithm makes use of a sparse regularization,
which eventually yields solutions that do not maximise the like-
lihood. Furthermore, component separation problems are non-
convex and algorithms such as GMCA are only guaranteed to
converge to a local minimum, which does not necessarily corre-
spond to a global minimizer.

Even if the test was satisfying in the example presented
above, we cannot insure that it will be with any other data set for
the reason we mentioned. In practice, the main components are
stable and well retrieved for different values of n, but there can
be fluctuations in the remaining noisy images that would impact
the statistical tests even if no actual physics could be gleaned
from their interpretation. Also, adding a physically meaningful
component presenting a coherent structure, but too faint to have
a clear statistical impact, may not minimize the AIC. Hence, the
AIC can be a useful figure of merit to confirm the relevance of
a certain chosen n, but should not replace a human interpreta-
tion nor be directly implemented inside of the algorithm as an
automatized selector for the number of components.

Fig. B.1. Components retrieved by the GMCA applied on Cassiopeia A real data for different values of n. On each line, the retrieved components
corresponding to a certain n, beginning with n = 2 on top. On the right, the AIC of the model as a function of this number of components n.
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Appendix C: Spatial and spectral accuracy

In this section we present some additional figures resulting from
our tests of the GMCA on our first two toy models. Figure C.1
shows examples of images of the Fe spatial distribution in our
first toy model by GMCA and an interpolation method for three
different Fe line-to-synchrotron ratios, and the corresponding
SSIM coefficients. Figure C.2 shows the evolution of the accu-

racy of the retrieved images for 15 ratios in our first and sec-
ond toy models with a total count corresponding to a 100 ks
observation. Figure C.3 shows the parameters of the Fe K Gaus-
sian in our first toy model as retrieved by Xspec without using
GMCA. This latter offers a good comparison with Fig. 3, where
the parameters were retrieved by fitting the spectra given by
GMCA.

Fig. C.1. Images of the Fe spatial structures in our first toy model as found by GMCA without fixing the Fe spectral shape (on top) and by an
interpolation method (below) for the three Fe line-to-synchrotron ratios marked by arrows in Fig. 2). The SSIM coefficients are written on top
of the images. Coefficients under 0.75 describe images where the Fe structures are not recognizable, but the SSIM is still high because of the
similarities between intrinsic Fe and synchrotron distributions.
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Fig. C.2. SSIM coefficients of the input and output images found by GMCA for a total number of counts corresponding to a 100 ks observation.
The points are the average of all Monte-Carlo realizations at a particular ratio, and the error bars the standard deviation of those realizations.
Left: comparison of the image quality obtained in retrieving the Fe structure in our first toy model for different line emission-to-synchrotron ratios,
between an interpolation method, a GMCA in blind mode, and a GMCA in semi-blind mode. Right: image quality of the thermal emission structure
retrieved for different ratios by a GMCA in blind mode.

Fig. C.3. Parameters of the Fe K Gaussian as retrieved by Xspec on the total spectrum of our first toy model for 100 realizations of each out of ten
different Fe line-to-synchrotron ratios with a total number of counts corresponding to a 1 Ms observation. Left: retrieved Ec and σ. Right: retrieved
norm and Ec. In both cases, the theoretical results are represented by black crosses.
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