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Abstract. Reliability and availability of wind turbines are crucial due
to several reasons. On the one hand, the number and size of wind tur-
bines are growing exponentially. On the other hand, installation of these
farms at remote locations, such as offshore sites where the environment
conditions are favorable, makes maintenance a more tedious task. For
this purpose, predictive maintenance is a very attractive strategy in or-
der to reduce unscheduled downtime and maintenance cost. Prognostic is
an online technique that can provide valuable information for proactive
actions such as the current health state and the Remaining Useful Life
(RUL). Several fault prognostic works have been published in the litera-
ture. This paper provides an overview of the different prognostic phases,
including: health indicator construction, degradation detection, and RUL
estimation. Different prognostic approaches are presented and compared
according to their requirements and performance. Finally, this paper dis-
cusses the suitable prognostic approaches for the proactive maintenance
of wind turbines, allowing to address the latter challenges.

Keywords: Fault prognostics · Remaining useful life · Predictive main-
tenance · Wind turbines.

1 Introduction

The production of electricity using wind energy has an increasing trend in the
last decade especially in Europe. It is reported in [1] that the wind energy has
become the second source of energy in Europe behind the gas. This trend entails
a growing evolution in the number and size of wind turbines (WTs), which lead
to increase the cost of Operation and Maintenance (O&M). The cost of O&M
for one wind turbine is about 20-30% of overall lifetime costs of energy.

Traditional maintenance strategies such as curative maintenance or preven-
tive maintenance have a main drawback that is the fault is undergone by the
system. Prognostics and Health Management (PHM) or predictive maintenance
provides an advanced maintenance strategy that can enhance the reliability and
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availability while reducing unscheduled fault and maintenance cost of systems
such as WT. Health monitoring of WTs is achieved by monitoring the perfor-
mance of the WT (e.g., power curve)[10] or condition monitoring of components,
in particular critical components as rotating machinery (e.g., generator). Fault
prognostic is an important step of the predictive maintenance. It can be defined
as the prediction of when a failure might take place or the estimation of the
Remaining Useful Life (RUL), which is the time between degradation detection
and failure threshold. It is an online technique that can provide valuable infor-
mation for proactive actions allowing mitigating the fault consequences and/or
scheduling maintenance steps. RUL prediction of critical components is a very
challenging task due to sensor noise, complexity of the system, and prediction
uncertainty caused by the switch between operating conditions, and environment
variability (e.g., wind speed and direction).

Fig. 1: General approach of prognostic.

The general approach of prognostic is presented in Fig. 1. It indicate the
three main steps of prognostics: Health Indicator (HI) construction, Degrada-
tion detection and RUL estimation. First the HI is constructed by processing
monitoring data in order to monitor the evolution of system performance over
time. The second step is the degradation detection triggered as soon as the HI
goes below a predefined threshold. The third step is the aims at predicting the
degradation evolution and estimating the time when the system will go below
a failure threshold. In this review, the techniques used to perform the differ-
ent steps of the prognostic approach are presented and compared in terms of
requirements and performances within the context of wind turbines predictive
maintenance. The suitable prognostic approaches for the proactive maintenance
of wind turbines are discussed, allowing to address the latter challenges.

2 Health indicator construction

Health Indicator (HI) construction is the main step for achieving prognostic. It
represents the evolution over time of the system performance. When this evo-
lution is decreasing, this indicates a drift from normal or nominal operation
conditions towards a failure. Concept drift techniques can be used to monitor
the performance of systems by learning patterns from data streams gathered by
sensors [20], where a new class is detected if there is a decrease in the system
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performance according to its nominal value. HIs can be classified in two cate-
gories : physics health indicators and virtual health indicators which cannot be
interpreted with physical sense. They can also be classified into HI based on a
single feature such as using the raw data gathered from sensors, residuals based
feature, time domain or time-frequency feature extracted from data measured
by monitoring sensors. The second kind of HI is based on a fusion of multiple
features that can perform better representation of the system health.

Single feature based HI is based on a single extracted feature which can be
more interpretable. Most of prognostic works for wind turbine focused on the
condition monitoring of WT rotating machine (e.g., low and high speed shaft,
gearbox, generator) due to its criticity. Condition monitoring for such systems
is achieved by using vibration signal, acoustic emission, oil analysis or current
signal analysis. In the case of complex degradations, it is often hard to find one
feature sensitive to those degradations. Therefore, it is unfeasible to construct a
HI able to follow in the degradation evolution over time and to allow a reliable
estimation of RUL. In order to tackle this problem, a solution is to fuse several
features in order to exploit their complementarity. However, this fusion entails
the lose of physics meaning (e.g., dimension reduction or distance between class
in a feature space). This lose leads to a lack of HI interpretability so it represents
a virtual description of the system performance health.

Several methods of HI construction based on a single and multiple features
are proposed in the literature, which are summarized in Table. 1.

2.1 Health indicator evaluation

HIs are evaluated using different criteria presented in [11]. The most pertinent
HI evaluation criteria are monotonicity and trendability[18][9][36].

Monotonicity The monotonicity evaluate the negative or positive trend of the
HI, with the assumption that the system cannot self-heal [9][18]. Monotonic-
ity can be measured by the absolute difference between negative and positive
derivative of HI as indicated in the following equation :

M =

∣∣∣∣Number of (d/dx > 0)

n− 1
− Number of (d/dx < 0)

n− 1

∣∣∣∣ ,M ∈ [0; 1] (1)

where d/dx represents the derivative of the HI, n represents the number of obser-
vations, M represents a higher monotonicity of a degradation when it approaches
1.

Trendability Trendability is related to time and represents the correlation
between the degradation trend and the operating time of a component[9], and
can be calculated as follow :
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Table 1: Health indicator construction methods.

Feature
type

Computation
approaches

Methods Data

Single
feature
based HI

Raw signal and
residuals

Raw signal of viscosity and dielec-
tric constant [37][38]

Lubrication oil (gearbox)

Raw signal of oil debris[6] Lubrication oil (gearbox)

Power residual[28] Generated power signal

Temperature residual[2] Bearings temperature (Gearbox)

Time domain
features

Root mean square [12][13] Vibration (bearings)

Spectral kurtosis [22] Vibration (bearings)

Trigonometric functions [9] Vibration (bearings)

Time-frequency
features

Wavelet Packet Decomposition
[24]

Vibration (bearings)

Hilbert huang transform [18] Vibration (bearings)

Power spectral density [5] Current signal (gearbox)

Multiple
features
based HI

Dimension
reduction

ISOMAP[3][23] Vibration (bearings)

PCA[32] SCADA data

Distance
between classes

Euclidian and mahalanobis dis-
tance [25][26]

Pitch angle (pitch system), Volt-
age (Converter)

Jensen-Renyi Distance [4] Vibration (bearings)

R ∈ [−1; 1] represents the correlation coefficient between indicator x and the
time index t. R approaches 1, when the HI has a strong positive linear correlation
with time.

3 Degradation detection based on health stage division

The computed HI gives information about the system health (condition and
performance). When a degradation occurred (drift from normal condition or
nominal performance) the HI presents an increasing or decreasing trend. Then
prognostic module can start because RUL prediction when no fault occurred is
unnecessary. The degradation can be detected by dividing the HI into two or
multiple stages using a threshold according to the degradation trend. Dividing
the health stage using a threshold is widely used in the literature for this task,
some works used classification techniques when sufficient degradation data are
available in order to estimate the boundary between nominal and degraded con-
ditions (see Table. 2). Multiple stage division by considering an intermediate
stage is also important in order to confirm the degradation occurrence with a
second threshold for avoiding false alarms.
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Table 2: Degradation detection methods.

Approaches Methods Advantage Drawback

Threshold Threshold
value[15]

No need for degradation data. Easy
for implementation.

Difficulty to choose the threshold
value in order to achieve early
degradation detection and avoid
false alarms. Need of an expert for
the choice of the threshold value.

Statistical
threshold
3σ interval
[33]

Classification Logistic
regression
[34]

The boundary between nominal
and degraded conditions is esti-
mated automatically.

Necessity of system degradation
data. Model parameters are diffi-
cult to tune.

SVM[22]

The goal of this division is to 1) identify the stages where the degradation
process is active and 2) separate the degradation progress or evolution over
time according to its dynamics (fast, slow, decreasing or self-healing, increasing
and stable etc.). This division allows to improve the reliability of degradation
detection and the RUL estimation.

4 Fault prognostic (RUL estimation)

Prognostic aims at estimating the remaining useful life of a component using the
built HI. RUL estimation starts when a degradation is detected (drift from the
nominal performance). Generally, RUL is estimated based on the use of one of the
following two main approaches: Experience based approaches and degradation
modeling approaches(see Fig. 2). Experience based prognostic is achieved by
applying reliability or similarity based approaches. The degradation modeling
can be achieved by using physical models or by data-driven approaches.

4.1 Experience based prognostic

Experience based prognostics methods are based on the use of maintenance or
inspection feedback data sets gathered during a significant period of time. They
represent the operational conditions during all the degradation process until the
failure. In general, they can be classified into reliability based and similarity
based approaches. Reliability based approaches employ a statistical failure dis-
tribution (i.e., Weibull) in order to fit to the gathered data. A periodic update
of the parameters of this failure distribution is performed in order to adjust
those parameters according to the experience obtained from the current main-
tenance practices. The built failure distribution is used for the RUL estimation
of components with similar characteristics. Similarity based approaches use a li-
brary of degradation patterns for a set of components under different operation
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Fig. 2: RUL estimation approaches.

conditions. Each degradation pattern represents the degradation development
of a component under certain operation conditions until the failure. The data
gathered about the operation conditions of a component during a time win-
dow is compared to the degradation patterns in order to select the one who fits
the best the data within this time window. Then, the RUL is estimated using
the selected degradation pattern. Table. 3 summarizes some experience based
approaches presented in the literature for the prognostics.

Table 3: Experience based approaches.

Approaches Methods Application Advantage Drawback

Reliability
based
approach

Weibull
distribution
[21][35]

Engine Can monitor the system
health state only with the
operating cycle of the sys-
tem.

Depends on degradation his-
tory. Not adapted for com-
plex systems due several in-
teracting components and
varying conditions. Less pre-
cise without using monitor-
ing data.

Similarity
based
approach

Similarity
distance
[29][30]

Electric cool-
ing fan, engi-
neered system

Good precision at compo-
nent level if suitable data
history is available. monitor
the current health state of
the system.

Depends on degradation his-
tory. Not adapted for com-
plex systems due several in-
teracting components and
varying conditions.

KNN
[14][17]

Battery,
turbofan,
engineered
system

Fuzzy
similarity
[39]

Reactor



Fault Prognostics for the Predictive Maintenance of Wind Turbines 7

Experience-based prognostics methods are efficient when degradation history
is available for a system during a long period. The degradation history must rep-
resent the health evolution of the system from the healthy state until the failure
state (run to failure). Reliability based approaches are not suitable for compo-
nents showing complex degradation behaviour according to the operation and
environment conditions. This is due to the fact that they do not use the online
operation data in order to estimate the RUL. Similarity based approaches require
also run to failure data history of identical units or components. Comparing to
reliability approaches, similarity based approaches use online monitoring data in
order to compare it with degradation history and estimate the RUL. They have
the advantage to be easy to implement and precise at the level of components
if the latter present the same degradation trend. However, they are not adapted
for complex systems due to the varying operation and environment conditions.

4.2 Degradation modelling based approaches

This category of approaches aims at predicting the degradation evolution over
time in order to estimate the system failure (end of life), Then the RUL is
computed as the time from degradation detection until the failure. Model based
approaches use physical and mathematical relations in order to model the degra-
dation trend. These methods are usually used at component level and deal with
wearing, crack, and corrosion phenomena. Paris law [16] is the most physics
model used for the prediction of wear on rolling element bearing. Data driven
approaches transform monitoring data gathered from sensors into relevant infor-
mation about the system behaviour and dynamics, the mainly used methods are
statistical and artificial Intelligence (AI) tools. Statistical techniques estimate
the RUL of systems based on empirical knowledge, where artificial intelligence
techniques are based on two phases: offline learning phase and online test phase.
The model uses a database for training parameters in the offline phase, after
that the online phase estimates the current health state of the system and pre-
dict its future state (evolution) over time. these methods are increasingly used
due to their ability to find relation between data by training the model using
datasets. Degradation modelling methods used in the literature are summarized
in Table. 4.

Degradation modeling approaches use online monitoring data in order to ob-
serve the current health state of the system. Degradation evolution prediction is
allowed when degradation of the system is detected. Model based degradation
approaches are used generally at component level prognostic, where they gives
more precision but they require extensive experimentation and model verifica-
tion. These models are reliable when the system state have not been changed or
upgraded. The models can be interpreted because its parameters are extracted
from the system physics. However, it is difficult to generate degradation be-
haviour especially for complex system where several phenomena take place into
the system. Data-driven based approaches are considered as black box models
where the relation between input and output is complex and is hard for interpre-
tation, but they can be used when the system is complex and where developing
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Table 4: Degradation modeling approaches.

Approaches Methods Application Advantage Drawback

Physical model based
approach

Paris
law[7][8]

WT blades,
gearbox bear-
ings

Ability for interpreta-
tion by physics. Provide
accurate RUL at compo-
nent level prognostics.

Detailed knowledge of
the system behaviour is
required. Complex sys-
tems degradation model
is hard for construction.

Data
driven
approach

Statistical
methods

Moving
average[6]

Gearbox
Understanding the
degradation mechanism
is not required.
Effective in describing
the uncertainty of the
degradation process.

Highly depends on the
trend information of
historical observations.
Less precise in the RUL
prediction of complex
systems.

ARMA[34] Engine

Bayesian
filter[14]

Battery, turbo-
fan engine

Particle
filter[40]

Mechanical
component

Artificial
intelligence
methods

RNN
[27][9]

Gearbox, Bear-
ings

Able to learn complex
nonlinear relationship
between data.
Understanding the
degradation mechanism
is not required.
Expected to have a
good performance in the
RUL prediction of
complex systems.

Need sufficient data for
training. Lack of
physical meaning.
Difficulty to select the
parameters of the
model.

ANFIS[31] Gearbox shaft
and gears

SVR
[3][18][22]

Bearings

HMM[24] Bearings

an accurate physical or mathematical model is not feasible. At component level,
they can be less precise than the model based approaches, However, they are
more suitable and efficient for complex systems whose degradation process is
too hard to be modeled and represented by physical models.

5 Prognostic metrics

When the RULs are predicted online for each sample of time, RULs must be eval-
uated using suitable and meaningful metrics. Root Mean Square Error (RMSE)
and Mean Absolute Percentage Error (MAPE) are widely used in the literature
for RUL evaluation depending on the true RUL.

RMSE =

√√√√ 1

n

n∑
t=1

(rl(t)− rl∗(t))2 (3)

MAPE =
100%

n

n∑
t=1

∣∣∣∣rl(t)− rl∗(t)

rl(t)

∣∣∣∣ (4)
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Where n is the number of observations, t is the time index, rl∗ represents the
true RUL, and rl represents the predicted RUL.

In [19], new metrics for prognostics performance evaluation are proposed.
The most relevant metrics are : Prognostic Horizon, α−λ Performance, Relative
Accuracy, and Cumulative Relative Accuracy. Prognostic Horizon (PH) is the
difference between the current time index when the degradation is detected and
the time of end of life (EoL). α − λ performance can determine whether the
prediction falls within specified limits at particular times. Relative prediction
accuracy is the errors between the predicted RUL relative to the actual (true)
RUL at a specific time index. Cumulative Relative Accuracy CRA evaluates
the RUL at multiple time instances. CRA is computed as the weighted sum of
relative accuracies at multiple time instances.

6 Conclusion

The paper presents an overview of fault prognostic approaches for the moni-
toring and predictive maintenance of WTs. The fault prognostics of WTs is a
challenging task because of their dynamics complexity, their different operat-
ing conditions, and the strong variability of their environment. The discussed
prognostic approaches in this paper are compared according to their potential
requirements in Table 5, where each requirement can be ”Required”, ”Not re-
quired”, and ”Beneficial” for each prognostics approach.

Table 5: Prognostic approaches requirements.

Approaches Engineering model Degradation history Current health state Degradation detection

Reliability Not required Required Not required Not required

Similarity Not required Required Required Beneficial

Model based Required Beneficial Required Required

Data-driven Not required Beneficial Required Required

Table 6 presents a comparison between the four prognostics approaches in
terms of precision, applicability, cost, and interpretability. For precision criteria,
also component level and system level prognostic are compared for each prognos-
tic approach, where (+) refers to the advantage and (-) refers to the drawback
of the methods.

Experience based approaches (Reliability and similarity) are easier to apply
when degradation history is available, but less precise at system level prognostic
due to the variability of operation and environment conditions. Degradation
modelling approaches are divided into model based and data driven approaches.
Model based prognostic may have a good precision at component level (i.e., crack
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Table 6: Prognostic approaches comparison.

Approaches Precision and applicability Implementation Cost Interpretability

Component level System level

Reliability + - ++ - - -

Similarity + - ++ - - -

Model ++ + - - +

Data-driven + ++ + + -

propagation of bearings). Although, when the system is more complex, this kind
of approaches may not be precise or even applicable. Despite of the lack of
interpretability of the data-driven approaches, they are the most suitable to
perform the prognostic task of complex dynamic systems such as wind turbines.

Even with the increasing number of publications of fault prognostics for the
predictive maintenance of WTs, several challenges still require to be addressed.
Examples of these challenges are: how to ensure the prognostic when no a priori
knowledge about the degradation behaviour is available (i.e., new installed sys-
tem), which HI construction method is suitable for this case, the choose of the
threshold value is also difficult and predicting the degradation evolution without
a priori information about it is challenging.

The use of concept drift techniques can be an altenative solution to contribute
addressing these challenges. They can be used in order to construct a HI and
detect the drift from nominal conditions. When sufficient data about degradation
is collected, the feature which fits the best the monotonicity and trendability
during the degradation must be selected as HI. The threshold value must be
chosen in order to detected the degradation as early as possible while avoiding
the maximum of false alarms. In additions, multiple stage division should be
considered in order to confirm the degradation occurrence. The degradation
prediction model must also be updated with the collected incoming data in order
to improve the performance of the prediction (precision). It is worth to mention
that another challenge for fault prognostics is related to the RUL estimation
for complex system due to the multiple interactions between their individual
components. (see Fig. 3). Another challenge is related to the development of
a post-prognostic phase in order to interpret prognostic results to the human
operators by using a natural language.
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Fig. 3: Prognostic for complex system.
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