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In this paper we propose a Hamiltonian framework for the dynamics of magnetic moments, in
interaction with an elastic medium, that can take into account the dynamics in phase space of the
variables that describe the magnetic moments in a consistent way. While such a description involves
describing the magnetic moments as bilinears of anticommuting variables that are their own conju-
gates, we show how it is possible to avoid having to deal directly with the anticommuting variables
themselves, only using them to deduce non-trivial constraints on the magnetoelastic couplings. We
construct the appropriate Poisson bracket and a geometric integration scheme, that is symplectic in
the extended phase space and that allows us to study the switching properties of the magnetization,
that are relevant for applications, for the case of a toy model for antiferromagnetic NiO, under
external stresses.

I. INTRODUCTION

The interest in precision devices based on voltage-
controlled ferromagnetism is focusing the attention of
theory and applications towards developing materials
with strong intrinsic ferroelectric and/or ferromagnetic
response; what is of particular interest is that these can
be produced through an appropriate spin-lattice cou-
pling, that can be controlled, experimentally, in real
materials1. What is, particularly, fascinating is that such
couplings lead to novel situations, where it is possible
to control the magnetic properties through electric fields
and vice versa. This class of phenomena is known under
the name of magneto-electric effects, and there are sev-
eral ways in which such magneto-electric effects can be
engineered in magnetic materials.
For instance, antiferromagnets (AFs) are the magnet-

ically ordered materials which could be the most suit-
able for realizing the fastest spintronic devices2. Re-
cent progress in describing spin transport and spin-
transfert torque (STT) effect in such AF devices open
a route towards multilevel memory devices with switch-
ing speeds, that could exceed those of devices made of
ferromagnetic materials and semiconductors3. Moreover
reversible strain-induced magnetization switching in fer-
romagnetic materials has been reported that also allows
the design of a rewritable, non-volatile, non-toggle and
extremely low energy straintronic memory4. Recently
a piezolectric, strain-controlled AF memory, insensitive
to magnetic fields, has been tested, as an example of
controlling magnetism by electric fields in multiferroic
heterostructures5.
However a complete theoretical description of all such

phenomena is, still, very much, work in progress, since, at

the scales, that are relevant, it is not possible to separate
the scales of the magnetic, electric and elastic responses–
all must be treated together.

It is, indeed, noteworthy that no direct local cou-
pling between electromagnetic field components is al-
lowed in the vacuum; the magnetic response to an electric
field is necessarily mediated by atomic position arrange-
ments of magnetic moments, in a potentially ionic en-
vironment, that produce non-local mechanical strains in
response6,7. These illustrate the different physical origins
of the spin-lattice coupling–in particular, either as emerg-
ing from a macroscopic magnetostriction8 or, at a more
microscopic scale, from the usual spin-orbit coupling in
materials9,10, however, considerably enhanced from the
effects of magneto-elastic effects.

The idea to couple the dynamics of mechanical and
magnetic degrees of freedom in matter is, of course, not
new, and many strategies to produce a general conceptual
framework have been explored to date, covering a quite
broad spectrum of approaches and applications. Illustra-
tions of the interplay between magnetism and mechanical
elasticity in matter are so diverse that a large variety of
techniques and ideas have been developed, with just as
many different motivations11.

It is, also, relevant to mention magnetic molecu-
lar dynamics12, which emerges from the fluid mechan-
ics framework and assumes position–dependent mag-
netic interactions between particles, under a tight time–
evolution of their own spins. From granular fields the-
ories, apparently radically different perspectives can be
gleaned, such as Edwards field theory13, which focuses
on the long distance correlations between mechanical
stresses in large systems, assuming material properties
as point-particle stress distributions and interactions.
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A common focus of all these approaches is, however,
not at all obvious.

In addition, until recently, sufficient experimental con-
trol over the materials that could be candidates for real-
izing such effects in practice was not that common. It is
this last fact that has changed in recent years. This, in
turn, has made the call for theoretical tools more urgent.
While it has become much easier to develop computa-
tional strategies, thanks to the progress in hardware and
software, theoretical concepts have tended to lag behind
the events.

Magneto-elastic phenomena are, typically, viewed from
the continuummechanics perspective where the magnetic
properties of materials are incorporated into constitutive
nonlinear laws of electro-conductive bodies14. Even if
multiscale models have been investigated for magneto-
elastic couplings15, with good experimental comparison
for single crystals and polycrystalline samples16, localiza-
tion and homogenization procedures are still the main-
stays for deducing the constitutive laws for polycrys-
talline media. Homogenization methods for multiscale
mechanics assume the existence of well–separated scales
and different relations among length scales, that lead to
different effective equations, which, in turn, represent the
corresponding different physical effects, appropriate at
each scale17.

Renormalization group ideas, of course, are instrumen-
tal in providing a description of how the dynamics de-
pends on the scale; what has been lacking, to date, is a
unified construction of the dynamics of elastic and spin
degrees of freedom, within a common Hamiltonian ap-
proach, at any particular scale. In particular, what has,
curiously, not been fully exploited is the resolution of the
constraints, that the spin degrees of freedom are subject
to, since they are their own canonically conjugate vari-
ables, as their equations of motion are first order. This
means that they can be most usefully expressed as mul-
tilinear combinations of anticommuting variables. As we
shall see, this can lead to useful insights, in practice,
about the dynamics of the coupled system.

While the generalization of the canonical formalism,
that incorporates the constraints implied by spin degrees
of freedom has been worked out a long time ago18–20, it
has not been applied to concrete situations of physical
interest, simply because these, up to now, were not of
practical relevance.

In the present paper we fill this gap. We provide a com-
plete description of the combined dynamics of the elastic
and of the spin degrees of freedom in phase space and
show how the anticommuting nature of the spin degrees
of freedom can be–indirectly–tested. It is the refined con-
trol over these that is the particular novelty of our ap-
proach. In future work we shall show how to incorporate
stochastic effects, due to noise and/or disorder.

We consider our medium as the limit of a large num-
ber of sites; to each site is assigned a spin and a local
mechanical deformation variable. We deduce the cor-
responding equations of motion from a formalism, that

treats mechanical and spin degrees of freedom in a unified
way and study the dynamics of this system, comparing
it to previous studies for the purely magnetic part21 and
for the magneto-elastically coupled system22. We stress
that the novelty of the current approach lies, on the one
hand, in dealing with a consistently closed system; on
the other hand, in being able to extract the information
that the commuting degrees of freedom, that describe the
spins are, in fact, composite operators of anticommuting
fields.
The paper is organized as follows, in section II we con-

struct a classical Hamiltonian for the mechanical, and
the spin degrees of freedom and discuss their couplings.
In section III, we introduce a particular Poisson bracket,
which allows us to obtain the equations of motion for
the time-evolution of all the dynamical variables. These
are, then solved, in section IV using a symplectic integra-
tion scheme. Special attention is devoted to the stability
analysis of the schemes and to the order of the different
symplectic operators. This analysis is presented in the
appendix. Finally in section V we illustrate the formal-
ism for the case of a simple toy model for NiO, consisting
of two spins, interacting through antiferromagnetic ex-
change, and subject to an external SST, as well as under
an external stress.

II. THE HAMILTONIAN

In this section we propose a Hamiltonian for the com-
bined system of elastic and spin degrees of freedom.
These parts have, of course, been considered before8, so
we shall review the salient features, before introducing
our approach.
The starting point for the elastic degrees of freedom

is the framework of mechanics for elastic solids, within
the régime of the approximation of small deformations,
supplemented by the assumption of perfect mechanical
micro-reversibility23. These statements imply that an
elastic material is characterized by a collection ofN time-
dependant elastic deformations, which are described by
a set of symmetric Cauchy strain tensors ǫiIJ(t) where
I, J are spatial indices, ranging from 1 to 3, and and
assigned to each lattice site, i ∈ {1..N}, of the material.
At equilibrium, each of these variables is independent of
time and we assume that such a state not only exists, but
can be relevant for the time scales of interest.
The total internal energy of this system can be de-

scribed in terms of the interactions between these vari-
ables, that take into account the elastic mechanical part
in the most general form24,25; to lowest, non–trivial, i.e.
quadratic, order, we have

Hmech

V0
=

1

2

N∑

i=1

Ci
IJKLǫ

i
IJ(t)ǫ

i
KL(t), (1)

where an implicit sum on the repeated space indices is
understood and where Ci

IJKL are the elastic constants
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with V0 as the reference volume.
In this expression we have assumed that the different

sites of the material do not interact through elastic defor-
mations (they will only interact through spin exchange
forces, to be spelled out below).
For a homogeneous material, these elastic constants

can be expressed in terms of the two Lamé parameters23,
designated, as usual, by (λ, µ), in Cartesian coordinates
as follows:

CIJKL = λδIJδKL + µ (δIKδJL + δILδJK) (2)

This mechanical system can be excited by an external
stress σext

IJ , through the coupling

Hext

V0
= −

N∑

i=1

σext
IJ ǫiJI . (3)

While this stress can be, in general, a time- and space-
dependent quantity, it is, nonetheless, assumed to be uni-
form over the sites of the material.
Now we introduce the magnetic degrees of freedom,

noted Si
I(t) and describe how their dynamics affects the

mechanical degrees of freedom, through the so-called
magnetoelastic coupling. The contribution of the magne-
toelastic coupling to the Hamiltonian can be deduced by
assuming (global) Galilean invariance on the one hand
and imposing invariance under the symmetries of the
point group26 on the other. For an isotropic medium,
these requirements lead to the expressions for the total
energy and the total magnetization27. The total internal
energy is, thus, a sum over the lattice U(ǫiIJ , S

i
I)

28.
Consequently, in the approximation of small deforma-

tions, the expansion of the magnetoelastic coupling en-
ergy will contain even powers of the magnetization Si.
It will, however, contain all powers of the strain tensor,
ǫ.
The linear part in ǫiIJ defines the linear, or first-order,

magnetoelastic coupling, which is responsible for the
magnetostriction, while the quadratic terms in ǫiIJ de-
fine the second-order magnetoelastic coupling, that are
responsible for “nonlinear response” in the elastic prop-
erties of magnetic media, that have been, also, identified
as describing “anomalous effects”.
Higher order terms are, usually, ignored, since their co-

efficients are assumed to be much smaller than the lower
order terms, already discussed.
Therefore, the contribution to the Hamiltonian of the

magnetoelastic coupling can be written as

HME =

N∑

i,j=1

B
(1)i,j
IJKLǫ

i
IJ(t)S

i
K(t)Sj

L(t)

+ B
(2)i,j
IJKLMN ǫiIJ(t)ǫ

j
KL(t)S

i
M (t)Sj

N (t) + . . . (4)

If one compares the last term of equation (4) with equa-
tion (1), it is easy to see that a pair of effective elastic

constants can be introduced that depends on the value
of the spins on each site, i.e.

Ceff,i,j
IJLK ≡ Cij

IJLK +
1

V0
B

(2)i,j
IJKLMNSi

M (t)Sj
N (t). (5)

This allows a possible interpretation of the “anomalous”
temperature dependence in the elastic constants in iron
single crystals as resulting from the competition between
spin ordering and diffusion effects29.
In Appendix A we recall that the most effective “clas-

sically equivalent description” of the spin degree of free-
dom, that can capture such effects is not through the,
commuting, variables S but their, anticommuting, “Dop-
pelgänger” ξ, related to the Si

I through

Si
I ≡ −

ı

2
ǫIJKξiJξ

i
K . (6)

The ξ can be identified with Majorana fermions, which
have found many applications recently in condensed mat-
ter systems30,31, where new methods for controlling spin
degrees of freedom have been developed.
It is interesting to remark that the anticommuting

variables, ξik are not Grassmann variables, satisfying

{ξiI , ξ
j
J} = 0; but, rather, {ξiI , ξ

i
J} = δijδIJ , i.e. that

the ξI generate a Clifford algebra on each site32. It is in
this way that the Si

I , defined through eq. (6), satisfy the
angular momentum algebra.
If one were tempted to simply replace S by ξ in eq.(4),

it is interesting to remark that, for N = 1, and because of
the symmetries of B(1), HME = 0, which implies that the
dynamics as it is cannot be encoded by this Hamiltonian.
On the other hand, this allows us to understand the

constraints on the allowed terms in the true Hamiltonian.
They must, necessarily, involve more than one spins. In-
deed, we can construct expressions that are multi-linear
combinations of the Si

I on different sites, potentially, up
to order N , the number of sites, since no two identical
ξiI variables occur in the same monomial. This is, there-
fore, a nice way of automatically organizing the multi-
spin terms of the Hamiltonian.
In the formalism of Atomistic Spin Dynamics, since

the magnetic moments are localized33,34, it is customary
to consider spatial averages, around each site, defining
an effective macroscopic localized spin

Seff
I = 〈Si

I〉i (7)

which implies that multi-linear expressions, SISJ no
longer vanish identically, as was imposed by the anti-
commuting nature of ξ before. We can, thus, understand
the relevance of this averaging procedure, in terms of the
description of the spin degrees of freedom in terms of the
anticommuting variables.
The microscopic mechanism behind equation (4) has

been advocated a long time ago35–37, as a model for a
two–body interaction, that is itself a pedagogical ver-
sion of the quantum theory of interacting magnons and
phonons38. In eq. (4) what has been left unspecified are
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the properties of the tensor B(1) under exchange of the
indices i and j, that label the sites. What is customary is
to assume that B(1), in fact, does not depend on i and j
at all–it is homogeneous across the material. By stopping
the expansion at first order in the mechanical deforma-
tion in (4) and assuming homogeneity in the material,
we, therefore, end up with the following expression

HME = B
(1)
IJKLǫIJ(t)SK(t)SL(t). (8)

In summary, the microscopic theory underlying Eq.(8)
describes the interaction of three particles, two of which
are spin states, and one is the state of the elastic deforma-
tion. However the spin states, are, in fact, bound states
of more “fundamental” entities, the anticommuting ξ.
B(1) can then be interpreted as the vertex of this inter-
action, that describes a spinning particle, that does not
directly interact with itself–since any such interaction is
inconsistent with the fact that the ξ anticommute. Such
a self-interaction can, however, appear on larger scales,
when spatial averages can become meaningful for describ-
ing the spin degrees of freedom.
In conclusion to this section, the Hamiltonian we

have constructed describes the interaction of magnetic
moments through their embedding within an elastic
medium. What remains to be done is to define the Pois-
son brackets, that can take into account the evolution in
phase space of commuting, as well as anticommuting de-
grees of freedom. Indeed, the construction procedure for
commuting canonical variables is well known, however,
including anticommuting variables in a unified way has
remained a rather esoteric subject–known in theory18–20,
not, however, implemented, in practice.
In the following section, we shall construct the equa-

tions of motion in the phase space of the elastic and the
spinning degrees of freedom, that implements these ideas
in practice.
In order to work directly with the anticommuting vari-

ables themselves, in combination with the mechanical de-
grees of freedom requires implementing a “graded Poisson
bracket”; one way to do this is discussed in Appendix A.

III. THE POISSON BRACKETS AND THE

EQUATIONS OF MOTION

To deduce from the Hamiltonian, discussed in the pre-
vious section, the equations of motion, we must define
the appropriate pairs of canonically conjugate variables
and consequently their Poisson bracket.
First we recognize that ε acts as a tensor and one can

understand the definition of the Poisson bracket of rank-
2 symmetric tensors as an application of the DeDonder-
Weyl covariant hamiltonian formulation of field theory39.
Although the context is different, the ADM procedure in
general relativity also provides such a Poisson bracket40

(with further relations, between the conjugate variables
that are not relevant here).

Although no clear consensus has, in fact, emerged on
the properties of Poisson bracket of rank-2 tensors41, if
one focuses on the special case of strain tensors, that
depend only on time, the following conjugate momentum
can be introduced

πIJ ≡
∂L

∂ε̇IJ
, (9)

where L (εIJ(t), ε̇IJ(t)) is the unconstrained and free La-
grangian. ε̇IJ(t) are the components of the strain-rate
tensor42.
Thus, we can build the corresponding Hamiltonian H

for the time evolution with tensor variables for mechan-
ical deformations ε and their conjugated momenta π as
the corresponding Legendre transform

H(ε,π) = πIJ ε̇IJ −L , (10)

up to a total time derivative for L .
For the mechanical system only (i.e. for functions

A(ε,π) and B(ε,π)), the Poisson bracket can be defined
in perfect analogy to that of any particle system, that
explores a given target space geometry (to which refer
the indices I, J,K, L), by the usual relations

{A,B}PB =
∂A

∂εIJ

∂B

∂πIJ

−
∂A

∂πIJ

∂B

∂εIJ
. (11)

In our case, the dynamical variables are the real sym-
metric rank-two tensors, εIJ and πIJ (I, J = 1, 2, 3),
which are canonically conjugate in the sense that their
Poisson brackets are deemed to satisfy the following prop-
erties:

{εIJ , πKL}PB = δIJKL, (12)

{εIJ , εKL}PB = {πIJ , πKL}PB = 0 (13)

where δIJKL is a δ “tensor”, reflecting the real, sym-
metric, nature of the Poisson brackets43 and defined as
a product of Kronecker δs. Very schematically, we may
write

δIJKL =







δIJδKL

δIJδLK

δJIδLK

δJIδKL

(14)

where each choice of the RHS corresponds to a choice
of indices in the Poisson brackets. This choice can be
supplemented by any linear combination of these δs that
enforces the symmetries of the tensors.
We now wish to include as phase space coordinates, the

components of the spin vector, S. We follow reference44

and the details are summarized in appendix A. The “gen-
eralized” Poisson bracket, for the canonical variables of
our system, can be written as

{A,B}PB ≡
∂A

∂εIJ

∂B

∂πIJ

−
∂A

∂πIJ

∂B

∂εIJ

−
1

~
ǫIJKSI

∂A

∂SJ

∂B

∂SK

,

(15)
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where ~ is introduced to restore the physical dimensions
of the Poisson bracket, since S is dimensionless.
It should be stressed that this ~ does not imply that

any quantum effects are present, since the dynamics is
fully classical. It is simply a bookkeeping device for a
quantity that has the dimensions of angular momentum–
i.e. of an area in phase space–and reflects the fact that
the equation of motion for SI is of first order. Quantum
fluctuations will introduce the “real” ~.
Using this Poisson bracket, we can obtain the equations

of motion for the phase space variables:

ε̇IJ = {εIJ ,H}PB =
∂H

∂πIJ

π̇IJ = {πIJ ,H}PB = −
∂H

∂εIJ

ṠI = {SI ,H}PB =
1

~
εIJKSJ

∂H

∂SK

(16)

The consistency of this formalism can be checked by not-
ing that these equations preserve the volume in phase
space

∂ε̇IJ
∂εIJ

+
∂π̇IJ

∂πIJ

+
∂ṠK

∂SK

= 0. (17)

That the dynamics preserves the volume in phase space
does not, of course, imply anything about whether the
system thus defined is integrable or shows Hamiltonian
chaos.
The internal energy U , involving the mechanical en-

ergy for the deformed elastic medium23, the magnetic
energy, defined by the Zeeman term45 and the magneto-
elastic energy8, that takes into account the interaction of
the magnetic moment with the medium, takes the form

U =
V0

2
CIJKLεIJεKL − V0σ

ext
IJ εIJ +BIJKLεIJSKSL

− ~ωISI , (18)

where C is the fully symmetric tensor, defining the elastic
response, σext is the external stress tensor, ω is the ef-
fective external magnetic field (expressed as a frequency)
and B is the fully symmetric magnetostriction tensor.
The “kinetic” term, containing the conjugate mo-

menta, can be written, schematically, as

Hkinetic =
1

2
πIJM

−1
IJKLπKL (19)

where M is a fully symmetric “mass” matrix, that de-
scribes the inertial response.
For the case of isotropic materials, it is assuming that

the M tensor has the form given by Lamé, with only two
characteristic constants:

MIJKL = M0δIJδKL +M1 (δIKδJL + δILδJK) . (20)

The tensors C and B are decomposed in the same way.

Consequently, the inverse of these tensors
can then be deduced from MIJKLM

−1
IJMN =

1
2 (δKMδLN + δKNδLM ). Thus

M−1
IJKL =

−M0

2M1(3M0 + 2M1)
δIJδKL

+
1

4M1
(δIKδJL + δILδJK)

(21)

and the equations of motion become







ǫ̇IJ = M−1
IJKLπKL

π̇IJ = −V0CIJKLǫKL + V0σ
ext
IJ −BIJKLSKSL

ṠI = εIJK
(
ωJ −

2
~
BABJCǫABSC

)
SK

(22)

highlighting how the mechanical and magnetic subsys-
tems are coupled.
The last equation–as expected!–is a precession equa-

tion for the components of S around both the effective
field ω and an additional field, that depends on the strain
tensor and the spin vector.
In the following section we shall show how to solve

these equations, in a way that preserves the symmetries
of the extended phase space.
@Stam Stopped at 26/05/2019

IV. GEOMETRIC INTEGRATION

Solving the coupled system of equations (22) is the
next step.
Since, in the previous section, we have shown that

these equations describe a volume preserving transfor-
mation of the enlarged phase space, encompassing elastic
and spin variables, it is natural to rewrite them, in terms
of the action of a Liouville operator. Therefore, we shall
write eqs.(22) as

ε̇ = Lǫε,
π̇ = Lππ,

Ṡ = LSS.
(23)

where L is the Liouville operator. This formulation al-
lows us to implement, manifestly, time-reversible, area
preserving algorithms, for solving these equations numer-
ically.
The general scheme is as follows: Consider an arbitrary

function f of the canonically conjugate variables of our
many-body system. This function, f(ε,π,S), depends
on the time t implicitly; that is, through the dependence
of (ε,π,S) on t. The time derivative of f is ḟ such as

ḟ = ε̇IJ
∂f

∂εIJ
+ π̇IJ

∂f

∂πIJ

+ ṠI

∂f

∂SI

≡ Lf. (24)
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The last line defines the (total) Liouville operator

L = ε̇IJ
∂

∂εIJ
+ π̇IJ

∂

∂πIJ

+ ṠI

∂

∂SI

. (25)

Equation (24) can be integrated formally as an initial
value problem to obtain f at any time :

f(ε(t),π(t),S(t)) = eLtf(ε(0),π(0),S(0)). (26)

It is not difficult to see that L = Lε + Lπ + LS . How-
ever, these single Liouville operators do not commute
two-by-two, as the reader may easily check by comput-
ing LuLvf − LvLuf 6= 0 for any function f and any
combination (u, v) of the individual Liouville operator
Lε,Lπ,LS . This means that

eLt = eLεt+Lπt+LSt 6= eLεteLπteLSt. (27)

According to the Magnus expansion46, however, it is al-
ways possible to express eLt as a product of the indi-
vidual operators at any given order in time, according
to the so–called “splitting method”47. This ensures that
the numerical algorithm preserves phase space volumes
exactly.
For instance, for a fixed timestep τ , upon expanding

up to the third order in time, the following sequence of
products

eLτ = eLS
τ

4 eLπ
τ

2 eLS
τ

4 eLετeLS
τ

4 eLπ
τ

2 eLS
τ

4 +O(τ3),
(28)

can be generated; this sequence is, in fact, one of six pos-
sible, that have the property of preserving the symplec-
tic structure of the Poisson brackets. Therefore, any one
of them can be chosen. The possible combinations are
presented in table I. While these schemes are free from

A τ

4

τ

2

τ

4
τ τ

4

τ

2

τ

4

1 S π S ǫ S π S

2 S ǫ S π S ǫ S

3 π ǫ π S π ǫ π

4 π S π ǫ π S π

5 ǫ π ǫ S ǫ π ǫ

6 ǫ S ǫ π ǫ S ǫ

Table I. Decomposition table of symplectic integrators

“global” errors, they are, of course, sensitive to “local”
errors, due to the finite value of the timestep. It is, also,
not at all obvious that all six can be implemented with
comparable efficiency. It is, therefore, useful to study the
numerical stability and efficiency of these different com-
binations, in particular, as former studies in molecular
dynamics48 and magnetic molecular dynamics12 showed,
apparently, numerical differences between them.
A sampler of such a study is presented in appendix B.

It is important to keep in mind that the one–step evo-
lution operators for ε and π describe shifts of the corre-
sponding tensor components, whereas the one–step evo-
lution operator for S describes rotations. In equations

eLετ (ε(t),π(t),S(t)) = (ε(t) + τ ε̇(t),π(t),S(t)) (29)

eLπτ (ε(t),π(t),S(0)) = (ε(t),π(t) + τ π̇(t),S(t)) (30)

eLSτ (ε(t),π(t),S(t)) = (ε(t),π(t),S(t+ τ)
︸ ︷︷ ︸

R(τ)S(t)

) (31)

where S(t + τ) = R(τ)S(t) is given by the Rodrigues’
rotation formula49 for a spin vector around a given ro-
tation vector ω̃(t) where each of its components are
ω̃I(t) = ωI(t) −

2
~
BJKLIεJK(t)SL(t). These equations

describe the phase space of one particle only. To de-
scribe the dynamics of a continuum, we must deduce the
equations for many particles.
One way to generalize eqs.(22) for the case of many

particles, labeled by an index, i = 1, . . . , N , according to
the conventions of the previous sections, is the following

ǫ̇iIJ = [M i]−1
IJKLπ

i
KL (32)

π̇i
IJ = −V0C

i
IJKLǫ

i
KL + V0σ

i ext
IJ −Bi

IJKLS
i
KSi

L (33)

Ṡi
I = εIJK

(

ωi
J −

2

~
Bi

ABJCǫ
i
ABS

i
C

)

Si
K (34)

The case of a staggered AF state is treated simply by
letting N = 2. In order to simplify the mechanical part
further, we can impose additional conditions pertaining
to the uniformity of the external stress, mechanical con-
stants, mass matrices and magneto-elastic constants, at
each site. In what follows, we shall use the following
Ansatz:

B1
IJKL = B2

IJKL,

C1
IJKL = C2

IJKL,

M1
IJKL = M2

IJKL,

σ1 ext
IJ = σ2 ext

IJ .

(35)

The conservative part of the precession contains a local
field, which is modified to include the antiferromagnetic
exchange between the sites and a single anisotropy axis
n with an intensity K. One has

ωi
I =

1

~

∑

<ij>

J ijSj
I +

K

~
nJs

i
JnI (36)

Because of the exchange field, the Liouville oper-
ators for different spins do not commute either. A
global geometric integrator, implementing the approach
of Omelyan50, which remains accurate up to third or-
der in the timestep expansion must, therefore, be con-
structed.
For any given timestep, τ , the corresponding expres-

sion for the evolution operator, reads

eLSτ = eLS1
τ

2 eLS2τeLS1
τ

2 +O(τ3). (37)
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For N = 2, this operator is numerically identical to the
operator, obtained by permuting the site indices, 1↔ 2.
The same reasoning is applied for the Liouville opera-

tors for the elastic variables, that enter in equations (23)
and the corresponding global geometric integrators are
constructed along the same lines. The system is then
integrated by following one of the schemes displayed in
table I.
With these tools, we can study a plethora of phenom-

ena, that are sensitive to the coupling of magnetic, elec-
tric and elastic degrees of freedom. In the following sec-
tion we shall apply this formalism for studying “switch-
ing” effects of the magnetization in antiferromagnetic me-
dia. The numerical accuracy ensured by the geometric
integrators is necessary to describe picosecond switching
times.

V. ANTIFERROMAGNETIC ULTRAFAST

SWITCHING UNDER STRESS

In this section, we shall apply the formalism con-
structed above, to describe how it is possible to generate
and manipulate picosecond switching of the magnetiza-
tion, induced by STTs, from a short pulse of electric cur-
rent, in elastic media that exhibit staggered AF order.
Such a fast switching process in AFs is schematically

Figure 1. (Color online) Switching scheme for antiferromag-
netic magneto-mechanically coupled toy model with external
STT.

displayed in figure 1 and can be realized, in practice,
by a femtosecond laser excitation of the magnetic mo-
ments that generate a field-induced STT on the two sub-
lattices. During the pulse, energy is transferred from con-
duction electrons to the sub-lattice magnetic moments
via STT (this is how the electric current affects the mag-
netic response), and hence contributes to the exchange
energy between the moments, since local moments can be
canted noncollinearly. The energy due to the strong ex-

change interaction between neighboring moments, which
is commonly found in AFs, in particular due to magnetic
anisotropy, appears as an effective inertia to the motion,
leading to the appearance of a time scale, much longer
than that of the excitation pulse. Afterwards, the system
follows a natural path along the easy-plane to circumvent
the unfavorable anisotropy barrier and finally relaxes to a
new magnetic configuration. The resulting dynamics is a
switching of the two sub-lattices moments to the opposite
direction through the easy-plane.
This process defines the ultrafast antiferromagnetic

switching effect.
During the process, the Néel vector, that probes the

difference between the magnetic moments of the two sub-
lattices, acquires a net value that can be transferred as
a so-called “spin accumulation”, to an adjacent non-
magnetic normal material in order to pump the pro-
duced spin current via scattering of electrons. The re-
verse mechanism can be realized, as well.
What was not considered before is the possibility to en-

hance or inhibit such a switching, depending on tensile
or compression effects, that are generated by an external
stress, that couples to the internal strain, produced by
the intrinsic magneto-elastic interaction in such materi-
als, as depicted in figure 1.
In order to conform to the notation used in our previ-

ous studies22, equation (34) is supplemented with a non-
conservative part, labeled T , on the RHS, which includes
both a transverse damping and a field-like STT torque

T i
I = αǫIJKSi

J Ṡ
i
K +G

(
siIs

i
JpJ − pIs

i
Js

i
J

)
. (38)

The resulting equations of motion, are numerically inte-
grated, using the approach of section V. It is noteworthy
that, this equation, also, describes the “backreaction” of
the magnetic response on the spin transfer torque. On
the other hand, we do not consider how this backreaction
affects the current pulse itself, that’s assumed external.
In figures 2 and 3 we report the evolution of the aver-

age magnetization m ≡ 1
2

(
S1 + S2

)
and the Néel vec-

tor l ≡ 1
2

(
S1 − S2

)
, in the presence as well as the ab-

sence of magnetoelastic coupling, for a moderate external
isotropic stress of 30µ0M

2
s . The conditions and values

of the simulation are identical to those found by Cheng
et al.21. We start the simulations using an initial con-
figuration, where spins are aligned along the x̂-axis in
an antiferromagnetic configuration and apply two 10 ps
electric pulses of 0.0034 rad.THz intensity, each separated
by 50 ps, in the p = ẑ-direction. In addition to the ex-
change interaction, the spins are subjected to a global
anisotropy, along the n = x̂-axis.
In the absence of magnetoelastic coupling, our results

are identical to those by Cheng et al.21 and to those
we obtained under the same conditions in our previous
work22.
In the presence of magnetoelastic coupling, however,

as the mechanical system is undamped, the results are
quite different. In figure 4 we display the evolution of
the strain components over time.
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Figure 2. (Color online) Average magnetization (upper panel)
and Néel order parameter components (middle panel) for un-
coupled switching with parameters in reference22. The lower
panel displays the STT pulses. The figures agree with the
reference21 because the magnetoelastic constants are set to
zero.

Figure 3. (Color online) Average magnetization (upper panel)
and Néel order parameter components (middle panel) for a
coupled switching with parameters in reference22. The lower
panel displays the STT pulses. Here B0 = 7.7µ0M

2

s and
B1 = −23µ0M

2

s .

Because of the presence of a constant stress, a finite
mass matrix and non-zero elastic constants, the mechan-
ical system is expected to be oscillating freely, which is,
indeed, observed.

These oscillations are also observed, both in the mag-
netization and the Néel vector in the figure 3, in the
form of small wiggles, superimposed on the main com-
ponent of the spin accumulation vector. A compression
in one direction becomes tensile in the other one and
vice-versa because of the sign of B1. As a consequence

Figure 4. (Color online) Strain components as a function of
time with the magnetoelastic constants turned on with pa-
rameters in reference22.

of such a mechanical deformation, the switching time of
the magnetization is slightly faster and the amplitude of
the magnetization enhanced, depending on the value of
the stress and magnetoelastic constants, as observed in
figure 3. On the other hand, the strain tensor itself is
quasi-uniform in space on the two sub-lattices.

VI. DISCUSSION

In the previous sections, we have described how to re-
alize a mechanism for the ultrafast switching of the mag-
netization, that can be induced by a STT in NiO, where
both the duration and intensity can be modulated by ap-
propriate internal strain, thanks to magnetoelastic cou-
pling. Such a strain can be modulated, in return, by the
induced magnetization process by the same magnetoelas-
tic coupling in order to produce a modulated elastic wave.
Depending on the pulse duration and transverse damping
value, the terminal angle of the Néel vector evolves grad-
ually by integer values of π as already shown21. In real
experiments, because amplitude fluctuations of the elec-
tric pulses are inevitable, small damping values are not
favorable since it may easily lead to overshoot, which is
amplified by the mechanical response. When Joule heat-
ing in the normal underlying metal is taken into account,
a shorter pulse with stronger current intensity should be
desirable, but a modulated undamped mechanical strain
is then produced. For the moment, what is not easy to
predict are the mechanical damping mechanisms induced
by a differential thermal stress produced by such a Joule
heating, where its effect superimposes to the whole dy-
namics. However, at least for the case of undamped dy-
namics, we have developed the mathematical and compu-
tational framework, that consistently takes into account
elastic and magnetic degrees of freedom and that pro-
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vides a starting point for designing future AFs devices
for spintronics applications that combine both mechani-
cal and magnetic coupled responses.
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Appendix A: A model for precession through

anticommuting variables

We review some issues when dealing with classical spin
variables and explain some limitations which are met by
using the framework of commuting variables51,52. A com-
mon starting point to build precessional models is choos-
ing the appropriate representation of the su(2) algebra.
In the Heisenberg picture the Ehrenfest theorem im-

plies that the equations of motion for the average of the
spin operator Ŝ components read

ı~
d〈Ŝ〉

dt
= 〈[Ŝ,H]〉 (A1)

where H is the Zeeman Hamiltonian operator for an ex-
ternal magnetic field H such that

H = −gµ0µBŜ ·H . (A2)

From the commutation relations [Ŝi, Ŝj ] = ıǫijkŜk, one
can quite straightforwardly show that

d〈Ŝ〉

dt
=

gµBµ0

~
〈Ŝ〉 ×H , (A3)

which corresponds to the well-known Larmor precession
of the expectation value of the spin in an external mag-
netic field H .
Interestingly, a different–but equivalent–approach can

be followed, by considering the Majorana representation,
in terms of anticommuting variables, ξI , ξIξJ + ξJξI = 0
31 of the vector S:

SI = −
ı

2
ǫIJKξJξK , (A4)

which can easily be shown to commute, as SISJ = 0.
This last relation is, of course, not satisfactory. It can
be easily avoided, however, by imposing that the ξI
satisfy the anticommutation relations {ξI , ξJ} = δij–
that they generate a Clifford algebra (up to a constant
normalization)32.
These relations imply that the SI define a spin–1/2

representation of the su(2) algebra. Higher spin repre-
sentations can be defined by multilinear combinations20,
that are relevant for describing magnetic properties of

composite objects; since we can work with the SI in-
stead of the ξI , however, this complication will not affect
us here.
This representation highlights that the spin degrees of

freedom, SI , are, in fact, “composite” objects and that
the “fundamental degrees of freedom” are the ξI . There-
fore, it is useful to develop the description of the dynam-
ics, directly, in terms of the ξI themselves. We shall recall
the salient features below.
The Poisson brackets for the anticommuting variables

ξI are related to those of SI , in order that the dynamics
be, indeed, equivalent, in a way that was set forth many
years ago, through the construction of a corresponding
graded Poisson bracket, which generalizes Poisson brack-
ets from manifolds to super-manifolds18.
In terms of any functions of anti-commuting variables

ξ this bracket reads

{f(ξ), g(ξ)}PB ≡
ı

~
f(ξ)

←−
∂

∂ξK

−→
∂

∂ξK
g(ξ), (A5)

with the corresponding definition of the left and right
derivative of any function of the anti-commuting vari-
ables. One can show that this bracket, also known as
the “antibracket” of any two functions on a flat super-
manifold, satisfies all necessary properties for a graded
bracket, namely (graded) Leibniz rule, (graded) anti-
symmetry and (graded) Jacobi identity53.
By taking this graded Poisson bracket for any two of

these anti-commuting variables, we get

{ξI , ξJ}PB =
ı

~
δIJ . (A6)

This implies that any two such variables are canonically
conjugate, since {ξI ,−ı~ξJ}PB = δIJ and πI ≡ −ı~ξI
defines the canonical conjugate19,20.
By using the Grassmann properties of ξ, one proves

that

{SI , SJ}PB =
1

~
ǫIJKSK (A7)

which is a consistency check that the SI as defined in
(A4) do realize a representation of the rotation group.
In eq.(A5), if the functions of the ξ are chosen to con-

tain only quadratic terms, then one can identify the pre-
vious bracket as a regular Poisson bracket on a Rieman-
nian manifold for the commuting variables S

{f(S), g(S)}PB =
ı

~

∂f

∂SI

SI

←−
∂

∂ξK

−→
∂

∂ξK
SJ

∂g

∂SJ

= {SI , SJ}PB

∂f

∂SI

∂g

∂SJ

=
1

~
ǫIJKSK

∂f

∂SI

∂g

∂SJ

,

(A8)

which is, precisely, the “spinning part” of the bracket
introduced by Yang and Hirschfelder44 for magnetized
fluid dynamics, which reads as

{A,B}PB ≡
∂A

∂qI

∂B

∂pI
−

∂A

∂pI

∂B

∂qI
−

1

~
ǫIJKSI

∂A

∂SJ

∂B

∂SK

.

(A9)
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Similar expressions have been found already by Casal-
buoni a long time ago19 without having attracted the
attention they deserve. Following the inverse path
of canonical quantization, we use this graded Poisson
Bracket on any commuting quantity, which allows us to
compute directly

{S,H}PB =
gµBµ0

~
S ×H (A10)

thereby highlighting that the description of S in terms
of ξ is an equivalent description of the dynamics.
For any time-dependent commuting functions of S(t),

we can use this Poisson bracket to deduce a Liouville
equation

dF (S(t))

dt
= {F (S(t)),H}PB. (A11)

Consequently, the equations of motion for the variables
ξ read much more simple expressions as

dξ(t)

dt
= {ξ,H}PB =

ı

~

−→
∂ H

∂ξ
, (A12)

which are known to form a non-relativistic pseudoclassi-
cal mechanics19.
One reason why using the representation of S in terms

of ξ is useful is that it is intrinsically difficult to build
a Lagrangian model for the commuting spin variable S,
since its canonically conjugate variable cannot be unam-
biguously identified. As is, by now, well known, the
conjugate of the dynamical variable ξ is proportional
to itself54. Therefore, the dynamics of spinning degrees
of freedom can be described, either through a vector of
commuting variables on a curved manifold, or by a vec-
tor of anti-commuting variables on a flat–though non–
Riemannian–manifold. Finally, it has been found that
the Majorana-fermion representation of 1/2-spin opera-
tors is also a powerful tool to straightforwardly compute
spin-spin correlators55, which represents an advantage for
computing magnetic response functions in a many-bodies
formulation.

Appendix B: Numerical accuracy of the splitting

algorithms

The accuracy of the numerical schemes represented in
table I depends on the relative amplitude of the velocity
terms (ε̇, π̇, Ṡ), and can be monitored by checking the
stability of equation (17) over time46,47.
Figure 5 displays the total energy in one domain (given

by the sum of eqs.(18) and (19)) upon varying the numer-
ical precision. The splitting algorithm considered corre-
sponds to the label A = 1 in table I. The numerical
precision is controlled by the “quality factor Q”, chosen

at the beginning of the simulation, which produces vari-
able timesteps τ according to the relation τ = Q/‖ω‖.
Simulation conditions produce a total energy equal to

0 0.2 0.4 0.6 0.8 1
time (ns)

2.5

2.501

2.502

2.503

2.504

2.505

2.506

E
n

e
rg

y
 x

1
0

4

Q=0.025
Q=0.0125
Q=0.00625

Figure 5. (Color online) Single-site total energy as a func-
tion of both time and variable timestep Q. Conditions of
the simulation are expressed in reduced units: 2C0/µ0M

2

s =
5.1 × 105, 2C1/µ0M

2

s = 3.5 × 105, M1V0µ0M
2

s /2~
2 = 1000,

ωDC = (0, 0, 2π) rad.GHz, π11(0) = 1, s(0) = (1, 0, 0). All
the other parameters not reported, included initial conditions
are zero.

π2
11(0)/4M1, which has to stay constant over time. We

observe that this is, indeed, the case, whatever the value
of the quality factor Q. We remark that, as Q → 0,
the variations about the average value of the energy are
suppressed, as should be expected.

Figure 6 displays some of the non-vanishing compo-
nents of the strain tensor over time (here ε22(t) = ε33(t)
and this third component is not reported), when using
different splitting algorithms, among those displayed in
Table I. We observe less than 1% of numerical relative
difference between the two algorithms on the strain and
its conjugate variables, and no difference (up to the ma-
chine precision) on the magnetization with a “coarse”
quality factor Q, which cannot be detected by visual in-
spection on the figure. This difference falls to 0.1% when
the quality factor is divided by 4. The same procedure
can be repeated for all the splitting combinations in Ta-
ble I, the conclusions previously drawn apply, also, for
the magnetization, strain and its conjugate variable, de-
pending on the frequency of appearance of the splitted
operator. As expected, once a splitting algorithm is se-
lected, the more frequently an operator is evaluated, the
smaller the error, though, of course, the time required,
also, grows. This opens the possibility to select optimally
a proper splitting algorithm, depending on the relative
intensity of ε̇ij , π̇ij , Ṡi over time.
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Figure 6. (Color online)Single-site strain components as a
function of time for various numerical schemes. Conditions
of the simulation are identical to those for figure 5 and the
results are produced for Q = 0.0025 only.
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H. Dürr, T. Ostler, J. Barker, R. Evans, R. Chantrell,
et al., Nature 472, 205 (2011); T. Jungwirth, X. Marti,
P. Wadley, and J. Wunderlich, Nature Nanotechnology
11, 231 (2016).
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