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ABSTRACT

Context. Herschel observations of interstellar clouds support a paradigm for star formation in which molecular filaments play a cen-
tral role. One of the foundations of this paradigm is the finding, based on detailed studies of the transverse column density profiles
observed with Herschel, that nearby molecular filaments share a common inner width of ∼0.1 pc. The existence of a characteristic
filament width has been recently questioned, however, on the grounds that it seems inconsistent with the scale-free nature of the power
spectrum of interstellar cloud images.
Aims. In an effort to clarify the origin of this apparent discrepancy, we examined the power spectra of the Herschel/SPIRE 250 µm
images of the Polaris, Aquila, and Taurus–L1495 clouds in detail and performed a number of simple numerical experiments by inject-
ing synthetic filaments in both the Herschel images and synthetic background images.
Methods. We constructed several populations of synthetic filaments of 0.1 pc width with realistic area filling factors (Afil) and distri-
butions of column density contrasts (δc). After adding synthetic filaments to the original Herschel images, we recomputed the image
power spectra and compared the results with the original, essentially scale-free power spectra. We used the χ2

variance of the residuals
between the best power-law fit and the output power spectrum in each simulation as a diagnostic of the presence (or absence) of a
significant departure from a scale-free power spectrum.
Results. We find that χ2

variance depends primarily on the combined parameter δ2
c Afil. According to our numerical experiments, a sig-

nificant departure from a scale-free behavior and thus the presence of a characteristic filament width become detectable in the power
spectrum when δ2

c Afil ' 0.1 for synthetic filaments with Gaussian profiles and δ2
c Afil ' 0.4 for synthetic filaments with Plummer-like

density profiles. Analysis of the real Herschel 250 µm data suggests that δ2
c Afil is ∼0.01 in the case of the Polaris cloud and ∼0.016 in

the Aquila cloud, significantly below the fiducial detection limit of δ2
c Afil ∼ 0.1 in both cases. In both clouds, the observed filament

contrasts and area filling factors are such that the filamentary structure contributes only ∼1/5 of the power in the image power spec-
trum at angular frequencies where an effect of the characteristic filament width is expected.
Conclusions. We conclude that the essentially scale-free power spectra of Herschel images remain consistent with the existence of a
characteristic filament width ∼0.1 pc and do not invalidate the conclusions drawn from studies of the filament profiles.

Key words. local insterstellar matter – submillimeter: ISM – stars: low-mass – infrared: diffuse background

1. Introduction

Recent Herschel imaging observations of nearby molecular
clouds, for example, those obtained as part of the Herschel
Gould Belt Survey (HGBS; André et al. 2010), indicate that
filamentary structures are characterized by a common inner
width Wfil ∼ 0.1 pc, with only a factor of approximately two
spread around this value, over a wide range of column densities
(Arzoumanian et al. 2011, 2019; Koch & Rosolowsky 2015). If
confirmed, the existence of such a characteristic filament width
has remarkable implications for the star formation process and
is one of the bases of a proposed filamentary paradigm for
solar-type star formation (André et al. 2014). In particular, it
may set a critical column density threshold above which most

stars form in filamentary molecular clouds. For filaments of
∼0.1 pc width and a typical gas temperature of 10 K, the criti-
cal mass per unit length Mline,crit = 2 c2

s/G ∼ 16 M� pc−1 (cf.
Inutsuka & Miyama 1997) indeed translates to a critical col-
umn density Σgas,crit ∼ Mline,crit/Wfil ∼ 160 M� pc−2, which is
close to the background column density threshold above which
prestellar cores are found with Herschel in nearby regions (e.g.,
Könyves et al. 2015; Marsh et al. 2016). Above this threshold,
the star formation rate is observed to be directly proportional to
the mass of dense molecular gas in both nearby clouds and exter-
nal galaxies (e.g., Gao & Solomon 2004; Heiderman et al. 2010;
Lada et al. 2010; Shimajiri et al. 2017).

Arzoumanian et al. (2011) suggested the existence of a
characteristic filament width after fitting simple Gaussian or
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Plummer-like model profiles to the transverse profiles observed
with Herschel for a broad sample of nearby filaments (see also
Arzoumanian et al. 2019). In the analysis of Arzoumanian et al.,
thermally supercritical filaments (with Mline > 2c2

s/G) tend to
have Plummer-like density profiles with a flat inner region of
radius Rflat and a decreasing power-law wing ρ ∝ r−2 at larger
radii. In contrast, low column density, thermally subcritical
filaments (with Mline < 2c2

s/G) tend to be better described by
Gaussian density profiles.

Why molecular filaments seem to share such a char-
acteristic width is still a debated theoretical problem (e.g.,
Hennebelle & André 2013; Fischera & Martin 2012; Federrath
2016; Auddy et al. 2016). In order to ascertain whether the pres-
ence of this possibly universal filament scale is robust, the obser-
vational data also need to be investigated using various other
means. In a recent paper, Panopoulou et al. (2017) tested the pos-
sibility of identifying a characteristic scale using a power spec-
trum analysis. In their study they argued that, had there been
a characteristic filament width, its signature should have mani-
fested itself in the power spectrum of Herschel images of nearby
clouds, either as a kink or as a change in slope at an angular
frequency corresponding to the characteristic scale.

In the present paper, we revisit the latter issue from an
observer’s standpoint, exploring the parameter space with real-
istic filament properties consistent with the observational data,
in particular taking into account realistic distributions of fila-
ment contrasts and area filling factors. To this end, we selected
two extreme regions imaged by the HGBS, namely the Polaris
translucent cloud, mainly dominated by low density subcritical
(Mline < Mline,crit) filaments, and the Aquila complex, which
contains a fair population of high column density supercritical
(Mline > Mline,crit) filaments. We also used the B211/B213 field
in the Taurus cloud, which is dominated by a single, marginally
supercritical filament.

The layout of the paper is as follows. In Sect. 2 we describe
the construction of synthetic filament images and their power
spectra. In Sect. 3, we develop a diagnostic for the detection
of a characteristic filament width in a power spectrum plot. We
also develop a diagnostic for the detection of a characteristic fil-
ament width in a power spectrum plot. In Sects. 4 and 5, we per-
form a power spectrum analysis of the Herschel images of the
Polaris and Aquila clouds, respectively, and compare the results
to those obtained on synthetic maps after adding simulated
filaments. In Sect. 6, we compared power spectra of a subre-
gion of Taurus molecular cloud encompassing the Taurus main
filament to a synthetic filament with similar physical properties
as B211/B213. In Sect. 7, we investigate the combined effect of
filament column density contrast (δc) and area filling factor (Afil).
Finally, we summarize our results in Sect. 8.

2. Construction of synthetic filaments and their
power spectra

Figure 1 shows an example of a synthetic filament with a
transverse Gaussian profile and a projected spatial inner width
(FWHM) of 0.1 pc at a distance of 140 pc. Mathematically, the
2D image of a filament with a Gaussian profile can be expressed
as

ICylinder(x, y) = C
[
δL(ax + by + c) × ΠL

]
?Gθfil (x, y), (1)

where, C is the amplitude factor (related to the filament contrast)
of the delta line function δL(ax + by + c), ΠL is a rectangle func-
tion, and the ? symbol denotes the convolution operator. The

Fig. 1. Image of a simulated filament with a Gaussian transverse profile
and a FWHM width of 0.1 pc, projected at a distance of 140 pc. Here,
the level of filament contrast was adjusted so that δc ∼ 10.

delta line function assumes a value of unity when its parameter
ax+by+c = 0, and zero elsewhere. The expression ax+by+c = 0
is the equation of a straight line where the a, b coefficients deter-
mine the slope of the straight line and c is the intercept. The rect-
angle function, ΠL, which has a value of unity over the length L
of the line function and zero elsewhere, transforms the line into
a line-segment of length L. In order to make a Gaussian filament
profile, we convolve the entire line segment [δ(ax + by + c)×ΠL]
with a Gaussian kernel, Gθfil (x, y), of full width at half maximum
FWHM = θfil.

The FWHM of the Gaussian kernel = θfil is chosen such that
the projected spatial width is Wfil. To create a characteristic Wfil
inner width of a filament at a distance d, the required θfil is

θfil ' 147′′ ×
(

Wfil

0.1 pc

)
×

(
140 pc

d

)
· (2)

The choice of the parameter C depends upon the required
level of filament contrast defined as δc = (Ipeak − Ibkg)/Ibkg and
on the dilution factor of the convolution kernel,

C ≈ δcθfil. (3)

For example, in order to create a Gaussian filament profile of
spatial FWHM = 0.1 pc and contrast δc = 0.4 at the distance of
Polaris (d = 140 pc, Falgarone et al. 1998), we used a Gaussian
convolution kernel of θfil ∼ 147′′ (see Eq. (3)), and a contrast
amplitude of C ∼ 0.4 × 147′′/θpix, where θpix is the pixel size of
the image. We adopted a pixel size θpix = 6′′ for Herschel/SPIRE
250 µm images (18.2′′ beam resolution).

The Fourier transform of a 2D image can be expressed as

Î(kx, ky) =

∫
I(x, y)e−2πi(kx x+kyy)dx dy, (4)

where dx dy is the infinitesimal surface area, and
∫

dx dy = S
is the total surface area, S , covered by the map. For an image
of a single cylindrical filament, most of the contribution to
the integral in Eq. (4) comes from integration over the central
part of the filament which encloses 75% of the total intensity
fluctuations.

The power spectrum of a cylindrical intensity distribution
can be written analytically as
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Pcylinder(kx, ky) = |Î(kx, ky)|2,

= |FT (δL(ax + by + c)(kx, ky)|2 Ĝ2(kx, ky),

= |δ̂(bkx − aky)|2 Ĝ2(kx, ky), (5)

where δ̂(bkx−aky) is the Fourier transform of the delta line func-
tion δL(ax + by + c) and Ĝ(kx, ky) is the Fourier transform of the
convolution kernel. The power spectrum of the Gaussian kernel,
Ĝ2(kx, ky), is also a Gaussian, and its FWHM width Γfil is related
to the FWHM width θfil of Gθfil (x, y) through the relation:

Γfil =
√

8ln2/πθfil

∼ 0.6/θfil. (6)

One may thus expect a characteristic filament width θfil to
lead to a signature in the power spectrum at angular frequencies
kfil ∼ Γfil.

For multiple, randomly distributed filaments, as in the sim-
ulations discussed below, it is not possible to obtain the power
spectrum analytically. We therefore used the IDL-based routine
FFT to compute the power spectrum. Nevertheless, Eq. (5) is
useful to appreciate how the power spectrum of an image with a
single filament is dominated by the power spectrum of the con-
volution kernel. As an illustration, Fig. 2b displays the power
spectra of images including a single model filament with either
a Gaussian or a Plummer-like density profile. The red curve in
Fig. 2a shows the radial profile of the Gaussian filament dis-
played in Fig. 1. The over-plotted black curves show the profiles
of filaments featuring Plummer-like power-law wings at large
radii, with power-law slopes ranging from p = 1.5 to p = 4. The
flat inner region of each Plummer-like model filament had a con-
stant Rflat of ∼0.03 pc. An example of filament with a transverse
Plummer profile is shown in Fig. A.1. Figure 2b displays the
power spectra corresponding to the filament profiles shown in
Fig. 2a. At high angular frequencies, the power decreases expo-
nentially following the same trend as the power spectrum of the
convolution kernel. An example of a filament with a Plummer-
like radial profile is shown in Fig. A.1.

3. Diagnosing the presence of a characteristic
filament width from image power spectra

In general, dust continuum images of the diffuse, cold interstel-
lar medium (ISM) are well described by power-law power spec-
tra, often attributed to the turbulent nature of the flow. Herschel
images are also revealing a wealth of filaments. In the following
we assume that these two contributions to the emission can be
treated separately, in real space

IISM(x, y) = Ibkg(x, y) + Ifil(x, y). (7)

Under the assumption that the filaments are randomly ori-
ented and are not correlated with the diffuse background, we can
express the total power spectrum as:

PISM(k) = Pbkg(k) + Pfil(k), (8)

where PISM(k) is the total power spectrum of the ISM, and
Pbkg(k) and Pfil(k) represent the power spectra of the diffuse
background and filament population, respectively. It is fair to
assume that the power spectrum of dust images of the diffuse
ISM follows a power-law, Pbkg(k) ∝ kγ with γ ∼ −2.7. From
Fig. 2 and Eqs. (5) and (6), it is clear that the contribution of a
population of filaments with constant width θfil to the total power
spectrum is not confined to a narrow range of spatial frequencies,

Fig. 2. Transverse profiles of several simple model filaments (a) and
corresponding power spectra (b). Panel a: red curve shows the Gaussian
column density profile of the filament displayed in Fig. 1, which has a
FWHM width of 0.1 pc at a distance of 140 pc. The red vertical line
marks the FWHM of the Gaussian profile. The black dashed and dotted
curves display Plummer-like filament profiles with Rflat ∼ 0.03 pc and
logarithmic slopes p = 1.5, 2, 2.6, and 4. Panel b: all power spectra
were normalized to 1 at the lowest angular frequency kmin = 1

Map Size . The
power spectra all decrease sharply at high angular frequencies, with the
highest rate of decrease obtained for the Gaussian model (red curve).
For the Plummer models, the rate of decrease is higher for higher p
values. Note the kink near k = 0.8 arcmin−1 for the Plummer model with
p = 1.5, which disappears for higher p values. The red vertical dashed
line denotes scale Γfil = 0.24 arcmin−1.

but rather follows a shallow power law at angular frequencies
lower than Γfil.

In order to better visualize the filament contribution, we fit a
power-law to the total power spectrum, PISM(k), and then inspect
the residuals,

Res(k) = [Pbest fit(k) − PISM(k)] /PISM(k), (9)

as a function of angular frequency. To quantify the magnitude of
the deviation from the best power-law fit, we use the χ2

variance
as our metric. We calculate the variance of the residuals in
the vicinity of kfil where the contribution of filament power is
expected to be maximum1. We define the variance as

χ2
variance = Σ

1.5kfil
kmin

Res(k)2/Nfreq, (10)

where Res(k) is the residual at angular frequency k defined
by Eq. (9), and Nfreq is the total number of frequency modes2

between kmin and 1.5 × kfil. The upper bound in the above sum-
mation is set to 1.5 × kfil in a conservative sense, since the

1 Note that Pfil(k) in Fig. 2 is almost flat at k < kfil and drops rapidly at
k > kfil.
2 kmin = 1

Map Size is the minimum angular frequency considered in the
power spectrum.
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power spectrum of constant-width filaments drops at k> kfil (see
Fig. 2b), and Res(k) is therefore dominated by the diffuse ISM
contribution for k> kfil. In principle, the image power spectrum
of a scale-free ISM will have residuals close to zero, and any
significant deviation of the residuals from zero at k < kfil will be
primarily due to the power spectrum of filaments (see Eq. (8)).
Thus, one expects χ2

variance ∝
∑

[Pbest fit(k) − PISM(k)]2 ∝∑
Pfil(k)2. Simple dimensional analysis of the Parseval relation

between Pfil(k)2 and |Ifil(x, y)|2 provides deeper insight into the
connection between χ2

variance and observable parameters of the
filament population:

[
χ2

variance

]
=

[∑
Pfil(k)2

]
=

[∫
|Ifil(x, y)|2dx dy

]2

, (11)

where [x] in square brackets denotes the dimension of quantity x.
Dimensional analysis thus suggests that χ2

variance must be a func-
tion of δ2

c Afil:

χ2
variance = φ(δ2

c Afil). (12)

The δ2
c dependence comes from exploiting Eqs. (1) and (3),

while the area filling factor Afil ≡ S fil/S dependence comes from
the fact that only the effective area S fil over which filaments are
distributed contribute to the integral on the right-hand side of
Eq. (11). For low Afil and δc the variance is very small, while for
high Afil and/or high δc the variance metric can be very high. We
will explore the χ2

variance − δ
2
c Afil parameter space in more detail

in Sect. 7 below.
The magnitude/amplitude of excess power in the ISM power

spectrum PISM(k) relative to the best-fit power law model power
spectrum at a characteristic frequency kfil depends upon the com-
bined effect of the mean filament contrast in the image and the
fractional area covered by the filaments, Afil. The area filling fac-
tor Afil can be expressed as Afil = Σ

Nfil
i=1Li × Wfil/S , where Li is

the length of the ith filament, Wfil the transverse filament width
(∼0.1 pc), S the total area coverage of the image being analyzed,
and Nfil the total number of filaments in the image.

4. Power spectrum of the Polaris Herschel data

In this section, we analyze the Herschel/SPIRE image of the
Polaris Flare cloud at 250 µm (Miville-Deschênes et al. 2010;
Ward-Thompson et al. 2010; see also Schneider et al. 2013),
which covers an area of 3.0◦ × 3.3◦ and is shown in Fig. 3a) at
the native (diffraction-limited) beam resolution of 18.′′2. For our
analysis, a pixel size of 6′′ was adopted3.

The Polaris Flare image displays a spectacular distribution
of low column density filaments. All of these filaments are ther-
mally subcritical. The mean peak surface brightness contrast of
these filaments over the local background is around 〈δc〉 ∼ 0.9,
but the filaments occupy only a small fraction ∼2% of the total
surface area, leading to δ2

c Afil ∼ 0.016.
To first order, the transverse structure of the Polaris fila-

ments is well described by Gaussian profiles with a FWHM
of ∼0.1 pc (assuming a distance ∼140 pc for the Polaris cloud)
(Arzoumanian et al. 2011, 2019). Miville-Deschênes et al.
(2010) carried out a power spectrum analysis for the Polaris
image over spatial scales ranging from 0.01 pc to 10 pc. The
power spectrum revealed a continuous power-law, P(k) ∝ kγ,
with an exponent of γ = −2.65 down to the scale of the

3 A zero-level offset of 16.8 MJy/sr was also added to the image based
on a comparison with Planck and IRAS data.

Fig. 3. Panel a: Herschel/SPIRE 250 µm emission image of a part of the
Polaris cloud. The HPBW angular resolution is 18.′′2. Panel b: noise-
subtracted and beam-corrected power spectrum of the image shown
in panel a over the range of angular frequencies 0.025 arcmin−1 <
k < 2 arcmin−1. The red curve shows the best fit power-law model
over this frequency range, which takes the form Psky(k) = AISMkγ + P0
with γ=−2.63± 0.1. Panel c: residuals between the best-fit power-
law model and the power spectrum data points (triangle symbols). The
χ2

Variance (see Eq. (10)) of the residuals is ∼0.03. The vertical dashed line
marks the angular frequency kfil ∼ (0.6/θfil) corresponding to a charac-
teristic filament width of ∼0.1 pc.

beam, suggesting a scale-free image. Following the same
scheme as Miville-Deschênes et al. (2010), we derived the
power spectrum of a sub-field4 of Polaris shown in Fig. 3.
Prior to computing of power spectrum, we apodized the edges
of the image by a sine function to ensure smooth periodic
boundary condition. After subtracting the noise power spectrum
level estimated from the mean power at angular frequencies
k > 3.5 arcmin−1, we corrected for convolution effects by

4 In order to capture the maximum rectangular area within the Polaris
image for easier computation of the power spectrum, we rotated the
original map in equatorial coordinate by 13.6◦ clockwise about its cen-
ter and extracted the largest area excluding turn-around data points near
the edges of the field.
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dividing the observed power spectrum by the power spectrum
of the Herschel telescope beam at 250 µm (Martin et al. 2010)
obtained from scans of Neptune. In order to derive the power
spectrum slope, we then fitted a power-law model of the form
Psky(k) = AISMkγ + P0 to the corrected power spectrum over the
range of angular frequencies 0.025 arcmin−1 < k < 2 arcmin−1,
as described in Miville-Deschênes et al. (2010). In Fig. 3b,
we show the power spectrum of the Polaris image over the
range of angular frequencies used in the power-law fit. The red
curve represents the best-fit power law with γ=−2.63± 0.1,
which is very close to the γ=−2.65± 0.1 value obtained by
Miville-Deschênes et al. (2010). Visual inspection shows that
there is no clear spectral signature of a characteristic scale
embedded in the observed power spectrum. Figure 3c shows
the residuals [PBest−fit(k) − PPolaris(k)]/PPolaris(k) as a function
of angular frequency. Any significant kink or distortion in
the power spectrum due to the presence of a characteristic
scale should in principle be captured as a significant deviation
from zero in the plot of residuals. The plot of residuals for
the Polaris Flare image (Fig. 3c) does not exhibit such a
deviation.

In order to critically analyze this finding, we performed a
suite of numerical experiments by injecting synthetic filaments
separately into 1) the original Herschel/SPIRE 250 µm image
of Polaris, and 2) the filament-subtracted image obtained after
applying the getfilaments algorithm (Men’shchikov 2013) to the
Herschel/SPIRE image to remove most of the real filamentary
structures. We repeated the same power spectrum analysis as
described above on both sets of modified Herschel images (see
Sects. 4.2 and 4.3 below). For this analysis, we preferred to use
SPIRE 250 µm data rather than 18.′′2 column density images
produced from the combination of Herschel data at 160 µm to
500 µm (cf. Palmeirim et al. 2013) because the former are less
affected by noise and better behaved from a power-spectrum
point of view (cf. Miville-Deschênes et al. 2010).

4.1. Construction of an image with synthetic filaments

To create a synthetic filament image, the first step was to gen-
erate a map of randomly oriented 1D delta line functions as
described in Sect. 2. Then, we convolved this initial synthetic
map with a Gaussian kernel such that the projected spatial
FWHM width of the kernel was 0.1 pc as described in Sect. 2.
When creating synthetic filaments we neglected the fluctua-
tions observed along real Herschel filaments (Roy et al. 2015),
because the contrast of these fluctuations above the average
filament is �1, and also the area filling factor of these fluc-
tuations is very small. To maximize the effect of a character-
istic width in our simulations, we fixed the FWHM width of
the Gaussian filaments to a strictly constant value. We con-
trolled the contrast parameter C of each filament by measur-
ing the local background emission in the close vicinity of the
filament within the background image. The distribution of the
contrast parameter was chosen to reflect the observed distri-
bution in each region. In the simulation, we varied the angu-
lar length of the filaments randomly between a minimum of
30× 18.′′2 = 546′′ and a maximum of 70× 18.′′2 = 1274′′, corre-
sponding to 0.4 to 0.9 pc at d = 140 pc. Figure 4a shows one
such realization including a population of synthetic filaments
with a lognormal distribution of contrasts in the range 0.3 < δc <
2.0, co-added to the original map of Polaris. In this example,
the population of synthetic filaments has an area filling factor
Afil ∼ 3.2%.

4.2. Effect of synthetic filaments on the power spectrum of
the Polaris image

Next, we investigated the effect of synthetic filaments on the
power spectrum of the Polaris original image on one hand, and
the power spectrum of the filament-subtracted Polaris image on
the other hand. First, we discuss the case of the Polaris original
image.

Figure 4b shows the total power spectrum of the Polaris
image in Fig. 4a, which includes a population of synthetic fil-
aments with a log-normal distribution of contrasts, δc. In Fig. 4,
the range of contrast values in the synthetic distribution varied
in the range 0.3 < δc < 2.0 with a peak at δpeak ∼ 0.9. The
weighted average of the contrast over the length of the simu-
lated filaments is 〈δc〉 ∼ 0.85. In Fig. 4a, the synthetic fila-
ments are clearly visible against their local background. The best
power-law fit to the power spectrum (red curve) has a logarith-
mic slope γ=−2.7± 0.1, slightly steeper than the slope of the
Polaris original image. The vertical dashed line marks the angu-
lar frequency, kfil = Γ ∼ (0.6/θfil) ∼ 0.24 arcmin−1, correspond-
ing to the characteristic angular width of the synthetic filaments,
θfil = 147′′ (i.e., 0.1 pc at d = 140 pc). Comparison of Figs. 4b
and 3b shows that the synthetic filaments contribute an insignif-
icant amount of power around kfil = 0.24 arcmin−1, which can
hardly be detected without prior knowledge of the power spec-
trum of the original ISM image. Figure 4c plots the normalized
residuals between the best power-law fit and the power spectrum
data, [PBest−fit(k)−PPolaris(k)]/PPolaris(k), as a function of angular
frequency. These residuals (red filled circles) can be compared
with the residuals obtained with the original image, represented
by black triangles in both Figs. 3c and 4c. Again, no clear sig-
nature of the presence of synthetic filaments can be detected
despite the fact that they have a characteristic width.

Now let us investigate the power spectrum of each compo-
nent more closely to understand the absence of any detectable
signature in the total power spectrum. The blue curve and the
green dashed curve in Fig. 4b show the power spectrum of the
synthetic filament image and that of the original image, respec-
tively. Note that the power spectrum of the filament image,
Pfil(k), is lower than the power spectrum PPolaris(k) at k = kfil
by a factor of ∼5. This is because the population of synthetic
filaments only have moderate area filling factor (Afil ∼ 3.2%)
and contrast (〈δc〉 ∼ 0.85). In this experiment, the product of
the area filling factor with the square of the column density
contrast (Afil δ

2
c ∼ 0.02) was in agreement with the real fila-

ments observed in Polaris (which have Afil 〈δc〉
2 ∼ 0.01 – cf.

Arzoumanian et al. 2019). The additional power introduced by
the synthetic filaments is not localized in the vicinity of kfil but
rather spread out at angular frequencies k . kfil, following a shal-
low power-law, whereas the power at high angular frequencies at
k > kfil drops sharply. Given the choice of δc and Afil made here,
the relative contribution of filaments to the total power spectrum,
Pfil(k)/PPolaris(k) is highest in the vicinity of kfil, but too small to
create any detectable feature in the power spectrum.

When the contrast and/or filling factor of the synthetic
filaments is gradually increased, the spectral imprint in the
resulting power spectrum becomes more and more pronounced.
Figure B.2a shows a simulated image including a population of
synthetic 0.1 pc filaments with contrast δc ∼ 1.1 and area fill-
ing factor Afil ∼ 7.2%. This is quite an extreme scenario for
a non-star-forming molecular cloud with low column density
such as Polaris. Figure B.2b shows the corresponding power
spectra, which should be compared to those in Fig. 4b. It can
be seen that the amplitude of the synthetic power spectrum in
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Fig. 4. Same as Fig. 3 but for a 250 µm image with an additional popu-
lation of synthetic filaments. The population of synthetic filaments has
a lognormal distribution of contrasts in the range 0.3 < δc < 2.0 with
a broad peak around δpeak ∼ 0.9. The overall area filling factor of the
synthetic filaments is Afil ∼ 3% and the δ2

c Afil parameter (see Sect. 3)
is 0.023. Panel b: solid black curve shows the total power spectrum of
the original Polaris image plus synthetic filaments. The best-fit power-
law (red curve) has γ=−2.7± 0.1, slightly steeper than the slope of
the original power spectrum of the Polaris image shown by the dashed
green curve. The blue curve is the power spectrum of the image contain-
ing only synthetic filaments. Panel c: black triangles are the same as in
Fig. 3c and the red dots show the residuals between the best-fit power-
law model and the power spectrum of the image including synthetic fil-
aments. The χ2

variance of the residuals between kmin < k < 1.5 kfil is 0.037.
The vertical dashed line marks the angular frequency kfil ∼ (0.6/θfil)
corresponding to the characteristic ∼0.1 pc width of the synthetic
filaments.

Appendix B (with contrast 〈δc〉 ∼ 1.1 and Afil ∼ 7.2%) is higher
by a factor of 3 to 4 than the amplitude of the power spec-
trum of Fig. 4b (with contrast 〈δc〉 ∼ 0.85 and Afil ∼ 3.2%),
mostly due to the increase in the combination of contrast param-
eter and area-filling factor 〈δc〉

2 Afil between the two simulations
[∼(1.1/0.85)2 × (7.2/3.2)(∼3.7)]. The red curve in Fig. B.2b
shows the best power-law fit which has a logarithmic slope
γ = −2.96 ± 0.1. At k . kfil, there is a significant enhance-
ment of power due to the fact the synthetic filament power spec-
trum Pfil(k) is now comparable to the Polaris power spectrum

PPolaris(k) at k . kfil. Accordingly, in this case, the residuals
between the best power-law fit and the total power spectrum data
depart significantly from zero at k . kfil (cf. Fig. B.2c). It is to
be borne in mind, however, that the population of synthetic fila-
ments used in Appendix B have much higher contrast and area
filling factor than the actual filaments of the Polaris cloud (com-
pare Figs. B.2a and 3a).

4.3. Effect of synthetic filaments on the power spectrum of
the filament-subtracted image

So far we have explored the response of the power spectrum
to a synthetic population of filaments injected into the original
Herschel image, which itself includes emission from real fila-
mentary structures. It is instructive to assess the extent to which
the real filaments present in the image may reduce the rela-
tive contribution of synthetic filaments. In order to evaluate this
we adopted two approaches – first, we subtracted the emis-
sion of at least the most prominent real filamentary structures
from the Polaris 250 µm image using the getfilaments algorithm
(Men’shchikov 2013, see Fig. B.1b for the resulting filament-
subtracted image) and then repeated the same experiment as
described in Sect. 4.1. Second, we examined the effect of fila-
ments embedded in a typical scale-free synthetic cirrus images
(see Appendix C). In order to be consistent, we used the same
population of synthetic filaments as in Sects. 4.1 and 4.2.

Figure 5 summarizes the effect of the synthetic 0.1 pc fila-
ments on a background image which is essentially devoid of real
filamentary structures. Although the logarithmic power-spectrum
slope of the background image is shallower (γbkg = −2.5) than
that of the Polaris original image (γobs = −2.7), the overall mor-
phology remains the same. In particular, the power spectrum of the
synthetic filament component is still significantly lower than the
total power spectrum of the background image, even though the
power arising from real filaments has been subtracted from that
image. The χ2

variance of the filament-subtracted background image
is 0.04, very close the χ2

variance value obtained for the Polaris orig-
inal image. Moreover, there is still no clear signature of the pres-
ence of synthetic filaments in the residuals plot (Fig. 5c). Similar
conclusions were reached in Appendix C in the case of synthetic
filaments added to a purely synthetic background image.

5. Exploring the parameter space with simulations
in the Aquila cloud

The Aquila molecular cloud harbors a statistically significant
number of filaments with a wide range of filament column den-
sity contrasts (Könyves et al. 2015; Arzoumanian et al. 2019),
allowing us to derive a realistic distribution of contrasts which
can then be used for constructing more realistic populations of
synthetic filaments.

5.1. Observed filament properties in Aquila

In contrast to the Polaris cloud, the Aquila molecular cloud is an
active star forming complex at a distance5 of 260 pc, including
several supercritical filaments (André et al. 2010; Könyves et al.
2015). Figure 6a shows the Herschel/SPIRE 250 µm image of the

5 The distance of the Aquila cloud is uncertain, with values ranging
from 260 pc to 414 pc in the literature. Assuming the upper distance
value would push kfil toward higher angular frequencies in Fig. 6b and
c, making the detection of the 0.1 pc scale even more difficult in the
power spectrum.
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Fig. 5. Same as Fig. 4 for synthetic filaments added to a filament-
subtracted image of Polaris obtained with getfilaments (Men’shchikov
2013). The population of synthetic filaments is the same as that in Fig. 4.
Panel b: green dashed line shows the best power-law fit to the power
spectrum of the filament-subtracted background image of Polaris (with
no synthetic filaments), which has a slope of γ=−2.4± 0.1. The solid
black curve shows the total power spectrum of the filament-subtracted
image plus synthetic filaments. The best-fit power-law (red curve) has a
slope of γ=−2.5± 0.1, slightly steeper than the slope of the power spec-
trum of the filament-subtracted background image (dashed green curve).
The blue curve is the power spectrum of the image containing only syn-
thetic filaments. Panel c: black triangles are the same as in Fig. 3c and
the red dots show the residuals between the best-fit power-law model
and the power spectrum of the image including synthetic filaments. The
χ2

variance of the residuals between kmin < k < 1.5 kfil is 0.034. The vertical
dashed line marks the angular frequency kfil ∼ (0.6/θfil) corresponding
to the characteristic ∼0.1 pc width of the synthetic filaments.

Aquila cloud, which covers a projected sky area of 3.4◦ × 3.2◦.
The corresponding power spectrum is shown in Fig. 6b.

As part of a systematic analysis of filament properties in
nearby clouds based on HGBS data, Arzoumanian et al. (2019)
took a census of filamentary structures in Aquila. They obtained
a distribution of filament column density contrasts which can
be conveniently approximated by the two-segment power law
shown in Fig. 7: dN/dlog(δc)∼ const for 0.3 ≤ δc ≤ 1, and
dN/dlog(δc)∼ δ−1.5

c for 1 ≤ δc ≤ 4. This observed distribution
of filaments contrasts has a peak around δ

peak
c ∼ 1 and spans

Fig. 6. Panel a: Herschel/SPIRE 250 µm image of the Aquila cloud
at the native resolution of 18.′′2. Panel b: noise-subtracted and beam-
corrected power spectrum of the image shown in panel a over the range
of angular frequencies 0.025 arcmin−1 < k < 2 arcmin−1 (black curve).
The red curve shows the best fit power-law model over this frequency
range, which has a logarithmic slope γ = −2.26 ± 0.1. The verti-
cal dashed line marks the angular frequency kfil ∼ (0.6/θfil−width) ∼
0.45 arcmin−1 corresponding to a filament width of θfil−width =79 ′′
(FWHM), i.e., 0.1 pc at a distance of 260 pc. Panel c: residuals between
the best power-law fit and the power spectrum data points (triangle
symbols). The χ2

Variance of the residuals between kmin < k < 1.5 kfil is
∼0.045.

a broad range from low δc ∼ 0.3 values to fairly high δc ∼ 4
values. The weighted average column density contrast of the
filaments observed in Aquila is 〈δc〉 ∼ 1, and their area fill-
ing factor is Afil ∼ 3%. While the census of filaments obtained
by Arzoumanian et al. (2019) may be affected by incomplete-
ness issues for low-contrast6 (δc � 1) filaments, it should be
essentially complete for high-contrast (δc & 1) supercritical
filaments.

6 Given the fact that the amplitude of a power spectrum ∝δ2
c , unde-

tected filaments (with low contrasts) below the completeness level will
not have any significant effect on the net amplitude of synthetic fila-
ments power spectrum.
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Fig. 7. Two-segment power-law approximation (black solid lines) to the
distribution of filament column density contrasts observed in the Aquila
molecular cloud (Arzoumanian et al. 2019): dN/dlog(δc) ∼ const for
0.3 ≤ δc ≤ 1, and dN/dlog(δc) ∼ δ−1.5

c for 1 ≤ δc ≤ 4. The vertical
dotted line marks the average filament contrast 〈δc〉 ∼ 1. The overplot-
ted histogram shows the distribution of column density contrasts for the
population of 100 synthetic filaments used in the simulation of Sect. 4.

5.2. Effect of a synthetic population of filaments on the power
spectrum

Using a methodology similar to that employed in Sect. 4 for
Polaris, we added a population of synthetic filaments with fixed
0.1 pc width to a filament-subtracted Herschel image of the
Aquila region at 250 µm. The distribution of column density con-
trasts7 for the synthetic filaments was constructed to be consis-
tent with observations and is represented by the histogram in
Fig. 7. The weighted mean contrast of the whole population of
synthetic filaments was 〈δc〉 ∼ 0.96. Like in the Polaris case,
the background image was obtained from the Herschel/SPIRE
250 µm of the Aquila cloud image after removing observed fil-
aments using the getfilaments algorithm (Men’shchikov 2013).
The resulting synthetic image is shown in Fig. 8a. Figure 8b
shows the power spectrum of each component in the synthetic
image: the blue curve corresponds to the contribution of the syn-
thetic filament distribution, while the black curve is the total
power spectrum of the Aquila background plus filament image.

It can be seen in Fig. 8b that the amplitude of the power
spectrum arising from the population of synthetic filaments (blue
curve) is lower than the amplitude of the power spectrum of the
Aquila original image (green dashed curve) by a factor of ∼5 at
k ∼ kfil ∼ (0.6/θfil) ∼ 0.45 arcmin−1, corresponding to the char-
acteristic angular width of the synthetic filaments, θfil = 79′′ (i.e.,
0.1 pc at d = 260 pc). Clearly, the power contribution of the syn-
thetic filaments is not strong enough to be detected in the power
spectrum. The residuals of the best power-law fit with respect
to the power spectrum of the Aquila original image are shown
as black triangles in Fig. 8c as a function of angular frequency.
The red solid circles in Fig. 8c represent similar residuals for
the Aquila background plus synthetic filament image. Based on
this simulation, we conclude that the injection of a population

7 The column density contrasts of cold molecular filaments are some-
what higher than their surface brightness contrasts at 250 µm. To be on
the conservative side, we used the observed distribution of column den-
sity contrasts for constructing synthetic filaments in the 250 µm images.
The actual surface brightness contrasts are actually lower than what we
assumed here.

Fig. 8. Same as Fig. 6 but for a simulated image including a popula-
tion of synthetic filaments with a realistic distribution of column density
contrasts (see Fig. 7) added to a filament-subtracted image of the Aquila
cloud. Panel a: simulated image. The weighted average contrast 〈δc〉 of
the distribution of synthetic filaments is 0.96 and the total area covering
factor Afil is 5.5%, leading to δ2

c Afil ∼ 0.051. Panel b: power spectrum
of the simulated image (black solid curve). The red curve corresponds
to the best power-law fit with γ = −2.3 ± 0.1. For comparison, the
best power-law fit to the power spectrum of the Aquila original image
is over-plotted as a green dashed line. Panel c: residuals between the
best power-law fit and the power spectrum of the simulated image (red
solid circles). The χ2

Variance of the residuals is ∼0.054 For comparison,
the black filled triangles show similar residuals for the Aquila original
image (cf. Fig. 6c).

of synthetic filaments with a distribution of column density con-
trasts similar to that observed in the real Aquila image does not
have any significant effect on the shape of the power spectrum.

In Appendix B, we also explore a more extreme case where
the distribution of column density contrasts for the injected syn-
thetic filaments is similar in shape to the distribution shown in
Fig. 7, but with higher mean contrast 〈δpeak

c 〉 = 2.7 and maxi-
mum contrast δmax

c = 15. In this extreme case, the population
of synthetic filaments is strong enough to produce a detectable
signature in the resulting power spectrum.
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Fig. 9. Left panel: Herschel/SPIRE 250 µm image of the B211/B213 region in Taurus at the native beam resolution of 18.2′′, but rotated in
equatorial coordinates in clockwise direction by 37.4◦. (see Palmeirim et al. 2013). Right panel: fully synthetic image mimicking the main features
of the real image shown in the left panel, and resulting from the co-addition of a synthetic filament image and a synthetic background image.
The synthetic filament image was based on the Plummer-like model of the B211 filament reported by Palmeirim et al. (2013): flat inner radius
Rflat = 0.035 pc, contrast δc ∼ 6, and power-law index p = 2 at large radii. The background image was modeled as non-Gaussian cirrus fluctuations
with a logarithmic power spectrum slope of −3 (see text for details), plus low-contrast filamentary structures resembling striations. The synthetic
striations were placed such that their long axis is perpendicular to the main filament at a regular separation of 0.1 pc.

6. Power spectrum of synthetic data with a single,
prominent filament

We also examined the power spectrum of an image with a single
dominant filament such as the Herschel/SPIRE 250 µm image
of the B211/B213 region in the Taurus cloud at d ∼ 140 pc
(Fig. 9a)8. For the present purpose, we only used a 1.2◦ × 1.0◦
portion of the original SPIRE image of B211/B213, where a sin-
gle filament dominates over a length scale of >1.5◦ (or >4 pc).
Palmeirim et al. (2013) studied the column density structure of
the B211/B213 filament in detail and found that it is accurately
described by a Plummer-like cylindrical density distribution with
flat inner radius Rflat ∼ 0.035 pc and power-law index p = 2±0.2
at larger radii up to an outer radius Rout ∼ 0.4 pc. Moreover,
Palmeirim et al. (2013) suggested that the Taurus main filament
accretes mass from the ambient cloud through a network of
lower-density striations, observed roughly perpendicular to the
main filament. Based on these findings, we constructed a syn-
thetic image of a Plummer-like filament of length ∼4 pc, with
the same Plummer parameters as quoted above, and positioned
horizontally in a ∼1.5◦ × 1.5◦ two-dimensional box. The con-
trast of the synthetic filament was chosen to be δc ∼ 6, a value
close to the observed contrast of the B211/B213 filament in
the SPIRE 250 µm image (see Palmeirim et al. 2013). To mimic
the observations, we added a population of synthetic cores with
Bonnor-Ebert-like radial profiles randomly distributed along the
filament. The flat inner radius Rflat of the cores was fixed to a con-
stant value of 0.02 pc. In order to create a synthetic background
image similar to the real data, we carefully studied the statisti-
cal properties of the Herschel 250 µm image in the vicinity of
the Taurus main filament. We selected a rectangular field to the
north of the B211/B213 main filament such that the nearest edge
of the field was at least 0.2 pc away from the filament crest. We
then evaluated the power spectrum of this field and found a log-
arithmic slope γ ∼ −3.0 ± 0.2. A purely synthetic background
image was next generated using a non-Gaussian fractional Brow-

8 In order to capture the largest possible rectangular area, we rotated
the SPIRE map by 37.4◦ in the clockwise direction with respect to an
equatorial frame.

nian motion (fBm) technique (Miville-Deschênes et al. 2003)
with positive values and statistics such that the power spec-
trum of the background field had a logarithmic slope simi-
lar to that of the Taurus background field (γback = −3.0). To
make the synthetic background image more similar to the Taurus
observations, we also inserted a distribution of lognormally dis-
tributed low-contrast (0.1< δc < 0.5) filamentary structures with
Gaussian profiles perpendicular to the main filament as a proxy
for the observed striations. We placed perpendicular striations
at a regular separation of ∼0.1 pc to match the observations of
Tritsis & Tassis (2018). The width of these synthetic striations
was fixed to 0.08 pc.

The final image, obtained after co-adding all three synthetic
image components (background, striations, and main filament
with embedded cores), is shown in Fig. 9b. For reference and
comparison with the synthetic data discussed in Sects. 4 and 5,
this image has δ2

c Afil ∼ 0.125. Figure 10 compares the power
spectrum of the synthetic image (red curve) with that of the
Herschel/SPIRE 250 µm image (black solid curve). The vertical
dashed line in Fig. 10 marks the angular frequency kfil correspond-
ing to a linear scale of∼0.1 pc, i.e., roughly the inner width of both
the synthetic filament and the B211/B213 filament. Clearly, like
for the other two regions considered in this paper, the power spec-
trum of the Taurus B211/B213 data does not reveal any “kink” or
“break” at frequencies close to kfil. Furthermore, this is also the
case for the synthetic data of Fig. 9b, despite the presence of a
prominent cylindrical filament with ∼0.1 pc inner diameter. This
further illustrates how the characteristic scale of embedded struc-
tures may be hidden and undetectable in a global power spectrum.

7. Combined effect of filament contrast and area
filling factor

In order to further explore the dependence of the total power spec-
trum on filament contrast and area filling factor, we performed
two separate grids of 20× 20 Monte-Carlo simulations based on
two different sets of synthetic filament populations, one with
Gaussian radial profiles and the other with Plummer-like profiles
with p = 2 (see Appendix A). The simulated images spanned a
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Fig. 10. Comparison of the power spectrum of the Herschel/SPIRE
250 µm image of Fig. 9a (black solid curve) with that of the synthetic
image of Fig. 9b (red curve). Note the absence of any significant feature
around k ∼ kfil (vertical dashed line) in both power spectra.

broad range of average filament contrasts 〈δc〉 and filling factors
Afil. In practice, we injected a fixed number of synthetic filaments
of 0.1 pc width in the Herschel/SPIRE 250 µm image of Polaris
and controlled the area filling factor by varying the length of the
filaments. For each realization, we then calculated the χ2

variance of
the residuals between the best power-law fit and the net output
power spectrum, as described in Sect. 3.

Figure 11 summarizes the dependence of χ2
variance on 〈δc〉

2 and
Afil for Gaussian synthetic filaments. The map of the χ2

variance as a
function of 〈δc〉

2 and Afil is qualitatively similar for Plummer-like
synthetic filaments. Figure 12 shows that there is a tight corre-
lation between χ2

variance and 〈δc〉
2 × Afil for both Gaussian (black

solid circles) and Plummer-like filaments (gray solid squares),
as expected from Eq. (12). In both cases, χ2

variance appears to be
a non-linear function of δ2

c Afil, with a flat portion at low δ2
c Afil

values (i.e., δ2
c Afil . 0.02 for Gaussian filaments, δ2

c Afil .
0.07 for Plummer-like filaments), a rising portion at higher δ2

c Afil
values, with an inflection point close to δ2

c Afil ∼ 0.1 in the
Gaussian case and δ2

c Afil ∼ 0.4 in the Plummer case (see Fig. 12).
It can also be seen that, for the same value of δ2

c Afil, the χ2
variance is

lower for Plummer synthetic filaments than for Gaussian synthetic
filaments9.

Qualitatively, this behavior may be understood as follows.
At low δ2

c Afil . 0.02 values (or δ2
c Afil . 0.07 for Plummer-like

filaments), the contribution of synthetic filaments to the total
power spectrum is negligible, and χ2

Variance is dominated solely
by the residuals of the original background image. There-
fore, χ2

variance retains the value χ2
variance,bkg it has for the orig-

inal image and remains constant despite the addition of syn-
thetic filaments. As δ2

c Afil increases, the χ2
variance for both

Gaussian and Plummer filaments also increases, reaching a value
of about 3 × χ2

variance,bkg ∼ 0.1 at δ2
c Afil ∼ 0.1 (Gaussian case) or

0.4 (Plummer case). We take these values of δ2
c Afil as fiducial

limits for the detection of a characteristic filament width in the
image power spectrum for Gaussian- and Plummer-shaped fila-
ments, respectively. These fiducial detection limits are marked
by black and gray vertical dashed lines in Fig. 12.

To put the simulation results shown in Figs. 11 and 12 in con-
text, we recall that the Polaris simulation of Fig. 5a in Sect. 3 had

9 A Plummer-like filament with p . 2.6 contributes less power to the
power spectrum at low angular frequency than a Gaussian filament with
similar inner width and contrast (see Fig. 2b). Therefore, at k < kfil,
Plummer-like filaments with p . 2.6 lead to a lower overall χ2

Variance
compared to Gaussian filaments.

Fig. 11. Map of the χ2− variance of the residuals between the best
power-law fit and the output power spectrum as a function of column
density contrast (δc) and area filling factor (Afil) in a grid of simulations
based on a set of 20 × 20 populations of Gaussian synthetic filaments,
all 0.1 pc in width (see text of Sect. 7 for details). The white solid curve
marks the fiducial limit δ2

c Afil = 0.1 above which the effect of the char-
acteristic filament width can be detected in the power spectrum (see
Fig. 12 below). The white plus and cross symbols mark the positions of
the observed populations of filaments in the Aquila and Polaris clouds,
respectively (cf. Arzoumanian et al. 2019).

δ2
c Afil ∼ 0.018 and χ2

variance of 0.034 (see Fig. 4c), which is nearly
the same as the observed χ2

variance,bkg ∼ 0.04 (see Fig. 3). This par-
ticular simulation is marked by a blue triangle in the χ2

variance–
δ2

c Afil plot of Fig. 12. The more extreme Polaris simulation pre-
sented in Fig. B.2a, for which there is a marginal detection of
a characteristic scale in the residuals plot (see Fig. B.2c), has
δ2

c Afil ∼ 0.087 and χ2
variance ∼ 0.08 (see red triangle in Fig. 12).

Likewise, the blue and red square symbols in the χ2
variance– δ2

c Afil
plot of Fig. 12 mark the positions of the two sets of Aquila sim-
ulations presented in Figs. 8 and B.3, respectively.

The red square in Fig. 12 has δ2
c Afil ∼ 0.27 (and χvariance ∼

0.28), significantly above the fiducial detection limit of 0.1, indi-
cating that the signature of a characteristic filament width should
be detectable in the power spectrum. This is indeed confirmed
by visual inspection of Fig. B.3b and c. Most importantly, for
both Polaris and Aquila, the real Herschel data lie in a por-
tion of the χ2

variance– δ2
c Afil diagram where the filament contri-

bution has a negligible impact on the power spectrum (see cross
and plus symbols in Figs. 11 and 12). Also shown as a green
filled circle in Fig. 12 is the locus of the Herschel data for the
prominent filament system B211/B213 in Taurus (see Sect. 6),
which has a very well characterized Plummer-like density pro-
file with a power-law wing index p = 2 ± 0.2 (Palmeirim et al.
2013). It can be seen that the position of the Taurus B211/B213
data in Fig. 12 is in excellent agreement with our set of simu-
lations for Plummer-shaped filaments with p = 2. Although the
δ2

c Afil ∼ 0.125 value of the Taurus B211/B213 data is greater
than the fiducial threshold for Gaussian filaments, it remains
much lower than the fiducial detection limit for Plummer (p = 2)
filaments.

We conclude that the essentially scale-free power spectrum
of the Herschel images observed toward molecular clouds such
as Polaris, Aquila, or Taurus does not invalidate the existence of
a characteristic filament width.
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Fig. 12. χ2
Variance of the residuals between the best power-law fit and the

output power spectrum as a function of δ2
c Afil. The black solid circles rep-

resent the same set of simulations with Gaussian filaments as in Fig. 11.
The light gray squares represent our set of simulations with Plummer-
like (p = 2) filament profiles. The corresponding black and gray curves
are polynomial fits to guide the eye. The black and gray vertical dashed
lines mark the fiducial limits of δ2

c Afil ∼ 0.1 and δ2
c Afil ∼ 0.4 above which

Gaussian-shaped and Plummer-shaped filaments become detectable in
the residual power spectrum plot, respectively. The green cross, plus, and
solid circle symbols mark the positions of the Polaris, Aquila, and Tau-
rus clouds, respectively, based on the comprehensive study of filament
properties by Arzoumanian et al. (2019).

8. Summary and conclusions

We used numerical experiments to investigate the conditions
under which the presence of a characteristic filament width can
manifest itself in the power spectrum of cloud images. Our main
findings and conclusions may be summarized as follows:
1. The detectability of a characteristic filament scale in the

power spectrum of an ISM dust continuum image primarily
depends on the parameter δ2

c Afil, where δc is the weighted
average column density contrast of the filamentary struc-
tures and Afil their area filling factor in the image. A value
δ2

c Afil ' 0.1 is required for the presence of a characteristic
filament width to produce a significant signature in the power
spectrum.

2. The Herschel Gould Belt survey images of nearby clouds
typically have δ2

c Afil � 0.1 and therefore lie in a region of
the parameter space where filaments have a negligible impact
on the power spectrum. Therefore, despite recent claims, the
scale-free nature of the observed power spectra remains con-
sistent with the presence of a characteristic filament width
∼0.1 pc.

3. When the average filament contrast is low and/or when the
filaments occupy a small area filling factor, the power spec-
trum is dominated by the fluctuations of the diffuse, non-
filamentary component of the ISM.

4. Although a few filaments in the Polaris cloud have column
density contrasts up to δc ∼ 0.9, their area filling factor is
extremely low Afil ∼ 2%, resulting in a combined parame-
ter δ2

c Afil ∼ 0.01 for Polaris. The overall power spectrum of
the Herschel images of Polaris is scale-free because the fil-
aments are not contributing enough power to produce a sig-
nificant signature at the spatial frequency corresponding to
the characteristic filament width of ∼0.1 pc.

5. Despite the presence of several supercritical filaments of
∼0.1 pc inner width in the Aquila cloud, the power spectrum
of the Aquila Herschel images is also essentially scale free.
Due to the larger distance of the Aquila cloud compared to
Polaris, ∼0.1 pc filaments in Aquila subtend a smaller angu-

lar width scale on the sky, and therefore have a relatively
low area filling factor. Overall, our simulations suggest that
the observed population of Aquila filaments contributes only
∼1/5 of the total amplitude of the power spectrum of the
Herschel 250 µm image.

6. Supercritical filaments with Plummer-like profiles and high
column density contrasts lead to relatively small departures
from a power-law power spectrum because the high contrast
of the flat inner plateau in the density profile is compensated
by broad power-law wings at large radii. The B211/B213 fil-
ament system in Taurus, for example, despite having a very
high central column density contrast, remains largely unde-
tected in the image power spectrum because of its Plummer-
like density profile with p ≈ 2.

7. We conclude that the scale-free appearance of the power
spectra of cloud images does not invalidate the finding, based
on detailed Herschel studies of the column density profiles,
that nearby molecular filaments have a common inner width
∼0.1 pc (Arzoumanian et al. 2011, 2019).
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Appendix A: Construction of synthetic filaments
with Plummer-like density profiles

Fig. A.1. Image of a synthetic filament with a Plummer-like transverse
density profile with a flat inner radius, Rflat = 0.03 pc, and a power-
law wing with index p = 2, projected at a distance of 140 pc. In this
example, the level of filament contrast was adjusted to δc ∼ 10.

We adopted a slightly different technique to produce filaments
with Plummer profiles compared to the convolution technique
used to generate filaments with Gaussian profiles (see Sect. 2).
A Plummer-like transverse profile was first constructed using the
expression

KPlummer(r) =
C[

1 + (r/Rflat)2
](p−1)/2 , (A.1)

where Rflat is the flat inner width and p is the logarithmic slope
of the power-law wing at large radii (r >> Rflat). In order to sup-
press the strong edge effect at the two ends of the model filament,
we tapered both edges with a Gaussian function. Figure A.1
shows an example of synthetic filament with a Plummer pro-
file p = 2 and Rflat = 0.1 pc, similar to the Taurus B211 filament
(Palmeirim et al. 2013). The power spectra of synthetic filaments
with Plummer-like density profiles are discussed in Sect. 2.

Appendix B: Effect of extreme filament contrasts
and area filling factors on the power spectrum

Figures B.2 and B.3 illustrate the consequences of adding pop-
ulations of synthetic filaments with very high column density
contrasts on the total power spectra of Polaris and Aquila,
respectively. Figure B.2a displays the Herschel 250 µm image
of the Polaris cloud populated with a set of high-contrast fila-
ments with δc ∼ 1.1. The number of synthetic filaments was
fixed to 100 and the distribution of synthetic filament lengths
was adjusted so that the overall area filling factor was around
Afil ∼ 7%. In this case, the synthetic filaments contribute a level
of power (blue curve) almost equivalent to the power spectrum
of the Polaris original image (cf. dashed green curve). This leads
to an enhancement of power in the total power spectrum, which
can be clearly seen in the residuals plot (red filled circles in
Fig. B.2c). The χ2− variance of the residuals of the power-law

Fig. B.1. Comparison of the Herschel/SPIRE 250 µm image of
Polaris at the native beam resolution of 18.2′′ (panel a –see
Miville-Deschênes et al. 2010) with the filament-subtracted image of
the same field, panel b obtained with the getfilaments algorithm
(Men’shchikov 2013) and used as a “filament-free” background image
in the numerical experiments shown in Figs. 5 and B.2.

fit in the angular frequency range of kmin < k < 1.5 kfil is about
seven times larger than the χ2− variance metric for the Polaris
original image.

In the Aquila case, we created a population of 100 syn-
thetic filaments rescaling the observed distribution of column
density contrasts as shown in Fig. B.4. The maximum contrast
sampled in the distribution was increased to δmax

c = 15 (com-
pared to ∼3 in the original contrast distribution), and the peak
of the distribution was shifted to δ

peak
c ∼ 2 compared to 1 in

the original distribution. The average contrast level of the syn-
thetic filaments was about 2.2 and their area filling factor was
as high as 5.5%. The resulting image obtained after adding this
population of synthetic filaments to the Aquila original image is
shown in Fig. B.3a. The power contribution due to the synthetic
filaments, shown by the blue curve in Fig. B.3b, is significantly
higher than the power spectrum amplitude of the Aquila orig-
inal image (dashed green curve). Accordingly, the total power
spectrum, [Pfil(k) + PAquila(k), solid black curve in Fig. B.3b]
is amplified at angular frequencies k . kfil. A strong devia-
tion in the residuals plot (red symbols in Fig. B.3c) can also be
seen.
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Fig. B.2. Same as Fig. 5 but for a population of synthetic filaments with
higher column density contrasts δc ∼ 1.1, resulting in δ2

c Afil ∼ 0.087.
(The area filling factor is similar to that in Fig. 4, Afil ∼ 7.2%.) Panel b:
note how the amplitude of the power spectrum due to the synthetic fil-
aments (blue curve) is comparable to that of the power spectrum of the
Polaris original image (see green dashed line and Fig. 3). The loga-
rithmic slope of the total power spectrum P(k)fil + P(k)Polaris is −2.96.
Panel c: residuals between the best power-law fit and P(k)Polaris+fil (red
solid circles) shows a peak near kfil ∼ 0.24 arcmin−1. In this simula-
tion, the χ2

variance is 0.08, close to the fiducial detection limit δ2
c Afil ∼ 1

introduced in Sect. 7 (see Fig. 12).

Fig. B.3. Same as Fig. 8 but for a population of synthetic filaments
with a more extreme (and unrealistic) distribution of column density
contrasts corresponding to 〈δc〉 ∼ 2.2 (see Fig. B.4) and an area filling
factor Afil ∼ 5.5%, resulting in a combined parameter δ2

c Afil ∼ 0.27.
Panel b: note how the power spectrum arising from the synthetic fil-
ament population (blue curve) dominates over the power spectrum of
the Aquila original image (see green dashed curve and Fig. 6). The log-
arithmic slope of the best power-law fit to the total power spectrum
P(k)fil + P(k)Aquila is −2.6 (red line). Panel c: residuals between the
best power-law fit and P(k)Aquila+fil (red solid circles) shows a peak near
kfil,Aquila = 0.45 arcmin−1. For this simulation, the χ2

Variance of the residuals
is 0.28.
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Fig. B.4. Two-segment power-law distribution of synthetic filaments
contrasts adopted in the Aquila simulations of Appendix B. The dis-
tribution ranges from 0.3 to 15 and leads to a weighted average contrast
of ∼2.2, significantly higher than in Fig. 7.

Appendix C: Effect of filaments embedded in a
scale-free synthetic background

We also generated a purely synthetic background image using
the non-Gaussian fractional Brownian motion (fBm) technique
of Miville-Deschênes et al. (2003), in such a way that the
resulting power spectrum had a logarithmic slope γ = −2.7,
mean brightness of the fluctuation ∼17 MJy/sr, and a standard
deviation of 10 MJy/sr, similar to the statistics observed with
Herschel in the Polaris field. On top of this scale-free image,
a population of synthetic filaments with a lognormal distribu-
tion of (δc) contrasts (similar to that observed in Polaris) was
added. The filaments had a Gaussian profile with an inner width
of 0.1 pc projected at a distance of 140 pc, similar to the distance
of the Polaris molecular cloud. They occupied an area-filling fac-
tor Afil ∼ 3% and had an average contrast δc ∼ 0.8. The result-
ing synthetic image after co-adding the fBm background image
and the synthetic filaments is shown in Fig. C.1a. Inspection of
the various components of the image power spectrum (shown in
Fig. C.1b) shows that the contribution of the synthetic filaments
to the global power spectrum is negligible and undetectable in
this case as well.

Fig. C.1. Purely synthetic image, made up of a scale-free back-
ground image constructed using the fBm algorithm (panel a; cf.
Miville-Deschênes et al. 2003). The embedded synthetic filaments have
a lognormal column density contrast distribution in a range between
0.3 < δc < 2 and peak of δpeak ∼ 0.9. The overall area-filling
factor of the filaments is Afil ∼ 3%. The filaments are of Gaus-
sian profiles with a FWHM ∼0.1 pc at a distance of 140 pc (see text).
Panel b: solid black curve shows the power spectrum of the scale-free
background image and the synthetic filaments. The logarithmic slope
of the power-spectrum is γ ∼ −2.7 ± 0.1. The dashed curve shows the
power spectrum of the background image (γ ∼ −2.8). The blue solid
line shows the power spectrum of the synthetic filaments. Panel c: resid-
uals between the best power-law fit and the power spectrum data points
(triangle symbols) of synthetic cirrus map. The χ2

Variance of the residuals
between kmin < k < 1.5 kfil is 0.03.
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