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a b s t r a c t

The primary goal of this work is to develop an efficient Monte-Carlo simulation of diffusion-weighted sig-
nal in complex cellular structures, such as astrocytes, directly derived from confocal microscopy. In this
study, we first use an octree structure for spatial decomposition of surface meshes. Octree structure and
radius-search algorithm help to quickly identify the faces that particles can possibly encounter during the
next time step, thus speeding up the Monte-Carlo simulation. Furthermore, we propose to use a three-
dimensional binary marker to describe the complex cellular structure and optimize the particle trajectory
simulation. Finally, a GPU-based version of these two approaches is implemented for more efficient mod-
eling. It is shown that the GPU-based binary marker approach yields unparalleled performance, opening
up new possibilities to better understand intracellular diffusion, validate diffusion models, and create dic-
tionaries of intracellular diffusion signatures.

� 2018 Elsevier Inc. All rights reserved.
1. Introduction

Diffusion-weighted nuclear magnetic resonance (DW-NMR),
including diffusion-weighted magnetic resonance imaging (DW-
MRI) and diffusion-weighted magnetic resonance spectroscopy
(DW-MRS), allows measuring the diffusive motion of molecules
(water or metabolites, respectively) along the applied magnetic
field gradient direction [1].

In biological tissues, the diffusion of molecules is usually
restricted (e.g. by cell membranes), hence molecular diffusion is
sensitive to underlying tissue microstructure [2,3]. In particular,
the mean squared displacement of molecules is smaller than in

the case of free diffusion (i.e. smaller than
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2dD0T

p
[4,5], where d

is the number of dimensions considered for the displacement, D0

is the intrinsic diffusion coefficient, and T is the diffusion time).
Linking DW-NMR signal to the underlying microstructure is

essential to non-invasively study biological tissues. Numerous
authors have been using simple geometrical models (such as
spheres, cylinders, for which analytical expressions describing dif-
fusion exist [6]) to estimate relevant structural parameters such as
axonal diameter and density based on DW-MRI [7–10] or neuronal
and glial fiber diameter based on DW-MRS [11]. However, due to
the complexity of realistic brain cells, analytical expressions do
not always exist. Instead, numerical study of molecular diffusion
can help to better understand the relationship between diffusion
and microstructure. Many numerical methods exist for that pur-
pose, such as solving the Bloch-Torrey equation [12] by using finite
difference method [13–16] or finite element method [17,18].
Another method relies on Monte-Carlo techniques [19] to simulate
the diffusive motion of molecules [20–24], which was for example
recently used to analyze DW-MRS data at long diffusion times and
extract long-range brain cell fiber structures [25].

One of the most critical limitations of numerical approaches is
that they can be highly time-consuming, in a way that scales with
the complexity of the geometry and the diffusion time. Some
works already investigate Monte-Carlo simulations in complex
models of biological tissue. For example, in [26], due to memory
limitation, the authors down-sampled high-resolution confocal
images and built the triangular mesh models of green asparagus
tissue based on these low-resolution images. Then they explored
the effect of mesh resolution on simulated signal to select the res-
olution minimizing computational time. However, geometry mod-
els reconstructed from down-sampled images ignore small
microstructural features and thus alter important characteristics
such as the surface-to-volume ratio. In [27], the authors used
another technique to reduce the computational time, where the
simulation domain was split into uniform subvolumes using a 3D
grid. Each subvolume contained a subset of surface meshes and dif-
fusing particles. Therefore, each diffusing particle needs to test the
interaction with the surface elements of the local subvolume
rather than with all surface elements. Like in [27], a polygon cache
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was used in [28] to speed up the estimation of the closest surface
elements likely to interact with particles. In addition, the simula-
tion times can be reduced by efficient parallelization on a CPU clus-
ter. However, it might be difficult for many research groups to
access large CPU clusters able to reduce computation times by sev-
eral order of magnitudes.

In this paper, we propose two methods for accelerating Monte-
Carlo simulations of diffusion. First, we use the octree structure
[29,30] to manage and accelerate the interaction of particles with
the surface. Octree structure and fixed radius search algorithms
allow quickly identifying triangular surface elements that particles
can possibly encounter (and undergo specular reflection on) during
the next time step. In the second method, instead of conventional
mesh-based structure representation, we use a 3D binary marker
to describe the complex cellular structure. This new approach is
expected to be much more efficient for handling collision with
membranes, as only one equality test is required. In this latter
method, the simple rejection method is used, like in some previous
works [21,24,31]. GPU-based versions are finally implemented for
acceleration of both methods.
2. Methods

2.1. Generation of astrocytic binary markers and astrocyte’s surface
triangular meshes

Brain slices from mice perfused intracardially with 4%
paraformaldehyde were used to acquire images of GFP expressing
astrocytes. Briefly, after perfusion, the brain was sliced on a Leica
razor vibratome, with 100-mm thickness. The slices were mounted
in Vectashield mounting medium for one day. The slices were then
scanned using a Leica SP8 confocal system equipped with a broad-
band white-light laser with an oil immersion objective 60x, 1.4
numerical aperture (NA). The white laser power was settled to
70%, the acquisition speed was 600 Hz, and the final image was
the result of an average of 4 laser scans. The confocal image reso-
lution is approximately 0.074 � 0.074 � 0.299 mm3. One cortical
protoplasmic astrocyte and one striatal fibrous astrocyte were
selected. Subvolume image of single astrocytes were cropped from
the confocal microscopy images. These volume images were used
for generating binary marker matrix based on the signal intensity
with dual threshold (lower and upper) level and an eighteen-
connectivity neighborhood. This segmentation method, called hys-
teresis [32], was implemented in Matlab (MathWorks Inc., Natick,
MA, United States). In the end, the structure is described by a 3D
matrix filled with 1 and 0, where 1 indicates that corresponding
voxel is inside the cell, while 0 indicates a voxel outside the cell.

The volume binary image above was also used for generating
the triangular surface mesh by using an open-source meshing tool-
box ‘‘iso2Mesh” [33] adapted with the cgalmesh [34] library via
volume-to mesh (vol2mesh) procedure. The typical astrocytic sur-
face consists of 5 � 105–1 � 106 surface elements.
2.2. Octree structure: spatial representation of astrocyte’s surface
triangular mesh

To manage and accelerate the interaction of particles with
astrocytic surface, we used an octree structure [29,30] to identify
faces that particles can encounter during the next time step. Octree
is a hierarchical data structure based on a recursive spatial space
decomposition of a 3D data. The root node is represented by a cube
(or rectangle box) containing whole data. Each node comprising
more than 32 data points (or some other value, depending on data
size) is divided into eight child-nodes. The circumcenter points and
the circumradii describe the astrocyte’s surface triangular mesh.
The circumcenter points are used as data to build the octree struc-
ture, and the circumradii information are used in the octree radius
search algorithm. More detail about the octree structure and rele-
vant information can be found on [30,35,36] and references
therein.

2.3. Binary matrix representation: conversion between voxel and real
world coordinates

The transformation from a position (i, j, k) in voxel coordinates
(volume image space, i.e. indices in the 3D binary matrix) to real
world coordinates (anatomical space) (x, y, z) is an affine transfor-
mation defined by

x ¼ i� rx þ x0;
y ¼ j� ry þ y0;

z ¼ k� rz þ z0;

where rx, ry and rz represents the image resolutions; (x0, y0, z0) is the
voxel origin’s position in real world space. For simplicity, we can
use (x0, y0, z0) = (0, 0, 0). The inverse transformation from a real
world coordinates system position (x, y, z) to a voxel coordinates
system position (i, j, k) can be determined by

i ¼ round
x
rx

� �
;

j ¼ round
y
ry

� �

k ¼ round
z
rz

� �
:

ð1Þ
2.4. Simulating DW-NMR signal in astrocytes

Throughout this paper, we focus on the DW-NMR signal from
isolated astrocytes by ignoring molecular diffusion in the extracel-
lular space. To compute that signal, we are using three-
dimensional Monte-Carlo simulation, as performed in previous
works [20–22,24,31,37]. The algorithm for generating trajectories
and the GPU implementation can be found in more detail in [24].
For the handling of the restriction during the particle random
walking, we are describing two different methods.

2.4.1. Method 1: in the octree structure representation
A set of N particles is initialized randomly inside the astrocyte

using point in polyhedron algorithm [38,39]. Monte-Carlo simula-
tion of the diffusion is performed very similar to the Camino sim-
ulator [22], i.e. at each time step each particle randomly moves

over a constant distance r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
6D0dt

p
along one random direction,

where dt is the time-step size. In case of interaction with a surface
element, the particle undergoes multiple specular reflections until
no further surface intersections are detected. The main difference
with Camino is the use of octree structure and radius search algo-
rithm (and eventually GPU implementation) for acceleration.

2.4.2. Method 2: in the 3D binary markers representation
Here we focus on the use of binary markers to accelerate the

Monte-Carlo simulation. First, a set of N particles is initialized ran-
domly inside the astrocyte. While the position of each particle is
randomly generated in real world coordinates system, it is con-
verted to voxel coordinates (voxel index) according to Eq. (1),
which then allows testing if the particle is inside the astrocyte
(i.e. the value of astrocytes’ binary marker for this voxel index
being equal to 1). If not, a new initial position is drawn. Then, for
each time step, the particle randomly moves over a constant dis-

tance r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
6D0dt

p
along one random direction, where dt is the
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time-step size as mentioned before. Again, the real world coordi-
nates position of the particle is transformed to voxel coordinates
and is then simply tested against astrocyte’s binary marker to
determine whether the new position is accepted (particle still
inside the astrocyte) or rejected (particle is outside the astrocyte).
If the position is rejected, then the particle’s movement during this
time step is canceled. This ‘‘rejection sampling” method was used
in previous works, such as [21,24,31]. As mentioned in these
works, the moving step size r must be taken much smaller than
the smallest geometric features. The principle of the Monte-Carlo
simulation in a binary marker is illustrated in 2D in Fig. 1.

In both methods, the DW-NMR signal was computed using the
phase accumulation approach. Briefly, the echo signal is calculated
according to

S ¼ 1
N

XN
j¼1

eichj ð2Þ

where i ¼
ffiffiffiffiffiffiffi
�1

p
, c is the gyromagnetic ratio, and

hj ¼
XNt

k¼1

Gk
xx

k
j þ Gk

yy
k
j þ Gk

zz
k
j

� �
dt ð3Þ

where Nt is the number of time steps, ðGk
x;G

k
y;G

k
zÞ and ðxkj ; ykj ; zkj Þ are

the gradient intensity and the position of the particle jth at the time-
step tk, respectively.

Particle trajectories can be simulated de novo for each diffusion
parameters set of gradient duration d, gradient separation D, and
b-value. Alternatively, we can generate particle trajectories for a
given random walk duration (d+D) and then use these trajectories
to simulate DW-NMR signals for multiple b-values obtained by
varying gradient strength [23], as we did for this study. This is
one advantage of the Monte-Carlo simulation method in compar-
Fig. 1. Example of one particle’s trajectory in 2D using binary marker representa-
tion. The cell (interface represented as a smooth black line) is voxelized, with the
cyan region standing for the intracellular space and the white region standing for
extracellular space. The particle starts at the red point ((2.25 mm, 2.25 mm) in real
world coordinates system, corresponding to (9, 9) in voxel coordinates system), and
then randomly moves over a constant distance r = 0.125 mm. The blue color
segments represent accepted steps. The red color segments represent rejected
steps. The particle stops after 100 steps (green point). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)
ison to the other methods, such as finite element or finite differ-
ence methods by solving the Bloch-Torrey equation.

All codes were implemented in C++ using the CUDA v8.0 library
to interface with NVIDIA GPUs (Tesla K40c) and performed on an
HP workstation (Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20 GHz,
16 GB DDR4 RAM) on Windows 7 professional. The pure CPU ver-
sion and GPU version of the code were both implemented for com-
parison purposes.

2.5. Validation and performance of synthetic DW-NMR signal with
simple geometries

The analytical expressions for diffusion in simple geometries
like parallel planes, cylinders, and spheres are known [40]. In this
work, a box (dimension of Lx � Ly � Lz = 4.02 mm � 9.02 mm �
14.02 mm) is used for initial validation and comparison of compu-
tational times between CPU and GPU versions. Fig. 2 presents the
triangular mesh of the box (240 surface elements) used in this
study. This box was also voxelized into the 3D binary marker rep-
resentation with the resolution of 0.035 mm3 and used as a geom-
etry input for method 2. Moreover, we also simulate the DW-NMR
signal with the same parameters using Camino toolkit (http://ca-
mino.cs.ucl.ac.uk) for reference in terms of computation time.
More precisely, particle trajectories were simulated using Camino,
and the DW-NMR signals were then computed in Matlab for mul-
tiple b-values based on these trajectories.

Besides, we consider finite-length cylinders (radius R = 2 mm
and length L = 20 mm) to validate the numerically simulated DW-
NMR signal in the case of gradient directions perpendicular and
parallel to cylinder direction.

Thirty randomly oriented cylinders were used to validate and
test the simulation, with gradient direction rotated accordingly
always to simulate signal along parallel and perpendicular direc-
tions (see Fig. 3a). The rationale for doing this was to account for
possible errors due to too coarse discretization of the surface for
some oblique orientations when using the binary matrix
representation.

Each of these cylinders was voxelized with five different isotro-
pic spatial resolutions of 0.283, 0.213, 0.143, 0.073, 0.0353 mm3 that
Fig. 2. The triangular mesh of the box dimension Lx � Ly � Lz = 4.02 mm � 9.02 mm
� 14.02 mm. The number of surface elements is 240.

http://camino.cs.ucl.ac.uk
http://camino.cs.ucl.ac.uk


Fig. 3. (a) Thirty randomly oriented finite-length cylinders with radius R = 2 mm and length L = 20 mm used to validate and test the simulation. (b) Three different cylinder
meshes used for Camino simulation. From left to right, the number of surface elements is 344, 630 and 1292, respectively.
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were named ”resolution-1” to ‘‘resolution-5”, respectively. The
CPU-based and GPU-based Monte-Carlo simulations were per-
formed on each resolution for the thirty cylinders.

Moreover, one oblique cylinder was used to generate the sur-
face triangular mesh to simulate DW-NMR signal using the Octree
approach as well as Camino for reference. Due to the dependency
of the simulation time and accuracy on the number of surface ele-
ments, three different meshes were created for simulation (see
Fig. 3b).

The relative difference l2-norm (RE) determined by

RE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP60

b¼0ðSsimulðbÞ � SanalyticðbÞÞ2
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP60
b¼0ðSanalyticðbÞÞ2

q ð4Þ

was used to estimate the relative errors between the simulated sig-
nal Ssimul, and the analytic signal Sanalytic, over 61 b-values which
were increased linearly from 0 to 60 ms/mm2. The mean and stan-
dard deviation of RE, and the simulation time over 30 cylinders
(the same spatial resolution) were used to quantify the accuracy
and performance of the proposed simulation method (both CPU
and GPU versions).
3. Results

3.1. Validation of simulated DW-NMR signal in simple geometries

For the validation purposes, the intrinsic diffusion coefficient
D0 = 0.5 mm2/ms, gradient duration d = 0 ms and gradient separa-
tion D = [50; 250] ms were chosen for simulation. We follow the
recommendation of Ford and Hackney in [21] and Waudby and
Christodoulou in [24] about the selection of time-step size consid-
ering the smallest structural features. We also follow the recom-
mendation of Hall and Alexander in [22] that the simulation
complexity (product of the number of particles by the number of
time steps) should be more than 108–109 to get a good approxima-
tion of simulated DW-NMR signal. In the following, we demon-
strate the validity of the two proposed accelerated methods. Let
Octree + CPU/GPU denotes the simulation method that uses octree
structure representation of traditional triangular mesh, and
Bin3D + CPU/GPU denotes the simulation method that uses 3D bin-
ary marker representation. The suffix CPU or GPU means the simu-
lation performed on CPU or GPU respectively.
3.1.1. Case study 1: Simulated DW-NMR signal in the box
We set the number of particles to N = 218 and the time-step size

dt = 0.05 ms for D = 50 ms and dt = 0.25 ms for D = 250 ms (corre-
sponding to a fixed number of time steps to Nt = 1000 for Camino
simulation used as reference for computational time) for both
CPU and GPU Monte-Carlo simulation, resulting in a complexity
larger than 108. Fig. 4 shows the simulated and analytical DW-
NMR signals for gradient directions aligned with box axes. As
shown in Fig. 4, the simulated DW-NMR signals generated by
Octree + CPU/GPUmethod and Bin3D + CPU/GPUmethod are in good
agreement with the analytical solutions.
3.1.2. Case study 2: Looking for a potential bias due to discretization of
oblique surfaces when using binary marker representation

In this case, we set the number of particles to N = 217 and time-
step size to dt = 0.005 ms, resulting in a complexity larger than 109.

The mean and standard deviation of the log of simulated DW-
NMR signal (over 30 randomly oriented cylinders) at D = 50 ms
and D = 250 ms for the five different spatial resolutions is shown
in Fig. 5. The RE was calculated according to Eq. (4) for the simu-
lated DW-NMR signals along gradient directions perpendicular
and parallel to cylinder axes. The mean and standard deviation of
RE over 30 randomly oriented cylinders under the same spatial res-
olution was calculated and is shown in Table 1.

As shown in Fig. 5, the DW-NMR signals obtained by Bin3D
+ CPU and Bin3D + GPU Monte-Carlo simulations are the same. In
addition, given a fixed number of particles and time-step size,
the highest spatial resolution yields simulated DW-NMR signal
closest to the analytical signal, and reaches the smallest standard
deviation. More specifically, for the gradient direction perpendicu-
lar to cylinder principal axes, the simulated DW-NMR signals for
the five spatial resolutions are all very close to the analytic approx-
imate DW-NMR signal (the REs were smaller than 1% as shown in
Table 1). However, for the gradient direction parallel to cylinder
principal axis, the lower spatial resolution (0.283 mm3) gets sub-
stantial errors at high b-values; the higher spatial resolutions, from
0.213 to 0.0353 mm3, obtained better approximations of the analyt-
ical signal as the RE were smaller than 2%, as shown in Table 1. In
addition, by increasing the number of particles to N = 220, which
remains perfectly manageable using GPU (see Section 3.2 below),
while maintaining the time-step size dt = 0.005 ms, we can
decrease the standard deviation of the simulated signals as shown
in Fig. 6 and Table 1.



Fig. 4. The simulated DW-NMR signal (marker) in the box dimension Lx � Ly � Lz = 4.02 mm � 9.02 mm � 14.02 mm and analytic approximate DW-NMR signal (solid line) as a
function of b-values at D = 50 ms (left) and D = 250 ms (right) in gradient direction aligned to the box axes (using N = 218 particles, dt = 0.05 ms for D = 50 ms and dt = 0.25 ms
for D = 250 ms). The first and second rows represent the simulated DW-NMR signal using Octree + CPU and Octree + GPU methods, respectively. The two last rows represent
the simulated DW-NMR signal using Bin3D + CPU and Bin3D + GPU methods, respectively. In each figure, the red, blue and green colors represent the simulated signal in
gradient direction aligned to the box axes Lx = 4.02 mm, Ly = 9.02 mm, and Lz = 14.02 mm, respectively. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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3.2. Performance

To assess the performance of proposed methods, we used the
previous configurations (Section 3.1) for CPU and GPU Monte-
Carlo simulations.
First, the computational time of DW-NMR simulation in the box
for D = 50 ms and D = 250 ms, using Camino as a reference tool,
Octree + CPU/GPU method and Bin3D + CPU/GPU method as
described in the previous subsection, is presented in Fig. 7.
Although the box mesh is very simple and the number of surface



Fig. 5. Mean and standard deviation of the log of CPU (top) and GPU (bottom) simulated DW-NMR signals using the binary marker representation, and analytic DW-NMR
signal (solid line) as a function of b-values at D = 50 ms (left) and D = 250 ms (right) in gradient direction parallel and perpendicular to the cylinder.

Table 1
RE (represented as mean ± std) of the DW-NMR signals simulated using the binary marker approach by CPU and GPU Monte-Carlo simulation at D = 50 ms and D = 250 ms for the
gradient direction parallel and perpendicular to the cylinder principal axes. The mean and std are calculated over 30 randomly oriented cylinders.

Perpendicular to cylinder: RE (%)

Bin3D + CPU (N = 217) Bin3D + GPU (N = 217) Bin3D + GPU (N = 220)

D = 50 ms Resolution 1 0.657 ± 0.380 0.737 ± 0.397 0.735 ± 0.375
Resolution 2 0.195 ± 0.159 0.164 ± 0.115 0.092 ± 0.074
Resolution 3 0.194 ± 0.135 0.206 ± 0.119 0.073 ± 0.042
Resolution 4 0.143 ± 0.124 0.203 ± 0.118 0.075 ± 0.056
Resolution 5 0.167 ± 0.106 0.166 ± 0.126 0.086 ± 0.057

D = 250 ms Resolution 1 0.124 ± 0.086 0.133 ± 0.075 0.129 ± 0.073
Resolution 2 0.044 ± 0.037 0.037 ± 0.026 0.024 ± 0.014
Resolution 3 0.032 ± 0.027 0.037 ± 0.030 0.016 ± 0.011
Resolution 4 0.038 ± 0.020 0.032 ± 0.027 0.015 ± 0.011
Resolution 5 0.048 ± 0.028 0.038 ± 0.027 0.017 ± 0.013

Parallel to cylinder: RE (%)

Bin3D + CPU (N = 217) Bin3D + GPU (N = 217) Bin3D + GPU (N = 220)

D = 50 ms Resolution 1 5.964 ± 1.323 5.934 ± 1.454 5.890 ± 1.406
Resolution 2 2.097 ± 0.375 2.126 ± 0.405 2.028 ± 0.176
Resolution 3 1.654 ± 0.354 1.765 ± 0.363 1.485 ± 0.138
Resolution 4 1.443 ± 0.414 1.291 ± 0.382 1.098 ± 0.109
Resolution 5 1.456 ± 0.407 1.175 ± 0.220 1.057 ± 0.137

D = 250 ms Resolution 1 3.933 ± 1.006 3.949 ± 1.129 3.973 ± 0.981
Resolution 2 1.196 ± 0.462 1.302 ± 0.553 1.012 ± 0.170
Resolution 3 0.831 ± 0.333 0.966 ± 0.325 0.719 ± 0.175
Resolution 4 0.838 ± 0.439 0.799 ± 0.366 0.456 ± 0.117
Resolution 5 0.776 ± 0.342 0.848 ± 0.530 0.494 ± 0.159
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elements is small, Camino takes more than 1 h for simulation,
whereas Octree + CPU method only needs �7 min when performed
in CPU and less than 2 min when performed in GPU (Octree + GPU).
Bin3D + CPU takes less than min, whereas Bin3D + GPU only takes
less than 2 s. Note that the simulation time mentioned in Bin3D
+ CPU/GPU does not account for �20 s for loading the binary mar-



Fig. 6. Mean and standard deviation of the log of simulated DW-NMR signals using the binary marker representation, and analytic DW-NMR signal as a function of b-values at
D = 50 ms (left) and D = 250 ms (right) in gradient direction parallel and perpendicular to the cylinder. The number of particles used for simulation is N = 220.
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ker ascii file (containing 352 � 465 � 450 values of 0 and 1) at the
beginning. It can be reduced by saving the binary marker file as
binary format instead of ascii format. Table 2 shows the speedup
factor between Octree + CPU, Octree + GPU, Bin3D + CPU and
Bin3D + GPU methods in comparison with Camino simulation
time.

For in-depth performance test, especially for the method using
3D binary geometry marker presentation, we performed the DW-
NMR simulation in 30 randomly oriented finite-length cylinder
that described in Section 2.5 and measured the simulation time
at D = 50 ms. The mean and standard deviation of RE over 30 ran-
domly oriented cylinders under the same spatial resolution was
calculated and plotted as a function of the averaged simulation
time (see Fig. 8). Increased simulation time was associated with
increased spatial resolution. Fig. 8c, e, and f show that the highest
spatial resolution gives the lowest averaged RE values for both
Bin3D + CPU and Bin3D + GPU simulations. Moreover, when
increasing the number of particles up to N = 220 in Bin3D + GPU
Monte-Carlo simulation, the averaged RE did not decrease substan-
tially (see Fig. 8e and f). The standard deviation, however, was
smaller presumably due to the larger number of particles (see
Fig. 8e and f). The Bin3D + GPU implementation reduced the simu-
lation time from hundreds of seconds (in Bin3D + CPU implemen-
tation) to seconds. Moreover, the GPU simulation time is
increasing linearly with the number of particles.

We also use Octree + CPU/GPU and Camino simulation toolkit to
generate the reference simulated DW-NMR signals in three cylin-
ders with a different number of surface elements (see Fig. 3b),
Fig. 7. The measured computational times of DW-NMR simulation in Camino
toolkit (yellow), Octree + CPU (cyan), Octree + GPU (blue), Bin3D + CPU (violet) and
Bin3D + GPU (red). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
using the same parameters as for Bin3D + CPU and Bin3D + GPU
Monte-Carlo simulations, except for time-step size that we
degraded to dt = 0.05 ms (resulting in complexity � 108) to main-
tain reasonable computation times in Camino. As shown in
Fig. 8a, b, and Fig. 8d, using the same simulation parameters,
Octree helps reducing the computational time from �5 h in
Camino to 4 min in Octree + CPU and 2 min in Octree + GPU while
keeping the same relative error level. Moreover, the larger the
number of surface elements, the more efficient the Octree method
in comparison with Camino. The RE of simulated DW-NMR signals
using Camino, in the case of gradient direction perpendicular to the
cylinder principal-axis, was decreased when refining the mesh.
However, when the gradient direction parallels the cylinder
principal-axis, the measured RE of simulated DW-NMR signals
remains stable �1% because the representation of cylinder’s
extremities remains accurate for all mesh sizes (see Fig. 3b).
Although the number of surface elements remains relatively small
(e.g. as compared to complex cellular surface meshes) and the
time-step used in Camino simulations is ten times longer than in
Bin3D + CPU/GPU Monte-Carlo simulations, Camino simulation
time remains very long (see Fig. 8d). The reason is due to at each
time-step, the intersection between the displacement vector (from
current to new particle’s position) and all triangular elements of
the mesh should be checked to make sure that the particle does
not cross the surface. Segment-triangle intersection algorithms
need some cross-products and some comparison operators [41],
thus driving the computation-cost when the number of surface ele-
ments is large. Instead, when using the binary marker representa-
tion, we only need one conversion from real world coordinates to
voxel coordinates, and one Boolean comparison to determine
whether a given particle crosses the surface or not, whatever the
complexity of the geometry. This explains the efficiency of the bin-
ary marker representation used in the present work as opposed to
the more traditional mesh-based representation.

3.3. Selection of time-step size or number of time steps for the binary
marker approach

The choice of an adequate time-step is particularly important
for the binary marker approach, because in this approach particle
interaction with membranes is treated using the ‘‘rejection meth-
od”, which requires that the elementary jump size is much smaller
than typical distance between membranes. To careful evaluate the
effect of time-step size or number of time-steps on the DW-NMR
signal, different time-steps dt = [0.5; 0.1; 0.05; 0.01; 0.005;



Table 2
The acceleration factor of Octree + CPU, Octree + GPU, Bin3D + CPU, and Bin3D + GPU in comparison with Camino simulator considered as a reference simulation tool.

Octree + CPU Octree + GPU Bin3D + CPU Bin3D + GPU

D = 50 ms 15.3� 66.1� 48.8� 2177�
D = 250 ms 10.9� 45.6� 53.8� 2311�

Fig. 8. The RE and simulation time of Octree + CPU (a), Octree + GPU (b) and Camino (d) simulations in cylinder, for three different numbers of surface elements (left: 344,
middle: 630 and right: 1292 elements) at time-step size dt = 0.05 ms. The performance of Bin3D + CPU (c) and Bin3D + GPU (e, f) Monte-Carlo simulations at time-step size
dt = 0.005 ms for five different spatial resolutions (corresponding to the 5 markers for a given color/orientation). In subfigures c,e,f: the simulation time increases with
increased spatial resolution; For each spatial resolution, the mean and standard deviation of RE were calculated over 30 random orientations. In all sub-figures, the blue and
red colors represent the measured RE of the simulated DW-NMR signal parallel and perpendicular to the cylinder main axis, respectively. The number of particles used in all
subfigures is N = 217, except N = 220 in subfigure f. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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0.001; 0.0005; 0.0003] ms (with fixed number of particles N = 217)
were used, for three finite-length cylinders: radius R = 0.5 mm,
length L = 5 mm; R = 1 mm, L = 10 mm; and R = 2 mm, L = 20 mm.
These cylinders were voxelized with the resolution of
0.07 � 0.07 � 0.07 mm3 (identical to the confocal resolution along
X and Y). The intrinsic diffusion and gradient duration were
selected as in the previous section, D0 = 0.5 mm2/ms and d = 0 ms,
respectively. Three gradient separations D = 5 ms, D = 50 ms and
D = 250 ms were used in this test.

The RE between the simulated signal and analytical signal in the
direction parallel and perpendicular to the principal cylinder axes
was calculated according to Eq. (4) and is shown in Fig. 9.
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As shown in Fig. 9, the RE between the simulated and analytical
signal in the direction perpendicular to the cylinder axis is very
small (RE < 1% for all three different diffusion time) when the
time-step size is smaller than 0.05 ms. In theory, smaller time-
step size should reduce the error arising from the ‘‘rejection meth-
od” when handling the interaction between particles and the sur-
face. However, too small time-step can lead to another kind of
error, due to the accumulation of truncation errors during the dif-
fusion of molecules when the jump size is very small. The above
reasons explained the increase of RE when the time-step is too
short (dt = 0.0003 ms) as shown in Fig. 9 (arrows). Therefore, the
time-step should be carefully chosen for Monte-Carlo simulations
of diffusion, and extraordinary GPU performances should not be
misused to reduce the time-step below some limit. Once this limit
has been reached, further gains in GPU performances should rather
be used to increase the number of particles. With our current
implementation, we recommend a lower-bound on time-step of
�0.0005 ms, with an optimum around �0.05–0.001 ms (as appar-
ent in Fig. 9), corresponding to jump size r � 0.387–0.055 mm.

Moreover, in the case of gradient direction perpendicular to the
cylinder’s principal axis, it is surprising that even when the time-
step size is large (dt = 0.5 or dt = 0.1 ms, corresponding to a jump
size r � 1.22 mm or r � 0.55 mm, respectively), the RE remains
very low (<1%) for D = 50 and D = 250 ms, but not for D = 5 ms
(see Fig. 9 - red line colors). Thus, the jump size seems to have less
impact on the simulated signal in small confining structures at
long diffusion time. In contrast, in the short diffusion time regime,
the simulated signal is more sensitive to the jump size (or time-
step). In the case of the gradient direction parallel to the cylinder
principal axis, the RE values were higher than in the case of the
gradient direction perpendicular to the cylinder principal axis
Fig. 9. RE of simulated DW-NMR signal relative to analytical signal in the direction perp
5 ms (a), D = 50 ms (b), and D = 250 ms (c), respectively. The circle, cross and squared ma
L = 10 mm), and cylinder (R = 2.0 mm, L = 20 mm), respectively. Arrows point to the increas
references to color in this figure legend, the reader is referred to the web version of thi
(see Fig. 9 - blue line colors). For the acceptable RE < 5%, the
time-step size should be 5 � 10�4–5 � 10�2 ms.

3.4. Simulation of DW-NMR signal in astrocytes

Two astrocytes (one protoplasmic astrocyte and one fibrous
astrocyte, see Fig. 10) were selected and extracted from confocal
microscopy images to test simulations signals in two different real-
istic shapes. The astrocytic surface triangular meshes and the 3D
binary markers were then generated for simulation as described
in Section 2.1.

We used d = 0 ms, D = 50 ms, a large number of particles
(N = 220) to reduce the standard deviation of the simulated signal
(especially at high b-value), 61 b-values linearly increased from 0
to 60 ms/mm2. Six different time-step sizes from dt = 0.01 ms (com-
plexity �6 � 109) to dt = 0.0001 ms (complexity �1011), corre-
sponding to number of time steps ranging from 5000 to 500,000,
were evaluated to test the impact of dt on the simulation in these
cells. The simulated DW-NMR signal along three gradient direc-
tions (x, y, and z-direction) using the GPU-based implementation
of the 3D binary marker method is shown in Fig. 11. In addition,
we also generated the DW-NMR signal (gradient direction along
x, y, and z-direction) using the GPU-based implementation of the
octree structure representation method at time-step dt = 0.001 ms
and number of particles N = 218 resulting in complexity of �1010,
thus exceeding the requirement upon complexity to get a good
approximation of simulated DW-NMR signal as recommended in
[22]. These simulated signals were then used as the ‘‘ground-
truth signal”, as the specular reflection implemented in the octree
approach can be considered as more conventional and less prone
to errors than the rejection method (note that Camino, which also
endicular (red colors) and parallel (blue colors) to the cylinder principal axes at D =
rker represent the cylinder (radius R = 0.5 mm, length L = 5 mm), cylinder (R = 1.0 mm,
ing of RE when the time-step is too small, dt = 0.0003 ms. (For interpretation of the
s article.)



Fig. 10. X-Y view of two surface meshes from real astrocytes used for test the simulation of DW-NMR signal in astrocytes. Left: Protoplasmic astrocytes, Right: Fibrous
astrocytes.

Fig. 12. Averaged RE of the simulated signal (Bin3D + GPU) relative to the ground-
truth simulated signal (Octree + GPU) in the two astrocytes.
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relies on specular reflection, ran too slowly for these complex
astrocytic structures).

Because the distribution of astrocytic branches is almost identi-
cal in the x and y-directions for the protoplasmic astrocyte, the
simulated intracellular DW-NMR signals in x and y-direction are
similar (see Fig. 11a). In contrast, the fibrous astrocyte extends
preferentially along x rather than y-direction, explaining the differ-
ent behavior of the simulated DW-NMR signal presented in
Fig. 11b. Moreover, as shown in this figure, changing time-step
seems to have only a moderate effect. RE was calculated between
the simulated signals and the ground-truth signal (from octree
approach). The averaged RE in x, y, and z-directions is shown in
Fig. 12. As shown in this figure, when dt < 0.003 ms (corresponding
to r < 0.1 mm), the averaged RE was very small (<3%). This thresh-
old may be used in other diffusion simulation studies in astrocytes
with the 3D binary marker method. Note that, the confocal micro-
scopy image resolution in z-direction is limited to �0.28 mm, so
that reconstructed confocal microscopy images seem stretched in
the z-direction. Therefore, even using interpolation to oversample
the confocal image in the z-direction to 0.07 mm as in x and y-
direction, the simulated DW-NMR signal in z-direction always
exhibits more substantial attenuation than in x and y-direction
(see Fig. 11).

Although the number of particles is enormous and the time-
step is small, the GPU Monte-Carlo simulation time remains short,
as shown in Fig. 13. At an acceptable time-step dt = 0.002 ms, the
Fig. 11. Simulated DW-NMR signals inside protoplasmic astrocytes (a) and fibrous
implementation of the 3D binary marker presentation method is presented in markers. T
Red, green and blue solid line represents the ground-truth signals of gradient direction
method. (For interpretation of the references to color in this figure legend, the reader is
simulation time is approximately 50–70 s. In contrast, simulation
of the ground-truth signal using the octree approach required 7 h
20 min for protoplasmic astrocyte, and 18 h 40 min for fibrous
astrocyte. The GPU-based implementation of the 3D binary marker
method thus opens the possibility to simulate the DW-NMR signal
in complex cellular structures at high b-values and long diffusion
times within reasonable times.
astrocytes (b). The simulated DW-NMR signals generated by the GPU-based
he different colors represent the different time-step which showed in the color bar.
aligned in x, y, and z-direction, respectively, as computed using the Octree + GPU
referred to the web version of this article.)



Fig. 13. Simulation time for the two astrocytes using the Bin3D + GPU method.
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4. Discussion and conclusion

Based on the results about the accuracy of the simulated DW-
NMR signal on finite length cylinders, a 0.07 mm spatial resolution
appears sufficient to get an accurate simulated DW-NMR signals,
even in small structures like cylinders of 0.5 mm radius. It substan-
tiates the idea that confocal microscopy image resolution of
�0.07 � 0.07 � 0.28 mm3 is good enough for using astrocytes
directly extracted from confocal microscopy image as an input
geometry for DW-NMR signal simulation, at least along x and y
directions.

The strategy of using real world coordinates for particles’ posi-
tion allows decoupling the moving step size r (and therefore the
time-step size dt) from the voxel size (resolution) of the astrocyte’s
binary marker. Then, using one conversion from real world coordi-
nates to voxel coordinates, and one Boolean comparison to deter-
mine whether a given position is accepted or rejected at each
time-step, allows drastically minimizing the computational burden
as compared to mesh-based approaches (even when using an
octree structure), thus minimizing the running time of Monte-
Carlo simulation in complex geometries.

Although infinitely short gradient duration, d = 0 ms, was used
in this work, the method described in this paper allows simulating
DW-NMR signal in various gradient durations and using various
pulse sequences.

The effect of membrane permeability was not considered here
but could be interesting to study and might be incorporated in
future works. One possibility to treat permeability would be to
reject motion with some probability smaller than 1 when particles
encounter membranes. If motion is not rejected, the particle would
enter the membrane, which in the binary representation would
have some ‘‘thickness” of at least one pixel. Thus, we would have
different options to describe the passage of the particle through
the membrane: a first option, easy to implement, would be that
the particle could diffuse inside the membrane and then exit again
with some non-zero probability at some point, when it encounters
a new interface. Such an approach might offer a realistic descrip-
tion of passive diffusion through membranes. Another option that
would require slightly adapting the current version of the code,
would be to have the particle travel through the membrane and
exit on the other side, at the shortest distance from its entry point.
This would be a realistic description of transport via membranes
pores or active transporters.

In the case of wall relaxivity, each time a particle’s jump is
rejected due to interaction with membrane, it would retain some
memory of this interaction (e.g. by incrementing an integer num-
ber associated with this particle), and at the end of the simulation
it would be trivial to weight this particle’s contribution according
to the number of interactions it underwent [24,42].
Other phenomena might affect molecular diffusion, such as
active transport over long distances (e.g. flow of the extracellular
fluid, or vesicular trafficking inside the cells). Although in theory
nothing prevents incorporating such phenomena into modeling
tools, we think that the main difficulty would not arise from adapt-
ing algorithms to account for these phenomena, but rather from
the very limited knowledge we have about their magnitude and
the laws governing them.

All source code and geometry models will be released soon on
the author’s GitHub address: https://github.com/khieunguyen/
GPUMCdMRI.

Acknowledgments

This work was funded by the European Research Council (grant
number 336331 INCELL project). The NVIDIA Tesla K40c was gen-
erously donated by NVIDIA Corporation.

References

[1] P.J. Basser, J. Mattiello, D. LeBihan, MR diffusion tensor spectroscopy and
imaging, Biophys. J. 66 (1994) 259–267.

[2] D.G. Norris, The effects of microscopic tissue parameters on the diffusion
weighted magnetic resonance imaging experiment, NMR Biomed. 14 (2001)
77–93.

[3] C. Beaulieu, The basis of anisotropic water diffusion in the nervous system – a
technical review, NMR Biomed. 15 (2002) 435–455.

[4] H.C. Berg, Random Walks in Biology, Princeton University Press, 1993.
[5] J. Zhong, J.C. Gore, Studies of restricted diffusion in heterogeneous media

containing variations in susceptibility, Magnetic Reson. Med. 19 (1991) 276–
284.

[6] D.S. Grebenkov, NMR survey of reflected Brownian motion, Rev. Mod. Phys. 79
(3) (2007) 1077–1137, 8.

[7] Y. Assaf, T. Blumenfeld-Katzir, Y. Yovel, P.J. Basser, Axcaliber: a method for
measuring axon diameter distribution from diffusion MRI, Magnetic Reson.
Med. 59 (2008) 1347–1354.

[8] D.C. Alexander, P.L. Hubbard, M.G. Hall, E.A. Moore, M. Ptito, G.J.M. Parker, T.B.
Dyrby, Orientationally invariant indices of axon diameter and density from
diffusion MRI, NeuroImage 52 (2010) 1374–1389.

[9] H. Zhang, P.L. Hubbard, G.J.M. Parker, D.C. Alexander, Axon diameter mapping
in the presence of orientation dispersion with diffusion MRI, NeuroImage 56
(2011) 1301–1315.

[10] H. Zhang, T. Schneider, C.A. Wheeler-Kingshott, D.C. Alexander, NODDI:
Practical in vivo neurite orientation dispersion and density imaging of the
human brain, NeuroImage 61 (2012) 1000–1016.

[11] M. Palombo, C. Ligneul, J. Valette, Modeling diffusion of intracellular
metabolites in the mouse brain up to very high diffusion-weighting:
diffusion in long fibers (almost) accounts for non-monoexponential
attenuation, Magnetic Reson. Med. 77 (2017) 343–350.

[12] H.C. Torrey, Bloch Equations with Diffusion Terms, Phys. Rev. 104 (3) (1956)
563–565, 11.

[13] S.N. Hwang, C.-L. Chin, F.W. Wehrli, D.B. Hackney, An image-based finite
difference model for simulating restricted diffusion, Magnetic Reson. Med. 50
(2003) 373–382.

[14] J. Xu, M.D. Does, J.C. Gore, Numerical study of water diffusion in biological
tissues using an improved finite difference method, Phys. Med. Biol. 52 (2007)
N111.

[15] G. Russell, K.D. Harkins, T.W. Secomb, J.-P. Galons, T.P. Trouard, ‘‘A finite
difference method with periodic boundary conditions for simulations of
diffusion-weighted magnetic resonance experiments in tissue, Phys. Med. Biol.
57 (2012) N35.

[16] J.-R. Li, D. Calhoun, C. Poupon, D.L. Bihan, Numerical simulation of diffusion
MRI signals using an adaptive time-stepping method, Phys. Med. Biol. 59
(2014) 441.

[17] D.V. Nguyen, J.-R. Li, D. Grebenkov, D.L. Bihan, A finite elements method to
solve the Bloch-Torrey equation applied to diffusion magnetic resonance
imaging, J. Comput. Phys. 263 (2014) 283–302.

[18] L. Beltrachini, Z.A. Taylor, A.F. Frangi, A parametric finite element solution of
the generalised Bloch-Torrey equation for arbitrary domains, J. Magnetic
Reson. 259 (2015) 126–134.

[19] B.D. Hughes, Random Walks and Random Environments, Clarendon Press,
Oxford University Press, 1995.

[20] A. Szafer, J. Zhong, J.C. Gore, Theoretical model for water diffusion in tissues,
Magnetic Reson. Med. 33 (1995) 697–712.

[21] J.C. Ford, D.B. Hackney, Numerical model for calculation of apparent diffusion
coefficients (ADC) in permeable cylinders—comparison with measured ADC in
spinal cord white matter, Magnetic Reson. Med. 37 (1997) 387–394.

[22] M.G. Hall, D.C. Alexander, Convergence and parameter choice for Monte-Carlo
simulations of diffusion MRI, IEEE Trans. Med. Imaging 28 (9) (2009) 1354–
1364.

https://github.com/khieunguyen/GPUMCdMRI
https://github.com/khieunguyen/GPUMCdMRI
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0005
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0005
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0010
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0010
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0010
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0015
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0015
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0020
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0020
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0025
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0025
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0025
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0030
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0030
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0035
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0035
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0035
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0040
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0040
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0040
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0045
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0045
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0045
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0050
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0050
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0050
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0055
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0055
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0055
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0055
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0060
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0060
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0065
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0065
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0065
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0070
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0070
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0070
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0075
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0075
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0075
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0075
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0080
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0080
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0080
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0085
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0085
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0085
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0090
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0090
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0090
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0095
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0095
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0095
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0100
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0100
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0105
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0105
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0105
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0110
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0110
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0110


K.-V. Nguyen et al. / Journal of Magnetic Resonance 296 (2018) 188–199 199
[23] D.S. Grebenkov, A fast random walk algorithm for computing the pulsed-
gradient spin-echo signal in multiscale porous media, J. Magnetic Reson. 208
(2011) 243–255.

[24] C.A. Waudby, J. Christodoulou, GPU accelerated Monte Carlo simulation of
pulsed-field gradient NMR experiments, J. Magnetic Reson. 211 (2011) 67–73.

[25] M. Palombo, C. Ligneul, C. Najac, J. Le Douce, J. Flament, C. Escartin, P. Hantraye,
E. Brouillet, G. Bonvento, J. Valette, New paradigm to assess brain cell
morphology by diffusion-weighted MR spectroscopy in vivo, Proc. Natl. Acad.
Sci. 113 (2016) 6671–6676.

[26] E. Panagiotaki, M.G. Hall, H. Zhang, B. Siow, M.F. Lythgoe, D.C. Alexander, High-
fidelity meshes from tissue samples for diffusion MRI simulations, in: Medical
Image Computing and Computer-Assisted Intervention – MICCAI 2010, Berlin,
2010.

[27] C.-H. Yeh, B. Schmitt, D. Le Bihan, J.-R. Li-Schlittgen, C.-P. Lin, C. Poupon,
Diffusion microscopist simulator: a general Monte Carlo simulation system for
diffusion magnetic resonance imaging, PLOS ONE 8 (10) (2013) 1–12.

[28] K. Ginsburger, F. Poupon, J. Beaujoin, D. Estournet, F. Matuschke, J.-F. Mangin,
M. Axer, C. Poupon, Improving the realism of white matter numerical
phantoms: a step toward a better understanding of the influence of
structural disorders in diffusion MRI, Front. Phys. 6 (2018) 12.

[29] D.J.R. Meagher, Octree Encoding: a New Technique for the Representation,
Manipulation and Display of Arbitrary 3-D Objects by Computer, Rensselaer
Polytechnic Institute, Image Processing Laboratory, 1980.

[30] D. Meagher, Geometric modeling using octree encoding, Comput. Graphics
Image Process. 19 (1982) 129–147.

[31] M. Palombo, C. Ligneul, E. Hernandez-Garzon, J. Valette, Can we detect the
effect of spines and leaflets on the diffusion of brain intracellular metabolites?,
NeuroImage (2017)
[32] L. Xie, M.A. Sparks, W. Li, Y. Qi, C. Liu, T.M. Coffman, G.A. Johnson, Quantitative
susceptibility mapping of kidney inflammation and fibrosis in type 1
angiotensin receptor-deficient mice, NMR Biomed. 26 (2013) 1853–1863.

[33] Q. Fang, D.A. Boas, Tetrahedral mesh generation from volumetric binary and
gray-scale images, in: Proceedings of the Sixth IEEE International Conference
on Symposium on Biomedical Imaging: From Nano to Macro, Piscataway,
2009.

[34] CGAL, Computational Geometry Algorithms Library [Online], Available: http://
www.cgal.org.

[35] J.J. Jiménez, R.J. Segura, F.R. Feito, A robust segment/triangle intersection
algorithm for interference tests. Efficiency study, Comput. Geometry 43 (2010)
474–492.

[36] D. Madeira, E. Clua, A. Montenegro, T. Lewiner, Gpu octrees and optimized search,
in: VIII Brazilian Symposium on Games and Digital Entertainment, 2009.

[37] G.T. Balls, L.R. Frank, A simulation environment for diffusion weighted MR
experiments in complex media, Magnetic Reson. Med. 62 (2009) 771–778.

[38] J. Lane, B. Magedson, M. Rarick, An efficient point in polyhedron algorithm,
Computer Vision, Graphics, Image Process. 26 (1984) 118–125.

[39] J. Li, W. Wang, Fast and robust GPU-based point-in-polyhedron determination,
Computer-Aided Des. 87 (2017) 20–28.

[40] P. Linse, O. Soderman, The validity of the short-gradient-pulse approximation
in NMR studies of restricted diffusion. Simulations of molecules diffusing
between planes, in cylinders and spheres, J. Magnetic Reson., Series A 116
(1995) 77–86.

[41] T. Möller, B. Trumbore, Fast, minimum storage ray-triangle intersection, J.
Graphics Tools 2 (1997) 21–28.

[42] P. Szymczak, A.J.C. Ladd, Boundary conditions for stochastic solutions of the
convection-diffusion equation, Phys. Rev. E 68 (3) (2003) 036704, 9.

http://refhub.elsevier.com/S1090-7807(18)30238-6/h0115
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0115
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0115
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0120
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0120
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0125
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0125
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0125
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0125
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0135
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0135
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0135
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0140
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0140
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0140
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0140
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0145
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0145
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0145
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0145
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0150
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0150
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0155
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0155
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0155
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0160
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0160
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0160
http://www.cgal.org
http://www.cgal.org
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0175
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0175
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0175
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0185
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0185
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0190
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0190
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0195
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0195
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0200
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0200
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0200
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0200
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0205
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0205
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0210
http://refhub.elsevier.com/S1090-7807(18)30238-6/h0210

	Efficient GPU-based Monte-Carlo simulation of diffusion in real astrocytes reconstructed from confocal microscopy
	1 Introduction
	2 Methods
	2.1 Generation of astrocytic binary markers and astrocyte's surface triangular meshes
	2.2 Octree structure: spatial representation of astrocyte's surface triangular mesh
	2.3 Binary matrix representation: conversion between voxel and real world coordinates
	2.4 Simulating DW-NMR signal in astrocytes
	2.4.1 Method 1: in the octree structure representation
	2.4.2 Method 2: in the 3D binary markers representation

	2.5 Validation and performance of synthetic DW-NMR signal with simple geometries

	3 Results
	3.1 Validation of simulated DW-NMR signal in simple geometries
	3.1.1 Case study 1: Simulated DW-NMR signal in the box
	3.1.2 Case study 2: Looking for a potential bias due to discretization of oblique surfaces when using binary marker representation

	3.2 Performance
	3.3 Selection of time-step size or number of time steps for the binary marker approach
	3.4 Simulation of DW-NMR signal in astrocytes

	4 Discussion and conclusion
	Acknowledgments
	References


