
HAL Id: cea-02142559
https://cea.hal.science/cea-02142559

Submitted on 28 May 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The complex STATes of astrocyte reactivity: How are
they controlled by the JAK–STAT3 pathway?

Kelly Ceyzériat, Laurene Abjean, Maria-Angeles Carrillo-de Sauvage, Lucile
Ben Haim, Carole Escartin

To cite this version:
Kelly Ceyzériat, Laurene Abjean, Maria-Angeles Carrillo-de Sauvage, Lucile Ben Haim, Carole Es-
cartin. The complex STATes of astrocyte reactivity: How are they controlled by the JAK–STAT3
pathway?. Neuroscience, 2016, 330, pp.205-218. �10.1016/j.neuroscience.2016.05.043�. �cea-02142559�

https://cea.hal.science/cea-02142559
https://hal.archives-ouvertes.fr


Neuroscience 330 (2016) 205–218
NEUROSCIENCE FOREFRONT REVIEW

THE COMPLEX STATES OF ASTROCYTE REACTIVITY: HOW ARE THEY
CONTROLLED BY THE JAK–STAT3 PATHWAY?
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Abstract—Astrocytes play multiple important roles in brain

physiology. In pathological conditions, they become reac-

tive, which is characterized by morphological changes and

upregulation of intermediate filament proteins. Besides

these descriptive hallmarks, astrocyte reactivity involves

significant transcriptional and functional changes that are

far from being fully understood. Most importantly, astrocyte

reactivity seems to encompass multiple states, each having

a specific influence on surrounding cells and disease pro-

gression. These diverse functional states of reactivity

must be regulated by subtle signaling networks. Many

signaling cascades have been associated with astrocyte

reactivity, but among them, the JAK–STAT3 pathway is
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emerging as a central regulator. In this review, we aim (i)

to show that the JAK–STAT3 pathway plays a key role in

the control of astrocyte reactivity, (ii) to illustrate that STAT3

is a pleiotropic molecule operating multiple functions in

reactive astrocytes, and (iii) to suggest that each specific

functional state of reactivity is governed by complex molec-

ular interactions within astrocytes, which converge on

STAT3. More research is needed to precisely identify the

signaling networks controlling the diverse states of astro-

cyte reactivity. Only then, we will be able to precisely delin-

eate the therapeutic potential of reactive astrocytes in each

neurological disease context. � 2016 IBRO. Published by

Elsevier Ltd. All rights reserved.

Key words: reactive astrocytes, STAT3, JAK–STAT pathway,

neurological diseases, signaling cascades.
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INTRODUCTION

In response to the multiple pathological conditions that

affect the central nervous system (CNS), astrocytes

become reactive. This response develops after acute

injuries such as ischemia, traumatic brain injury (TBI),

spinal cord injury (SCI) or infection, as well as under

progressive conditions like neurodegenerative diseases

(ND) or multiple sclerosis (MS). Astrocyte reactivity was

initially characterized by morphological changes

(hypertrophy of soma and processes) and by the

upregulation of intermediate filament proteins such as

glial fibrillary acidic protein (GFAP) or vimentin. Besides

these two hallmarks, astrocyte reactivity involves

multiple transcriptional and functional changes that are

still being elucidated (Burda and Sofroniew, 2014;

Pekny and Pekna, 2014; Ben Haim et al., 2015a). Impor-

tantly, astrocyte reactivity is now recognized as a hetero-

geneous response resulting in various functional states

depending on the disease context. In fact, it is important

to note that reactivity is not the only change observed in

astrocytes during diseases. For example, astrocytes

may be dystrophic in the brain of patients with schizophre-

nia or even degenerate following encephalopathies. They

may directly be hit by the disease and dysfunction, like in

Alexander’s disease, which is caused by mutations in the

gfap gene (Verkhratsky et al., 2015; Pekny et al., 2016).

Given the multiple roles operated by astrocytes in

physiological conditions (Parpura et al., 2012), the func-

tional changes occurring with reactivity could have major

consequences on surrounding cells like neurons or micro-

glial cells and influence disease progression. Therefore, it

is crucial to unravel the signaling cascades controlling the

specific states of astrocyte reactivity.

Multiple pathways are associated with astrocyte

reactivity (Buffo et al., 2010; Kang and Hebert, 2011;

Ben Haim et al., 2015a). Among them, the janus kinase-

signal transducer and activator of transcription 3

(JAK–STAT3) pathway seems to play a central role that

we will cover in this review.

We will focus on the roles of STAT3 in astrocytes

during various brain diseases, but we will also describe

data from other cell types in the CNS or peripheral

organs, when they give insight into the functions of the

JAK–STAT3 pathway. Indeed, seminal discoveries on

this cascade were made in cell cultures in the fields of

Immunology and Oncology. Although very potent,

in vitro studies have serious limitations when applied to

the brain, because of the significant phenotypic changes

occurring when brain cells are isolated in a dish. This is

especially true for primary astrocytes that tend to

become reactive without stimulation (Ben Haim et al.,

2015a). In this review, we will thus present in vivo studies

whenever possible, and landmark in vitro studies to illus-

trate the complex roles played by STAT3 in the control of

astrocyte reactivity. We will (i) show that the JAK–STAT3

pathway plays a key role in the control of astrocyte reac-

tivity, (ii) illustrate that STAT3 is a pleiotropic molecule

operating multiple functions in reactive astrocytes and

(iii) propose that each specific functional state of reactivity

is governed by complex molecular interactions within

astrocytes, which converge on STAT3.
THE JAK–STAT3 PATHWAY

A linear, canonical JAK–STAT3 pathway from the
membrane to the nucleus

The JAK–STAT pathway is a ubiquitous, evolutionarily

conserved signaling cascade, present in various species

from Dictyostelium and Drosophila to mammals (Decker

and Kovarik, 2000). It was discovered more than twenty

years ago, as the cascade mediating interferon effects

(Darnell et al., 1994; Stark and Darnell, 2012). There are

four JAKs (JAK1-3, and TYK2) and seven STATs

(STAT1-4, 5A, 5B, and 6) in mammals (Darnell, 1997).

STAT3 was sequenced and cloned in 1994 (Akira et al.,

1994; Zhong et al., 1994b). STAT3 is well expressed in the

brain (Zhong et al., 1994a) and has been the most exten-

sively STAT studied in the context of astrocyte reactivity.

The canonical JAK–STAT3 pathway is activated by the

binding of polypeptides such as cytokines, hormones or

growth factors to their multimeric receptor (Mertens and

Darnell, 2007, Fig. 1). Conformational changes on the

intracellular tail of the receptor bring the kinase domains

of two JAKs in apposition (Brooks et al., 2014). JAKs are

receptor-associated tyrosine (Tyr) kinases that phospho-

rylate each other and the receptor on several residues.

The latent transcription factor STAT3 is then recruited to

the phosphorylated receptor through its Src homology 2

(SH2) domain and is transphosphorylated by JAK on

Tyr705 (Lim and Cao, 2006). Phospho-STAT3 proteins

dimerize and accumulate in the nucleus. There, dimers

of phospho-STAT3 bind specific sequences called

STAT3-responsive elements (SRE) in the promoter of tar-

get genes and induce their transcription (Shuai et al.,

1993; Darnell, 1997). These transcriptional changes

impact cell growth, proliferation, differentiation and sur-

vival. This pathway is particularly important during devel-

opment and immune responses, and its dysregulation is

involved in cancer and immune diseases (see, Yu et al.,

2009; O’Shea et al., 2013, for a complete review, as this

will not be developed here). Activation of the JAK–STAT3

pathway increases the expression of several elements of

the pathway, including stat3 itself, which promotes a pos-

itive feedback loop (Hutchins et al., 2013).

Additional branching points on the pathway increase
the complexity of STAT3 signaling cascades

Besides the linear ‘‘canonical” pathway, STAT3 is connec-

ted to alternative signaling cascades within the cell (Fig. 1).

First, some G-protein-coupled receptors (GPCRs),

which are seven-transmembrane domain receptors for

growth factors or purines, may be coupled to JAKs and

phosphorylate STAT3 (Mertens and Darnell, 2007). Alter-

natively, STAT3 can be phosphorylated on Tyr705 by other

upstream kinases than JAKs (Fig. 1). They include recep-

tors with an intrinsic Tyr kinase activity, like the receptor

for epidermal growth factor (EGF), and non-receptor Tyr

kinases, which are usually cytoplasmic and of viral origin,

such as v-src (Mertens and Darnell, 2007).

In addition, STAT3 can be phosphorylated on Serine

727 (Ser727) by various Ser kinases, especially by

mitogen-activated protein kinases (MAPK) (Wen et al.,

1995; Decker and Kovarik, 2000). Depending on the



Fig. 1. STAT3 is a signaling hub. STAT3 is involved in complex signaling cascades within the cell. The canonical JAK–STAT3 pathway (center),

is triggered by the binding of cytokines, hormones or growth factors to their multimeric receptors (e.g. receptors for IL, growth hormone, CNTF or

LIF). It causes conformational changes and activation of JAKs bound to the receptor. JAKs phosphorylate the receptor and then STAT3, after its

recruitment to the phosphorylated receptor through its SH2 domain. Tyr705-phospho-STAT3 dimerizes and accumulates in the nucleus where it

recognizes SRE in the promoter region of target genes, inducing their transcription. STAT3 is involved in alternative signaling cascades (left). It

can be directly phosphorylated on Tyr705 by receptors with an intrinsic Tyr kinase activity (RTK, e.g. receptors for EGF or platelet-derived growth

factor) or by cytoplasmic kinases like v-src. Alternatively, GPCRs (which include receptors for purines, growth factors like angiotensin, or for

chemokines like CCL5), can trigger Tyr705 phosphorylation by JAK (Reich and Liu, 2006; Mertens and Darnell, 2007). STAT3 may also be

phosphorylated at Ser727 by Ser kinases such as MAP kinases. Additional PTMs on STAT3 include Lys acetylations, which are regulated by

acetyltransferases (like p300/CBP) and deacetylases (like HDACs) and methylations, which are regulated by methyltransferases (like EZH2 or

SET9) and demethylases (like LSD1). These PTMs may occur in the cytoplasm or in the nucleus. Overall, multiple isoforms of STATS with different

sets of PTMs (two are represented on the left) can be present in the nucleus, each with its own transcriptional activity. Even unphosphorylated

STAT3 may activate the transcription of some genes. Finally, STAT3 performs non-canonical functions through non-transcriptional mechanisms

(right). STAT3 contributes to the maintenance of cellular shape and migration by preventing stathmins (st) from sequestering tubulin and

destabilizing microtubule networks. STAT3 is also present in the mitochondria where it regulates energy production, antioxidant defense and

apoptosis. The phosphorylation of Ser727 appears to be important for these functions (Yang and Rincon, 2016). STAT3 also represses autophagy

by inhibiting PKR and stabilizes heterochromatin by binding to HP1. The JAK–STAT3 pathway is inhibited by at least three mechanisms: (i)

dephosphorylation of the receptors, JAKs and STAT3 by phosphatases like SHP2, (ii) direct inhibition of JAKs by SOCS proteins and (iii) inhibition

of DNA binding by PIAS in the nucleus. It is important to note that most of these cascades, PTMs and non-canonical functions have been primarily

studied in cell types other than astrocytes. They are rather unexplored in the context of astrocyte reactivity. Insert: STAT3 is composed of several

functional domains: the N terminal domain (N), the coiled-coiled domain (CC), the DNA binding domain (DNA) and the linker domain (LK). The SH2

domain binds to phospho-Tyr on the receptor and on other STATs for dimer formation. The transactivator domain (TA) is responsible for

transcriptional induction. Tyr705 (Y705) and Ser727 (S727) are represented, as well as the main Lys that are acetylated or methylated.

Ac = acetylation; M =methylation; P = phosphorylation; K = lysine; S = serine; Y = tyrosine. For other abbreviations, see main text.
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experimental conditions (stimulus, promoter studied, cell

type), phosphorylation at Ser727 has positive or negative

effects on Tyr705-dependent transcription (Decker and

Kovarik, 2000). Activation of STAT3 via P2Y receptors

was reported in astrocyte cultures, resulting in the phospho-

rylation of both Tyr705 and Ser727 (Washburn and Neary,

2006). Other toxic stimuli were reported to trigger Ser727

phosphorylation like TBI (Oliva et al., 2012, see Fig. 2), or

lipopolysaccharide (LPS, Moravcova et al., 2016).
Lastly, besides phosphorylations, STAT3 is subjected

to multiple other post-translational modifications (PTM,

see Fig. 1) that modulate its transcriptional activity (Lim

and Cao, 2006). STAT3 is acetylated on several Lysine

(Lys) residues. Acetylation levels are regulated by the

balance of activity between histone acetyl-transferases like

p300/CREB binding protein and deacetylases like histone

deacetylases (HDAC, Zhuang, 2013). Acetylation of

Lys685 by p300 promotes STAT3 dimerization, nuclear
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localization and transcriptional activation (Wang et al.,

2005; Yuan et al., 2005). STAT3 acetylation was recently

observed in hypothalamic neurons (Chen et al., 2015)

and cultured microglia (Eufemi et al., 2015) but its physio-

logical role in astrocytes is largely unexplored. STAT3

may also be methylated on several Lys residues, which

influences the pattern of genes regulated by STAT3

(Yang et al., 2010; Kim et al., 2013; Dasgupta et al.,

2015). In vitro studies suggest that even

non-phosphorylated STAT3 is able to increase the

transcription of specific genes (Yang and Stark, 2008).

Overall, STAT3 represents a hub for multiple signaling

cascades that converge towards the nucleus to modulate

transcriptional activity.

STAT3 has non-canonical functions independent of
transcription

Another layer of complexity in STAT3 signaling was

discovered more recently, when STAT3 was found to be

more than a simple transcription factor (see, Gao and

Bromberg, 2006, and Fig. 1). In the nucleus, STAT3 also

induces global chromatin remodeling (Li, 2008). STAT3 is

able to interact with microtubules to regulate their stability

(Ng et al., 2006, and section ‘‘STAT3 modulates astrocyte

morphology and migration”). In the cytoplasm, STAT3

may also participate in the control of the autophagic flux

by binding to protein kinase R (PKR, Shen et al., 2012,

and section ‘‘Other important functions for STAT3 in

astrocytes”) or contribute to long term depression in hip-

pocampal neurons, by yet unknown mechanisms inde-

pendent of transcription (Nicolas et al., 2012). Last,

STAT3 is found in mitochondria where it modulates their

functions (Yang and Rincon, 2016, and section ‘‘STAT3

regulates mitochondrial functions”).
Box 1: An extensive toolbox to study the JAK–STAT3 pathway

There are many molecular tools and techniques to study the JA

A. To evidence the activation of the pathway with biochemical & hi

Standard and widely used techniques applied to in vitro or in vivo sam

� Detection of phosphorylated active forms (e.g. gp130, JAK, STAT3). Phospho

immunostaining on slices, cultured cells or cell suspensions for cytometry analys

� Detection of STAT3 nuclear translocation by immunostaining or subcellular fracti

� Detection of transcriptional induction of target genes by RT-qPCR (e.g. socs3, s

� Detection of STAT3 binding to specific DNA sequences by electromobility shift a

B. To monitor the activity of the pathway with reporter systems
� To monitor transcriptional induction: Consensus SRE (TTG(N)3CAA), coupled

tein or an enzyme whose activity is easily measured (e.g. luciferase, alkaline phosp

but, they could be used to produce viral vectors (Gabel et al., 2010) to infect bra

� To monitor STAT3 intracellular trafficking: STAT3 is tagged with a fluorescen

time-lapse fluorescent microscopy or fluorescent recovery after photobleaching (

� To monitor the formation of protein complexes: Förster resonance energy tra

tions, for example, when STAT3 dimerizes (Kretzschmar et al., 2004) or when JAK

C. To modulate the JAK–STAT3 pathway
� Pharmacological inhibitors: They are numerous inhibitors of JAKs and STAT

immune diseases (Yu et al., 2009; O’Shea et al., 2013). AG490 and Stattic ar

(Meydan et al., 1996; Schust et al., 2006). Their use may be limited by poor blood

cell types in the brain and periphery.

� Conditional KO: Given the important developmental and peripheral roles of the p

of the Cre recombinase to astrocytes by specific promoters such as the gfap prom

window of recombination with tet-operated promoters or by using tamoxifen indu

� Expression of inhibitors or dominant negative mutants: Several mutant form

[e.g. STAT3Y705F, STAT3D with a mutation in the DNA binding domain (Nakajim

expression of endogenous inhibitors like SOCS3 in astrocytes prevents STAT3 a

� Expression of constitutively active mutants: Introduction of two cysteine res

mutant that should be capable of auto-dimerization by disulfide bonds (Bromberg

be phosphorylated to bind DNA, but it does so with greater efficacy (Li and Shaw
It is important to note that most of these alternative,

non-transcriptional STAT3 functions have been

characterized in cancer and immune cells in vitro (Mohr

et al., 2012). Whether they also occur in astrocytes

in situ, is mostly unknown.
Retro-controls on the JAK–STAT3 pathway

The JAK–STAT3 pathway is tightly regulated by

phosphatases, suppressors of cytokine signaling (a

family of eight members SOCS1–7 and CIS) and protein

inhibitors of activated STAT (PIAS) (Heinrich et al.,

2003, and see Fig. 1). Protein Tyr phosphatases like

Src homology 2 domain-containing phosphatase 2

(SHP2) terminate signal transduction at the different steps

of the pathway. They may dephosphorylate the receptor,

JAKs or STAT3, including within the nucleus (Heinrich

et al., 2003; Mertens and Darnell, 2007). SOCS proteins

inhibit JAK–STAT3 signaling by two mechanisms: they

either promote ubiquitination of JAKs and their associated

receptors, targeting them for proteasome degradation or

they directly inhibit JAK activity (Babon et al., 2014).

The second mechanism is more prominent in the case

of SOCS1 and 3, the two most studied SOCSs (Babon

et al., 2014). SOCS3 is a very efficient inhibitor of the

JAK2–STAT3 pathway, thanks to its capacity to bind

JAK2 and the activated, phosphorylated receptor con-

comitantly, acting as a pseudo-substrate for JAK2

(Kershaw et al., 2013). SOCS3 expression is strongly

induced by the JAK–STAT3 pathway, operating a retro-

control on the pathway. On the contrary, the expression

of PIAS is constitutive. PIAS3 interacts with phosphory-

lated STAT3 in the nucleus and reduces its binding to

DNA (Chung et al., 1997; Lim and Cao, 2006).
K–STAT3 pathway in the brain.

stological techniques:

ples include (see Fig. 2 for examples):

-specific antibodies may be used for western blotting, ELISA or

is.

onation.

tat3).

ssay or chromatin immunoprecipitation.

with a minimal promoter control the expression of a fluorescent pro-

hatase, b-galactosidase). Such reporters are generally used in vitro

in cells or to generate transgenic reporter mice.

t protein, and its subcellular location and trafficking is monitored by

FRAP, Selvaraj et al., 2012).

nsfer (FRET) imaging can be used to reveal protein-protein interac-

2 is activated at the growth hormone receptor (Brooks et al., 2014).

3. They were initially developed for the treatment of cancer and

e two commonly used inhibitors of JAK2 and STAT3 respectively

brain barrier penetration and their potential side-effects on multiple

athway, conditional recombination is required to restrict expression

oter (Herrmann et al., 2008). It is also advisable to control the time

cible Cre (Pfrieger and Slezak, 2012).

s of STAT3 have been developed. They act as dominant negatives

a et al., 1996; He et al., 2005; Kohro et al., 2015)]. Alternatively,

ctivation (Ben Haim et al., 2015b).

idues by point mutation in STAT3 was used to create STAT3-C, a

et al., 1999). Recent studies suggest that STAT3-C still needs to

, 2006).
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THE JAK–STAT3 PATHWAY IS A UNIVERSAL
INDUCER OF ASTROCYTE REACTIVITY

Astrocytes become reactive in response to various

pathological conditions affecting the CNS. While several

signaling cascades are found activated in reactive

astrocytes over the course of diseases or following

injuries (Kang and Hebert, 2011; Ben Haim et al.,

2015a), STAT3 appears as a key regulator of astrocyte

reactivity.
Activation of the JAK–STAT3 pathway in acute
diseases

STAT3 activation is detected by its phosphorylation,

nuclear translocation and/or nuclear accumulation

(Box 1). Activated STAT3 is observed in reactive

astrocytes in various acute injury models, including TBI

(Li and Shaw, 2006; Oliva et al., 2012 and see Fig. 2),

excitotoxicity (Acarin et al., 2000), neonatal white matter

injury (Nobuta et al., 2012), neuropathic pain (Tsuda

et al., 2011), axotomy (Xia et al., 2002; Schubert et al.,

2005; Tyzack et al., 2014), infection with scrapie (Na

et al., 2007), glaucoma (Zhang et al., 2013), epilepsy

(Choi et al., 2003b; Xu et al., 2011), ischemia (Justicia

et al., 2000; Choi et al., 2003a) and after exposure to neu-

rotoxins (Sriram et al., 2004; O’Callaghan et al., 2014) or

LPS (Gautron et al., 2002). The activation of upstream

cascades was explored in some studies: JAK2 and the

cytokine receptor gp130 are also phosphorylated in a rat

TBI model (Oliva et al., 2012, and see Fig. 2); JAK2

(but not JAK1 or Tyk2) is also activated by the injection

of the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyr

idine (MPTP, Sriram et al., 2004).

Overall, there is ample evidence that activation of the

JAK–STAT3 pathway is associated with astrocyte

reactivity. However, to demonstrate that STAT3 is really

required for astrocyte reactivity, it is necessary to

interfere with it (see Box 1). This was nicely

demonstrated in the case of the glial scar, a dense

structure of cells that aggregate at the site of

parenchyma disruption (Sofroniew, 2009; Pekny and

Pekna, 2014; Ben Haim et al., 2015a). Conditional

knock-out (KO) of stat3 in reactive astrocytes

(Nestin-Cre � stat3fl/fl) reduces glial scar formation while

socs3 deletion (Nestin-Cre � socs3fl/fl) has opposite

effects (Okada et al., 2006). Similarly, stat3 KO in astro-

cytes (Gfap-Cre � stat3fl/fl) attenuates GFAP upregulation

and disrupts glial scar formation after SCI (Herrmann

et al., 2008; Wanner et al., 2013).

STAT3 is also responsible for astrocyte reactivity in

acute disease models without glial scarring. For

example, pharmacological inhibition of JAK2 decreases

STAT3 activation and astrocyte reactivity after hypoxic-

ischemic damage in the neonatal mouse brain (Hristova

et al., 2016), in the epileptic rat hippocampus (Xu et al.,

2011), after MPTP injection (Sriram et al., 2004) and in

a model of peripheral nerve injury (Tsuda et al., 2011).

Khoro et al. later used viral gene transfer of a dominant

negative (DN) form of STAT3 to inhibit this cascade more

specifically in spinal astrocytes after peripheral nerve
injury in mice. They demonstrate that this pathway

contributes to astrocyte reactivity, as the mRNA levels

of gfap, vimentin and socs3 were reduced by

STAT3-DN (Kohro et al., 2015). Genetic studies based

on Gfap-Cre � stat3fl/fl transgenic mice further estab-

lished the importance of STAT3 for astrocyte reactivity.

By contrast to controls, transgenic mice display reduced

astrocyte hypertrophy and GFAP upregulation following

neonatal white matter injury in the brain (Nobuta et al.,

2012) and spinal cord (Monteiro de Castro et al., 2015),

axotomy (Tyzack et al., 2014), in a model of chronic itch

(Shiratori-Hayashi et al., 2015) or after exposure to a

range of neurotoxins causing neuronal death in different

brain regions and species (O’Callaghan et al., 2014).

Interestingly, STAT3 involvement in astrocyte reactivity

is conserved in Drosophila. Stat92E, the Drosophila
homolog of STAT3, controls glial reactivity after axonal

injury (Doherty et al., 2014).

These results show that STAT3 is a central regulator

of glial reactivity, conserved across evolution, as well as

between disease conditions.
Activation of the JAK–STAT3 pathway in ND

In progressive pathological conditions such as ND, where

astrocyte reactivity, neuroinflammation and neuronal

death are gradually established over years, STAT3

appears to play a central role as well. STAT3 activation

is reported in reactive astrocytes of patients with MS (Lu

et al., 2013) or amyotrophic lateral sclerosis (ALS,

Shibata et al., 2009). Similarly, STAT3 activation is found

in mouse models of ALS (Shibata et al., 2010) and Alzhei-

mer’s disease (AD, Ben Haim et al., 2015b and see

Fig. 2), in pharmacological models of Parkinson’s disease

(PD, Sriram et al., 2004; O’Callaghan et al., 2014) and in

mouse and primate models of Huntington’s disease (HD,

Ben Haim et al., 2015b).

While STAT3 activation is consistently detected in

reactive astrocytes in ND models, few studies have

investigated its role in the establishment of astrocyte

reactivity (see Ben Haim et al., 2015a for review). Phar-

macological inhibition of JAK2 and astrocyte-specific KO

of stat3 in the MPTP model of PD attenuates astrocyte

reactivity (Sriram et al., 2004; O’Callaghan et al., 2014).

A similar reduction in reactivity is observed with JAK2 inhi-

bition in a pharmacological model of HD based on striatal

injection of an excitotoxin (Ignarro et al., 2013). To

improve cell-type specificity, our group used lentiviral vec-

tors to overexpress SOCS3 selectively in astrocytes, in

mouse models of AD and HD (Ben Haim et al., 2015b).

SOCS3 overexpression prevented STAT3 activation and

GFAP upregulation in astrocytes of AD and HD mice. Fur-

thermore, SOCS3-expressing astrocytes displayed

resting-like morphology, demonstrating that the

JAK–STAT3 pathway is a key pathway mediating

astrocyte reactivity in ND models.

The JAK–STAT3 pathway is a central mediator of

astrocyte reactivity in a variety of pathological conditions

in the CNS. What are the functional outcomes of this

cascade in reactive astrocytes?



Fig. 2. The JAK–STAT3 pathway is activated in reactive astrocytes in two models of brain disease. A In a model of TBI, the phosphorylated

form of STAT3 (red) accumulates in reactive astrocytes overexpressing GFAP (green). Sham-operated rats display low GFAP and no phospho-

STAT3 immunoreactivity. B. In the cortex exposed to TBI, activation of the JAK–STAT3 pathway is also detected by accumulation of total STAT3 in

the nucleus of astrocytes. C. In this model, Oliva et al. explored the upstream cascades responsible for STAT3 activation. TBI induces

phosphorylation of the gp130 receptor (pgp130), as well as JAK2 (pJAK2) but not JAK1 (pJAK1). Interestingly, STAT3 is phosphorylated at Tyr705

as well as Ser727 (A, B: 6 h post TBI, C: 3 h post TBI, modified from, Oliva et al., 2012). In more progressive models, the detection of STAT3

phosphorylation is sometimes difficult, as it is usually quite transient and prone to post-mortem dephosphorylation (O’Callaghan and Sriram, 2004).

Yet, accumulation of STAT3 in the nucleus of reactive astrocytes is observed in many disease models (Ben Haim et al., 2015a). D. For example,

STAT3 activation (red) is observed in GFAP+ reactive astrocytes (green), in the hippocampus of APP/PS1dE9 mice, a transgenic model of AD.

Reactive astrocytes with strong STAT3 activation are especially visible around amyloid plaques (star). GFAP and STAT3 staining is low in wildtype

(WT) littermates. Scale bars: A, B = 50 lm, D= 25 lm.
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WHAT DOES STAT3 DO IN ASTROCYTES?

STAT3 induces the expression of intermediate
filament proteins

One of the best-known target genes of STAT3 is gfap,
whose induction in astrocytes is the primary hallmark of

their reactive state (Hol and Pekny, 2015). As described

in section ‘‘The JAK–STAT3 pathway is a universal indu-

cer of astrocyte”, pharmacological inhibition or genetic

invalidation of stat3, consistently prevents or reduces

the increase in gfap mRNA and/or protein levels in astro-

cytes following induction of reactivity. In fact, levels of

GFAP are also reduced by STAT3 inhibition or invalida-

tion in non-lesioned groups (Herrmann et al., 2008;

Wanner et al., 2013; Levine et al., 2015), suggesting that

STAT3 controls the basal expression of GFAP. The

human gfap promoter is well characterized; it displays at
least one SRE that contributes to high GFAP expression

in multiple brain regions (Yeo et al., 2013). These SRE

are conserved in the rodent gfap promoter (Nakashima

et al., 1999). Vimentin, another intermediate filament

characteristic of reactive as well as immature astrocytes,

is similarly regulated by STAT3 (Herrmann et al., 2008).

Interestingly, STAT3-mediated induction of

intermediate filaments in reactive astrocytes

recapitulates an important signaling cascade occurring

at the time of astrogliogenesis (Kanski et al., 2014). The

JAK–STAT3 pathway is inhibited during neurogenesis

and activation of STAT3 coincides with the expression

of glial markers GFAP and S100b at E18.5 in mice (He

et al., 2005). STAT3 binds to the gfap promoter and

increases GFAP expression in cortical progenitors

(Bonni et al., 1997). STAT3-dependent induction of GFAP

is modulated by the pattern of histone and DNA methyla-
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tion of the gfap promoter (Takizawa et al., 2001; Song and

Ghosh, 2004).
STAT3 controls proliferation of a subset of reactive
astrocytes

The JAK–STAT3 pathway is involved in normal

proliferation of neuronal precursor cells during

development (Kim et al., 2010) and abnormal proliferation

of cancer cells (de la Iglesia et al., 2009; Yu et al., 2009).

Does STAT3 also promote the proliferation of reactive

astrocytes?

Recent studies show that contrary to the common

belief, proliferation of reactive astrocytes is quite limited,

being transient or involving only a small percentage of

astrocytes (5–10%), especially in chronic diseases or

injuries that do not involve rupture of the blood brain

barrier (Dimou and Gotz, 2014). These subsets of prolifer-

ative astrocytes are located in specific niches, in contact

with the vasculature (Bardehle et al., 2013) or the lesion

core (Wanner et al., 2013; LeComte et al., 2015) and dis-

play stem cell properties (Sirko et al., 2013). There is

some indirect evidence that STAT3 controls the prolifera-

tion of reactive astrocytes. JAK inhibitors reduce the num-

ber of proliferating reactive astrocytes following spinal

nerve injury (Tsuda et al., 2011). The formation of the glial

scar, which is composed of newly proliferated astrocytes,

is also altered in Gfap-Cre � stat3fl/fl transgenic mice

(Wanner et al., 2013; Anderson et al., 2016).

By which mechanisms does STAT3 control astrocyte

proliferation? In cancer cells, it is well known that

STAT3 promotes the expression of cell cycle genes, like

cyclin D1 (Yu et al., 2009), and this regulation also occurs

in cultured astrocytes (Sarafian et al., 2010). In addition,

STAT3 activates the expression of anti-apoptotic genes

(Sarafian et al., 2010, see section ‘‘STAT3 regulates mito-

chondrial functions”), which may promote the survival of

proliferating reactive astrocytes. More recently, Lecomte

et al. showed that following middle cerebral artery occlu-

sion (MCAO), STAT3 is activated within a subset of reac-

tive astrocytes sensitive to Notch signaling. STAT3

promotes the expression of the endothelin B receptor,

which acts in an autocrine manner to stimulate the prolif-

eration of this subset of cells (LeComte et al., 2015).

Of note, it was shown recently that the morphogen

Sonic Hedgehog (Shh), which is abundant in the

cerebrospinal fluid, also controls the proliferation of

reactive astrocytes and their stem cell potential after

invasive injuries (Sirko et al., 2013). Whether and how

the Shh cascade interacts with STAT3 in astrocytes is

unknown.
STAT3 regulates the secretome of reactive astrocytes

In immune cells, STAT3 is an established transcriptional

activator of cytokines (Yu et al., 2009). In astrocytes as

well, STAT3 regulates the production of cytokines and

chemokines during reactivity.

Pharmacological inhibition of the JAK–STAT3

pathway reduces mRNA levels of interleukin 6 (IL-6),

IL-1b, IL-4 and vascular endothelial growth factor by

astrocytes made reactive by high glucose concentration
in culture (Wang et al., 2012). Likewise, expression of a

siRNA against STAT3 reduces LPS-mediated induction

of the chemokines Ccl20, Cx3cl1, Cxcl5 and Cxcl10 in pri-

mary astrocytes. Similar effects are observed in vivo, after
intrathecal injection of the STAT3 inhibitor Stattic, in a

LPS model of inflammation (Liu et al., 2013).

Lipocalin-2 (Lcn2) is one of the proteins released by

reactive astrocytes (Zamanian et al., 2012). Its specific

function in the brain is still unclear (Jha et al., 2015), but

it may serve as an inflammatory mediator, as shown

under chronic itch conditions (Shiratori-Hayashi et al.,

2015). Lcn2 production by reactive astrocytes is depen-

dent upon STAT3, as demonstrated by pharmacological

inhibition in cultured astrocytes and astrocyte-specific

KO of stat3 in mice (Shiratori-Hayashi et al., 2015).

Molecules released by reactive astrocytes may further

activate microglial cells or recruit immune cells from the

periphery, contributing to a feed forward effect on

neuroinflammation. Indeed, specific inhibition of the

JAK–STAT3 pathway in astrocytes by SOCS3 reduces

the mRNA levels of the microglial markers Iba1 and

CD11b in a mouse model of HD (Ben Haim et al.,

2015b). Likewise, the astrocyte-specific KO of stat3
reduces microglial reactivity induced by hypoxia–is-

chemia (Hristova et al., 2016). The factors released by

astrocytes in a STAT3-dependant manner do not only

activate microglial cells but also modulate their activity.

For example, reactive astrocytes release yet unidentified

factors that reduce the production of transforming growth

factor b by microglia in culture (Nobuta et al., 2012).

The STAT3-dependent release of proteins by reactive

astrocytes not only impacts microglial cells but also

neurons. For example, facial nucleus axotomy increases

mRNA levels of thrombospondin-1 (tsp1, a secreted

protein promoting synapse formation and stability during

development) in reactive astrocytes. This induction is

reduced in Gfap-Cre � stat3fl/fl mice, which is

associated with decreased synapse number and activity

in neighboring neurons. Therefore, reactive astrocytes

produce TSP1 in a STAT3-dependent manner, as

further demonstrated by the direct binding of STAT3 to

the tsp1 promoter in astrocyte cultures (Tyzack et al.,

2014). Recently, Anderson et al. showed that reactive

astrocytes forming the glial scar after SCI, express a

range of molecules in a STAT3-dependent manner (like

chondroitin surface proteoglycans), which overall have

axon-growth promoting effects (Anderson et al., 2016).

STAT3 modulates astrocyte morphology and
migration

STAT3 plays a role in the migration of multiple cell types

including glioblastoma cells (Zhang et al., 2015) and reac-

tive astrocytes (Okada et al., 2006). The deletion of Stat3
in reactive astrocytes (Nestin-Cre � stat3fl/fl) reduces the

migration of reactive astrocytes after in vitro scratch

injury. Impaired migration after SCI could be responsible

for the altered wound closure and enhanced infiltration

of inflammatory cells observed in these mice. The oppo-

site is observed in Nestin-Cre � socs3fl/fl mice whose

astrocytes display a quicker migration in vitro and an effi-

cient compaction of the lesion in the spinal cord (Okada
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et al., 2006). In different cell types, STAT3 regulates the

transcription of genes implicated in matrix remodeling

such as matrix metallo-proteinases MMP-1, MMP-2 and

MMP-10 and the zinc transporter LIV-1, which regulates

the expression of the adhesion molecule E-cadherin

(Gao and Bromberg, 2006). In the spinal cord as well,

Nestin-Cre � stat3fl/fl mice exposed to SCI display lower

mRNA levels of LIV-1 than wild-type littermates, and a

concomitant increase in E-cadherin levels (Okada et al.,

2006). The impairment of cell migration may thus be

explained by the altered expression of cell adhesion pro-

teins in absence of STAT3. But STAT3 may also regulate

migration by non-canonical mechanisms. In neuronal cell

lines and in fibroblasts, STAT3 was shown to interact with

stathmin, a cytoplasmic protein that binds to tubulin and

prevents its assembly into microtubules (Ng et al.,

2006). The interaction of STAT3 with stathmin is also

observed in cultured motoneurons, it promotes micro-

tubule stability and axonal elongation. Intriguingly, this

interaction requires Tyr705 phosphorylation but no tran-

scriptional regulation (Selvaraj et al., 2012). It is currently

unknown whether such non-canonical effects of STAT3

are involved in the migration of reactive astrocytes.

In fact, reactive astrocytes display limited capacity to

migrate towards an injury site (Bardehle et al., 2013;

Wanner et al., 2013); instead, astrocyte reactivity is char-

acterized by striking morphological changes (hypertrophy,

reorientation of processes). Such morphological plasticity

appears to be regulated by STAT3 as well. During glial

scar formation following SCI, the reorientation of astro-

cyte processes parallel to the lesion and the formation

of bundles between apposed astrocytes are important to

‘‘corral” immune cells and fibroblasts. These morphologi-

cal changes are disturbed in Gfap-Cre � stat3fl/fl mice

(Wanner et al., 2013). Following axotomy of the facial

nucleus, reactive astrocytes increase their coverage of

axotomized neuronal cell bodies, a response found

altered in stat3 KO astrocytes (Tyzack et al., 2014). Sim-

ilarly, STAT3 induces the expression of growth associ-

ated protein 43, which contributes to increased process

arborization in primary rat astrocytes exposed to LPS

(Hung et al., 2016), confirming STAT3 importance for dif-

ferent types of morphological rearrangements. It is note-

worthy that in neurons, STAT3 is also an important

regulator of morphology and it promotes axonal regrowth

(Moore and Goldberg, 2011).

STAT3 regulates mitochondrial functions

Interestingly, a pool of STAT3 proteins is present at the

mitochondria (mSTAT3) and interacts with the

complexes I and II of the electron transport chain (ETC)

in the murine heart and liver (Wegrzyn et al., 2009). The

KO of stat3 in cultured B cells reduces complex I and II

activities, which is restored by viral gene transfer of stat3
(Wegrzyn et al., 2009). Strikingly, the effects of mSTAT3

on the ETC are mediated by its mitochondrial localization

and its phosphorylation on Ser727 and not by its tran-

scriptional activity. In other experimental conditions how-

ever, STAT3 does modulate metabolism by

transcriptional regulation of genes involved in glycolysis

and mitochondrial respiration. In particular, STAT3
induces the expression of hypoxia inducible factor 1a,
which promotes glycolysis over mitochondrial respiration

(Demaria et al., 2010).

Does STAT3 play similar roles in astrocytes? Sarafian

et al. found that cultured astrocytes from Gfap-

Cre � stat3fl/fl mice display lower mitochondrial mass

and membrane potential and reduced ATP production

(Sarafian et al., 2010). Inhibition of JAK2 by AG490 in

wildtype astrocytes reproduces the decrease in mitochon-

drial membrane potential, suggesting that STAT3 oper-

ates through a canonical cascade involving JAK2

phosphorylation. The expression of several ETC enzymes

is decreased in stat3 KO astrocytes, further confirming

that STAT3 regulation of astrocyte metabolism is con-

trolled at the transcriptional level.

STAT3 may also lower the production of reactive

oxygen species (ROS) by the mitochondria, although

the mechanisms are still unclear (Szczepanek et al.,

2012; Yang and Rincon, 2016). Indeed, stat3 KO astro-

cytes display increased generation of ROS and reduced

levels of the antioxidant glutathione (Sarafian et al.,

2010). STAT3 also promotes ROS detoxification by acti-

vating the expression of several antioxidant genes. For

example in the mouse brain, STAT3 directly binds to the

promoter of the manganese superoxide dismutase

(MnSOD) gene, a mitochondrial enzyme that metabolizes

superoxide anions (Jung et al., 2009). Inhibition of the

JAK2–STAT3 pathway by AG490 or STAT3 decoy DNA

in leptin-treated cultures of hippocampal neurons reduces

MnSOD expression and increases ROS production (Guo

et al., 2008). Other transcriptional targets of STAT3

include the uncoupling proteins (UCP), which are able to

decrease mitochondrial ROS production (Negre-

Salvayre et al., 1997). In astrocyte cultures treated with

leukemia inhibitory factor (LIF), STAT3 is activated, binds

to the ucp2 promoter and increases its transcription. This

new pool of ucp2 mRNA can be later mobilized by astro-

cytes exposed to oxidative stress to quickly produce

UCP2 protein (Lapp et al., 2014).

Lastly, STAT3 may have an anti-apoptotic action on

the mitochondria. In cardiomyocytes, STAT3 prevents

the formation of the mitochondrial permeability transition

pore (Boengler et al., 2010) and enhances cell resistance

to apoptotic stimuli (Szczepanek et al., 2012). As for

metabolic regulation and antioxidant defense, the anti-

apoptotic effect of STAT3 is governed both by a direct

action at the mitochondria, through interactions with com-

ponents of the mitochondrial permeability transition pore,

and by transcriptional regulation in the nucleus

(Szczepanek et al., 2012). STAT3 promotes the expres-

sion of anti-apoptotic genes like bcl-xl in neurons (Guo

et al., 2008) and of bcl2 in astrocytes (Sarafian et al.,

2010; Gu et al., 2016).

Other important functions for STAT3 in astrocytes

There are a few additional functions regulated by STAT3

that are important for brain homeostasis or response to

injury.

Ozog et al. found that activation of the JAK2–STAT3

pathway by ciliary neurotrophic factor (CNTF) increases

mRNA and protein levels of connexin 43 (Cx43),
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resulting in an enhanced gap junction-coupling between

astrocytes (Ozog et al., 2004). They identified three

putative SRE on the cx43 promoter. Interestingly,

CNTF-mediated increase in Cx43 levels is also observed

in reactive astrocytes of the rat brain (Escartin et al.,

2006). Gap junction coupling plays key roles in the normal

and diseased brain, modulating synaptic transmission

and metabolic supply to neurons (Giaume et al., 2010).

Recently, STAT3 was found to regulate autophagy, a

key homeostatic mechanism whose alteration is linked to

many brain diseases (Choi et al., 2013). Cytoplasmic

STAT3, through a transcription-independent mechanism

involving the binding to PKR, tonically suppresses autop-

hagy in cell lines (Shen et al., 2012, see Fig. 1). STAT3

also regulates the expression of genes involved in the

control of the autophagic flux (You et al., 2015).

Finally, Doherty et al. reported that Stat92E regulates

the ability of glial cells to engulf debris of dead neurons by

enhancing the expression of the Draper receptor in

Drosophila (Doherty et al., 2014). Interestingly, they

report that the upstream activator of Stat92E is the

G-protein Rac1, and not the JAK homologue, suggesting

that in Drosophila glia, non-canonical pathways operate

as well.

Overall, the range of astrocyte functions regulated by

STAT3 is extremely large, and most of them appear to be

of great importance for neuronal survival in disease

conditions.
HOW DOES STAT3 GENERATE SO MANY
FUNCTIONAL OUTCOMES?

Previous paragraphs illustrate a puzzling fact: a unique

pathway is able to control diverse functions ranging from

cell proliferation to morphological remodeling in many

cell types and organs. Even within reactive astrocytes,

STAT3 mediates various effects depending on the

disease, brain region or model studied. How does a

single protein trigger so many functional outcomes?

An easy explanation is that STAT3 does not act alone.

Besides the JAK–STAT3 pathway, other signaling

cascades may be activated in reactive astrocytes (Buffo

et al., 2010; Kang and Hebert, 2011; Ben Haim et al.,

2015a) and STAT3 may interact with other transcription

factors in the nucleus (Hutchins et al., 2013).
Interactions between the JAK–STAT3 pathway and
other cascades

For example, the MAPK pathways and the nuclear factor-

kappa-light-chain-enhancer of activated B cells (NF-jB)
pathway are sometimes found activated in reactive

astrocytes (Ben Haim et al., 2015a). For example, IL-6

activates the MAPK and STAT3 pathways, and the equi-

librium between the two is controlled by a Tyr motif on the

IL-6 receptor (Eulenfeld et al., 2012). Many interactions

may take place between the JAK–STAT3 and these other

pathways (Yu et al., 2009): they may act in synergy on the

same target genes, activate one another in cascade (e.g.

STAT3 target genes are activators of the NF-jB pathway,
and reciprocally) or regulate one other (e.g. MAPKs phos-

phorylate STAT3 on Ser727, modulating its transcriptional

activity). Conversely, these pathways can inhibit one

another or compete for binding sequences on gene pro-

moters (Oeckinghaus et al., 2011).

The interaction between the JAK–STAT3 pathway

and other signaling cascades is particularly well studied

in the context of astrogliogenesis. The JAK–STAT3

pathway interacts with the fibroblast growth factor 2

pathway (Song and Ghosh, 2004), the Notch/Hes path-

way (Kamakura et al., 2004), and the bone morpho-

genetic protein-2/Smad1 pathway (Nakashima et al.,

1999), to activate the gfap promoter during development

(see, Kanski et al., 2014 for a recent review).

The pattern of activation of these cascades in a

disease-specific manner may underlie the diverse

transcriptional and functional outcomes observed in

reactive astrocytes.
A signaling code

Even without resorting to interactions with other signaling

cascades, the canonical JAK–STAT3 pathway has

already a large potential for complexity and signaling

subtleties. There are many ligands, acting on different

receptors, activating several JAKs; STAT3 can form

heterodimers with other STATs, and the pathway is

retro-controlled by several inhibitors (see details in

section ‘‘The JAK–STAT3 pathway”). New modulators or

interactors of the pathway are still being discovered

(Icardi et al., 2012; Matsuda et al., 2015). Overall, there

is an immense potential for signaling complexity within

the JAK–STAT3 pathway (Ernst and Jenkins, 2004).

The upstream ligands activating STAT3 influence the

resulting transcriptional and functional effects. For

example, IL-6 and IL-10, two cytokines relying on

STAT3 as their effector, have opposite effects on

inflammatory processes. Computational modeling and

experiments on dendritic cells revealed that this could

be explained by different temporal profiles of STAT3

activation, resulting in different transcriptional outcomes

(Braun et al., 2013). An emerging theme in cell signaling

is that the intensity, duration, frequency and pattern of

receptor stimulation encode information that translates

into different transcriptional profiles (Lemmon et al.,

2016).

Another level of complexity resides in the numerous

PTMs on STAT3 (see Fig. 1). The pattern of PTMs

constitutes a molecular code that significantly impacts

the profile of genes regulated at a given time by STAT3

(see section ‘‘Additional branching points on the

pathway increase the complexity of STAT3 signaling

cascades”).

Finally, the non-canonical actions that STAT3

performs outside of the nucleus may further diversify

STAT3 functional outputs in reactive astrocytes. How

these non-canonical functions are regulated in the

context of astrocyte reactivity is an open question.

Overall, the JAK–STAT3 pathway is composed of

multiple elements that can generate significant signaling
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complexity and contribute to the observed diversity in

astrocyte reactivity.
Differential abilities to engage in STAT3 signaling

The functional outcomes mediated by STAT3 may be

influenced by the cell’s ability to mediate STAT3

signaling. Indeed, depending on the specific status of

the cell, its response to the same stimulus on the

JAK–STAT3 pathway will be different. Many factors can

influence the capacity of a cell to efficiently operate the

JAK–STAT3 pathway, including the abundance of

pathway inhibitors, its epigenetic status, the activity of

molecular machinery involved in signal transduction

(e.g. nuclear import, ATP-dependent phosphorylation)

and termination (e.g. nuclear export, phosphatase

activity, degradation by the proteasome).

For example, the JAK–STAT3 pathway will be more or

less active, depending on how much of SOCS and PIAS

inhibitors are present and located at the right place to

inhibit this pathway. SOCS3 is strongly induced by the

JAK–STAT3 pathway, depending on the ‘‘signaling

history” of the cell, the abundance of SOCS3 will vary

(Linossi and Nicholson, 2015).

STAT3 binding to promoters is influenced by DNA and

histone methylation, a regulation well described in the

context of astrogliogenesis (Kanski et al., 2014, and sec-

tion ‘‘STAT3 induces the expression of intermediate fila-

ment proteins”). Therefore, it is expected that the

epigenetic status of the cell will impact the transcriptional

outcomes of the JAK–STAT3 pathway.

The disease context itself may influence how a cell is

able to respond to a stimulation of the JAK–STAT3

pathway. For example in Drosophila, the formation of

tau aggregates in glia reduces STAT-dependent

promoter activity (Colodner and Feany, 2010). Likewise,

the amyloid b protein reduces the activity of the JAK–

STAT3 pathway in neurons (Chiba et al., 2009).

Global impairment in the cell’s ability to engage in a

STAT3 response may occur in brain diseases. Several

elements of the JAK–STAT3 pathway are sensitive to

ROS, which are produced in many brain diseases

(Duhe, 2013). Likewise, there is a consistent alteration

in energy production in ND (Lin and Beal, 2006), which

could affect the multiple energy-dependent steps of this

cascade (e.g. phosphorylation, nuclear translocation,

transcriptional induction). The activity of the JAK–STAT3

pathway is reduced in white matter astrocytes exposed

to hypoxia (Raymond et al., 2011) and in the mouse brain

after MCAO (Jung et al., 2009), confirming the importance

of energy supply for proper STAT3 signaling. Finally, the

nucleocytoplasmic transport is altered in some ND, due to

the scavenging of key components of this system in toxic

protein aggregates (Da Cruz and Cleveland, 2016), and

this could directly prevent STAT3 signaling to the nucleus.

Therefore, depending on the disease and its stage of

evolution, astrocytes will have variable intrinsic

capabilities to trigger a STAT3-dependent response.

This probably also contributes to the significant

heterogeneity of the functional responses of reactive

astrocytes in each disease context.
CONCLUSIONS AND PERSPECTIVES

Over the last decade, it has become clear that the JAK–

STAT3 pathway, a signaling cascade initially described

in the immune system, is very important for astrocyte

development and response to injury. A thorough

molecular dissection of the multiple interactors and

regulators of this cascade has been performed in cell

lines. It is now time to integrate this knowledge in the

study of astrocyte response in vivo, and this is not a

simple task (see Box 2). STAT3 appears to orchestrate

numerous molecular and functional changes in reactive

astrocytes. Much remains to be done to understand how

a central signaling cascade mediates so many functional

outcomes in astrocytes.

Deciphering the molecular code of astrocyte reactivity

holds promising prospects for basic and medical science.

It would make it possible to understand how the brain

responds to each disease situation and to develop

novel, efficient and, specific therapeutic strategies.

Box 2: Future questions and challenges

� What are the endogenous activators of this pathway

during brain diseases (e.g. cytokines, growth factors,

danger associated molecular patterns)?

� What is the time course of activation of the JAK–STAT3

pathway in reactive astrocytes, in relation to microglial

activation or neuronal death?

� What are the effects of PTMs on STAT3 in reactive

astrocytes?

� What are the non-canonical functions of STAT3 in

reactive astrocytes, unrelated to transcriptional

regulation?

� Can we define the networks of signaling cascades that

control each specific functional state in reactive

astrocytes?

� Can this pathway be targeted for therapeutic

purposes?
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