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Climate mitigation from vegetation biophysical 
feedbacks during the past three decades
Zhenzhong Zeng1, Shilong Piao1,2,3*, Laurent Z. X. Li4, Liming Zhou5, Philippe Ciais6, Tao Wang2,3,
Yue Li1, Xu Lian1, Eric F. Wood7, Pierre Friedlingstein8, Jiafu Mao9, Lyndon D.Estes7,10,11, 
Ranga B. Myneni12, Shushi Peng1, Xiaoying Shi9, Sonia I. Seneviratne13 and Yingping Wang14

Satellite data show unequivocally that the land surface has been
greening for the past 30 years, and that leaf area index (LAI) has
increased by 8% globally6,7. This satellite-observed greening of the
Earth is supported by increased biomass from long-term forest
inventories8, model simulations6,9 and observed enhancement of
seasonal exchange of CO2 (ref. 10). The increased photosynthetic
removal of CO2 from the atmosphere and consequent carbon
sequestration potentially driven by this greening impose a negative
forcing on the climate system10,11. Yet this negative forcing from
the mitigation of atmospheric CO2 growth could be enhanced or
diminished by various biophysical feedbacks1–5,12–15. The biophysical
feedbacks are largely controlled by LAI, a variable that regulates
the amount of absorbed solar radiation by modifying albedo and

the magnitude of evapotranspiration through canopy resistance16.
The opposing effects of increased evapotranspiration (cooling)
and decreased albedo (warming) for a given increase of LAI
(refs 11,15), and further feedbacks through changes in cloud cover17,
atmospheric circulation and water recycling18, make unravelling the
fingerprint of the greening of the Earth on climate a major challenge
in climate research.

Biophysical feedbacks are reasonably well studied for the veg-
etation variations associated with land-use/land-cover change1–5.
Previous studies demonstrated that tropical afforestation atten-
uates warming locally through increasing evapotranspiration,
whereas boreal afforestation exacerbates warming through decreas-
ing albedo14. In particular, the Fifth Assessment Report (AR5) of
the United Nations Intergovernmental Panel on Climate Change
(IPCC) has evaluated the radiative forcing of land-surface changes
only from the perspective of surface albedo (−0.15 ± 0.10 W m−2;
ref. 1). However, biophysical feedbacks of the observed widespread
greening of the Earth during the past three decades6,7 have not
been examined to date. Here we quantify the response of land-
surface air temperature to this greening during the past 30 years
using a coupled land–atmosphere global climate model (GCM).
To separate the effects of vegetation biophysical feedbacks from
internal variability of the coupled climate system, we performed
four simulations using the IPSLCM GCM (ref. 19) prescribed with
different observed LAI and ocean sea-surface temperature (SST)
distributions (see Supplementary Table 1 and Methods).

In experiment (1) the differences between simulations,
LAIobs_OCNobs and LAIclim_OCNobs, isolate the fingerprint
of observed LAI changes (referred to as 1LAI) on climate (see
Methods for details). Figure 1a shows the 1LAI-induced global-
mean change in land-surface 2-m air temperature (Ta), deri-
ved from the difference between the two simulations. In res-
ponse to the greening, Ta significantly decreased at a rate of
−0.030 ± 0.006 ◦C per decade (p< 0.001) along with the increase
of LAI (0.04 ± 0.01 m2 m−2 per decade, p< 0.001). This trend is
very robust in the case of excluding the influence of significant
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The surface air temperature response to vegetation changes has 
been studied for the extreme case of land-cover change1–5; yet, it 
has never been quantified for the slow but persistent increase in 
leaf area index (LAI) observed over the past 30 years (Earth 
greening)6,7. Here we isolate the fingerprint of increasing LAI on 
surface air temperature using a coupled land–atmosphere global 
climate model prescribed with satellite LAI observations. We find 
that the global greening has slowed down the rise in global land-
surface air temperature by 0.09±0.02℃ since 1982. This net 
cooling effect is the sum of cooling from increased evapo-
transpiration (70%), changed atmospheric circulation (44%), 
decreased shortwave transmissivity (21%), and warming from 
increased longwave air emissivity (-29%) and decreased albedo 
(-6%). The global cooling originated from the regions where LAI 
has increased, including boreal Eurasia, Europe, India, northwest 
Amazonia, and the Sahel. Increasing LAI did not, however, 
significantly change surface air temperature in eastern North 
America and East Asia, where the effects of large-scale atmospheric 
circulation changes mask local vegetation feedbacks. Overall, the 
sum of biophysical feedbacks related to the greening of the Earth 
mitigated 12% of global land-surfacewarming for the past 30 years.
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Figure 1 - ÎLAI-induced trends in annual average land-surface air temperature (Ta). a, Temporal variation of global land average LAI (green dotted line) 
and 1LAI-induced variation in Ta (blue solid line) from experiment (1). The black straight line is the least squares regression of Ta against time. The red 
curve is the smoothed 1LAI-induced variation in Ta using LOESS local regression with a default span value 0.75, and the red straight line is its regression. b, 
1LAI-induced trends in surface radiative forcing over the land surface associated with the changes in surface albedo (−Sτ1α), evapotranspiration
(−λ1E), shortwave transmissivity (S(1−α)1τ ), air emissivity (εsσ Ta

41εa) and aerodynamic resistance (((ρCd(Ts −Ta))/ra
2)1ra) from experiment (1)(green 

bars). The blue bar is the sum of all surface radiative forcing. The significance of the trends are as follows: ∗∗∗Significance at the 99% confidence interval; 
∗∗Significance at the 95% confidence interval; ∗Significance at the 90% confidence interval.

year-to-year variations in the modelled Ta (red lines in Fig. 1a). It
is also robust in experiment (2) with LAIobs_OCNclim, where the
satellite-observed LAI is the only year-to-year varying forcing, with
an identical Ta trend of −0.030 ± 0.007 ◦C per decade (p< 0.001;
Supplementary Fig. 1). Overall, at the global scale, the magnitude
of the 1LAI-induced cooling has been 0.09 ± 0.02 ◦C for the past
30 years—equivalent to 12% of the observed global land-surface
warming of 0.89 ◦C over this period20.

Physically, the change in Ta (referred to as 1Ta) in response to
1LAI can be decomposed into

1Ta =
1
f
(−Sτ1α−λ1E+S(1−α)1τ +εsσT

4
a 1εa

+
ρCd(Ts −Ta)

r 2
a

1ra)+1T cir
a (1)

where f is an energy redistribution factor, S is the solar radiation at
the top of atmosphere, τ is the atmospheric shortwave transmissivity
(that is, the proportion of extra-terrestrial solar radiation reaching
the land surface), α is the surface albedo, λ is the latent heat
of vaporization, E is the mass flux of water vapour (that is,
evapotranspiration), εa is the near-surface air emissivity, Ts is the

surface temperature, ra is the aerodynamic resistance, and the
residual term 1T cir

a is the influence of atmospheric circulation
(details see Methods). The first five terms on the right attribute the
response of Ta to the changes in α, E, τ , εa and ra, respectively.
Next, we discuss the individual contributions of each term to the
temperature change.

It is well understood that increasing LAI reduces surface albedo
but augments aerodynamic resistance and evapotranspiration16.
Model results show that the observed variation in LAI over the
past 30 years produces a decreasing trend in surface albedo
(−1.3 ± 0.6 × 10−4 per decade, p< 0.05; Supplementary Fig. 2a).
For climatological values of S and τ , the decreasing albedo trend
imposes a 0.03 ± 0.01 W m−2 per decade positive climate forcing
over land (−Sτ1α in equation (1); Fig. 1b). Aerodynamic resistance
increases with LAI by 0.11 ± 0.06 s m−1 per decade (p = 0.06;
Supplementary Fig. 2e), and imposes a negligible climate forcing
(Fig. 1b). At the same time, the increasing LAI during the growing
season leads to an increase in evapotranspiration of 0.32 ± 0.07 mm
month−1 per decade (p<0.001; Supplementary Fig. 2b). Shown as
−λ1E in equation (1), this increase of evapotranspiration dissipates
more land-surface absorbed energy and imposes a negative trend
of climate forcing at the surface12, the magnitude of which is
−0.31 ± 0.07 W m−2 per decade (p<0.001; Fig. 1b).
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Figure 2 - Patterns of LAI trend and 1LAI-induced trends in land-surface air temperature (Ta). a, 1LAI-induced trends in Ta from experiment (1) (that is, 
the trend in LAIobs_OCNobs—LAIclim_OCNobs). b, LAI trends derived from satellite observations between 1982 and 2011. c, 1LAI-induced trends in Ta 
from experiment (2) (that is, the trend in LAIobs_OCNclim). d, Trends in Ta due to the 1LAI-induced radiative forcing from experiment (1) (that is,
(1/f)(−Sτ1α −λ1E +S(1−α)1τ +εsσ Ta

41εa +((ρCd(Ts −Ta))/ra
2)1ra)). Stippling indicates a significant trend (P<0.05).

The greening increases the evapotranspiration input of water
vapour into the atmosphere, which in turn produces a series of
indirect effects on the climate system21. On the one hand, the
increased evapotranspiration to the atmosphere induces a nega-
tive trend of shortwave transmissivity of −3.5 ± 0.8 × 10−4 per
decade through the changes in clouds and water vapour con-
tent (p<0.001; Supplementary Fig. 2c). This decreasing shortwave
transmissivity imposes a decrease of shortwave radiation at the
surface by −0.09 ± 0.02 W m−2 per decade (S(1−α)1τ ; p<0.001,
Fig. 1b). On the other hand, the increase in water vapour leads to
an increase in atmospheric air emissivity (3.9 ± 0.7 × 10−4 per
decade, p<0.001; Supplementary Fig. 2d), resulting in an increase of
downwelling longwave radiation by 0.14 ± 0.02 W m−2 per decade
(εsσT

4
a 1εa; Fig. 1b).

The radiative forcing associated with the greening-induced
changes in α, E, τ , εa and ra totals −0.24 ± 0.05 W m−2 per
decade (Fig. 1b). This radiative forcing leads to a cooling of Ta
at a rate of −0.017 ± 0.004 ◦C per decade (Supplementary Fig. 3)
that is less negative than the trend of Ta from the simulations
(−0.030 ± 0.006 ◦C per decade; Fig. 1a). The residual reflects the ef-
fect of the greening-induced circulation change on Ta (that is, 1T cir

a
in equation (1)). As the cooling effect is dominated by the increasing
evapotranspiration, and consequently decreasing shortwave trans-
missivity, we conclude that the greening mitigates the Earth's climate
mainly through its influence on the terrestrial hydrological cycle,
particularly through land-surface evapotranspiration2,12,22.

Spatially, the global cooling effect is primarily contributed by the
regions where LAI has increased (Fig. 2). Positive 1LAI has been
attributed in ref. 6 to warming and longer growing seasons over
high latitudes, to afforestation and forest management in southeast
China, Europe and the eastern United States, and to the CO2 fer-
tilization effect in the tropics, with substantial uncertainties; mean-
while, due to the deforestation, negative 1LAI could be also found
in some tropical regions (Fig. 2b). In tropical regions, including

northwest Amazonia, the Sahel and India, LAI has overall increased
at a rate of 0.05 ± 0.02 m2 m−2 per decade (p< 0.01), leading to a
significant decrease of Ta (−0.023 ± 0.007 ◦C per decade, p<0.01).
In temperate regions, primarily Europe and southern Siberia, the
pronounced greening is simulated to strongly decrease Ta (Fig. 2a).
In boreal Eurasia, the greening is modelled to cool Ta, which is at
odds with the b̀oreal afforestation warming' suggested by previous
idealized studies4,14,23,24. This discrepancy can be attributed to the
difference in the occurrence of seasonal greening as observed and
the uniform greening from boreal afforestation. The warming of
boreal afforestation is largely attributed to a strong decrease of
surface albedo over the winter and early spring seasons through its
effect on snow cover4,14,23,24. However, the observed greening over the
past three decades occurs during the growing season6,7 (Supplemen-
tary Fig. 4), when the snow-albedo feedbacks are minimal. This is
also supported by the recent satellite-based studies that found boreal
afforestation had a cooling role during the growing season2.

It is interesting to note that the significantly and strongly
increasing LAI in eastern North America and East Asia (Fig. 2b)
did not significantly decrease local Ta (Fig. 2a). However, in the
second GCM experiment with increasing LAI and climatological
SSTs (LAIobs_OCNclim), the increasing LAI did have a significant
cooling effect over these two regions (Fig. 2c). Therefore, due to the
nonlinearity of the climate system, it is the large-scale atmospheric
circulation changes induced by interannual SST and LAI variations
in experiment (1) that have masked the local vegetation feedbacks
in these regions25.

To better understand the factors driving changes in Ta due to
1LAI, we analysed the spatial patterns of trends in α, E, τ , εa
and ra resulting from experiment (1) (that is, difference between
LAIobs_OCNobs and LAIclim_OCNobs). In most pixels that
showed significantly increasing LAI (Fig. 2b), E (91% of pixels),
εa (88%) and ra (77%) also increased, whereas α (71%) and
τ (75%) decreased (Supplementary Fig. 5). Using equation (1)
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(but neglecting the influence of atmospheric circulation), we can
convert the changes in these variables into the trend in surface
radiative forcing (Supplementary Fig. 6) and then the trend in Ta
(Fig. 2d), explaining more than half of the simulated negative trend
of Ta due to the greening (Fig. 2a). Similar patterns were also found
in experiment (2) (Supplementary Fig. 7).

Last, but not least, we found that the simulated sensitivities of
evapotranspiration and surface albedo to increasing LAI are within
the range of sensitivities from satellite-derived observations (Fig. 3a;
see Methods). However, there are large uncertainties in the observed
sensitivities. To investigate the influence of different sensitivities,
we calibrated the changes in evapotranspiration and surface albedo
in equation (1) combined with the observed sensitivities and the
climatological values of f , S and τ from the CTRL ensemble sim-
ulations (see Methods). We found that the Ta trend ranges from
−0.041 to −0.012 ◦C per decade, resulting from uncertainties in dif-
ferent observational datasets, with an average of −0.029 ± 0.012 ◦C

per decade which is close to the simulated trend (Fig. 3b). To
further verify the robustness of our results, we also performed exper-
iments with the Accelerated Climate Modeling for Energy (ACME)
branched from the Community Earth System Model (CESM) from
the Department of Energy26 and the Australian Community Climate
and Earth System Simulator coupled model (ACCESS) from the
Commonwealth Scientific and Industrial Research Organisation27

following an identical simulation protocol to that used for the IPSL
model (Supplementary Text 2). In the ACME and ACCESS GCMs,
the modelledTa changes did not correlate with prescribed LAI (Sup-
plementary Fig. 8). We found that although the modelled evapotran-
spiration has the same magnitude as the observations, the modelled
proportion of transpiration to terrestrial evapotranspiration (T/ET)
in both models is seriously underestimated (ref. 28; Supplementary
Fig. 9). This underestimation of transpiration naturally leads to very
low sensitivities of modelled evapotranspiration to the prescribed
increase of LAI (Supplementary Fig. 10a). When the T/ET values
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are calibrated to be comparable with values suggested by ref. 28 (see
methods and Supplementary Text 4), the sensitivities of modelled
evapotranspiration to LAI in both models are within the range
of the sensitivity values estimated by satellite-derived observations
(Supplementary Fig. 10b). Then, we applied equation (1) to calculate
the 1LAI-induced variation inTa using the calibrated evapotranspi-
ration change (1Ecali), the modelled 1α, 1τ , 1εa and 1ra, and the
climatology of f , S, τ , α, Ts, Ta and ra from the corresponding mod-
els, neglecting the influence of atmospheric circulation changes. For
both models, we obtain significant correlations between Ta and LAI
(R=−0.97 for ACME,R=−0.88 for ACCESS, both with p<0.001);
the variation of LAI leads to a cooling of −0.024 ◦C per decade in
ACME, and of −0.052 ◦C per decade in ACCESS (Supplementary
Fig. 11), which are consistent with the results from the IPSL model.

In summary, we conclude that the greening-induced biophysical
feedbacks have cooled land-surface air temperature. By prescribing
the model with the observed LAI and SSTs to provide trustworthy
decadal climate simulations, we have not isolated the signature of
greening on air temperature over ocean, which calls for further
studies. We found that the observed greening partly mitigated the
warming induced by rising greenhouse gases, primarily through
increased evapotranspiration. We emphasize the importance of
model calibration to realistically simulate transpiration processes
and biophysical feedbacks. This work highlights the importance of
the biophysical feedbacks in the climate system, and the potential of
greening to mitigate climate change. As all the Earth System Models
used for IPCC AR5 project an optimistic and large increase of LAI in
the twenty-first century9, we expect these negative feedbacks from
vegetation to continue. Considering that the biophysical feedback is
dominant over regions where vegetation has changed, results from
this study have significant implications for future projections of
regional climate change. This is of greatest significance to adaptation
and mitigation, as policymakers primarily focus on national to sub-
national scale interventions. Examples of policy-relevant, region-
specific findings from this study include potential mitigation of
Europe's increasing heat waves29, and reduction of the deleterious
impacts of warming on tropical crop water use and productivity3,25,30.
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Methods
Forcing data sets. The monthly LAI maps from 1982 to 2011 were derived from 
the Advanced Very High Resolution Radiometer (AVHRR) 8-km global LAI 
product7. We prescribed LAI from each map into each grid square and for each 
plant functional type, using the Olson land-cover map at 5 km resolution based on 
the 1-km IGBP map. The monthly maps of sea-surface temperature and sea ice 
from 1982 to 2011 at a 1◦ by 1◦ resolution were obtained from the Atmospheric 
Model Intercomparison Project (AMIP; http://www-pcmdi.llnl.gov/projects/amip). 
The data set is derived from observations, and is recommended for use in
AMIP simulations.

Model and experiments. To reduce the uncertainties in the GCM simulations
associated with systematic SST biases in fully coupled Earth System Models31,32, we
used the AMIP-type simulation strategy and thus ignored the ocean coupling by
prescribing SSTs. We used the IPSLCM (version 4) coupled land–atmosphere
model19 from the Institute Pierre Simon Laplace (IPSL) modelling community to
simulate the climate effects of the increasing LAI during the past three decades.
The atmospheric component of the model is the Laboratoire de Météorologie
Dynamique atmospheric general circulation model with zooming capability
(LMDZ; refs 33,34), which is coupled with the land-surface model Organising
Carbon and Hydrology In Dynamic Ecosystems (ORCHIDEE; ref. 35). ORCHIDEE
has performances comparable to other land-surface models and diagnostic datasets
in simulating land evapotranspiration36 and soil moisture37. The land-surface
model was modified to replace modelled LAI with satellite-observed values.

To document internal variability of the coupled land–atmosphere system, we
first performed a control experiment (CTRL), consisting of a set of thirty
realizations of 30 years each. The lower boundary conditions are mean SSTs and
LAI averaged for the period from 1982 to 2011. The 30 realizations started with
different initial conditions. The unforced land–atmosphere system has a large
internal variability (grey lines in Supplementary Fig. 12), defined as noise38,39. The
noise, calculated as the standard deviation of annual global land-surface (at
2 metres) air temperature, equals 0.12 ◦C across all simulation years (n=900) in
CTRL even though both SSTs and LAI were fixed. We then analysed the average of
the 30 simulations, defined as the ensemble mean. The ensemble mean does not
show significant trends (p>0.1) and presents a very small interannual standard
deviation of Ta in CTRL (the black line in Supplementary Fig. 12), showing that the
internal variability due to initial conditions is mainly of random type. Thus, to
reduce this random uncertainty in a climate simulation due to initial conditions38,
each experiment in this study comprises a 30-member ensemble of transient
climate simulations with different initial conditions (initial-condition ensemble)
and the average of simulations (ensemble average) is analysed to highlight the
forced signal due to the greening.

To separate vegetation biophysical feedbacks on climate from internal climate
variability, we designed two climate experiments with different forcing of LAI and
SSTs (see Supplementary Table 1) for the period from 1982 to 2011. The inclusion
of interannual variations of historical LAI and SSTs in LAIobs_OCNobs reproduces
the observed interannual variations of Ta (R=0.84, p<0.001; Supplementary
Fig. 13)31,40. In experiment (1), the differences between LAIobs_OCNobs and
LAIclim_OCNobs isolate the 1LAI-induced climate effects. Experiment (2) (that
is, LAIobs_OCNclim) is complementary because it does not consider the historical
SST variations modulating the LAI effects on climate, and thus allows us to isolate
the fingerprint of observed LAI changes on climate. The differences between
experiment (1) and experiment (2) are due to the effect of SST-induced circulation
changes on the biophysical vegetation–climate feedbacks.

The 30-member ensemble of transient simulations is resource-intensive,
totalling 43,200 months of simulations. The resolution of the model applied in this
study was 2.5◦ latitude × 3.75◦ longitude, with 19 levels in the vertical and a
3-minute time step. The initial conditions are the outputs of the past 30 years from
a long-term spin-up simulation. Greenhouse gases (for example, CO2, CH4, N2O)
and aerosols are prescribed based on their typical climatological values in the
model to isolate the LAI effects on climate changes. The analysis did not include
those model grids with multiyear (1982–2011) average LAI < 0.1. The IPSLCM
GCM was run at the National Computer Center IDRIS in France. In this study, we
force the GCM only with the satellite-observed year-to-year LAI to isolate the
climate effect of greening from other confounding forcings. Doing so ignores the
potential effects of rising CO2 on the LAI–climate feedbacks. Nevertheless, we
performed three additional 60-year-long simulations to estimate this effect. The
results show that rising atmospheric CO2 does not change the LAI–climate
feedbacks, as the reduction of evapotranspiration due to the physiological effect of
rising CO2 is mostly cancelled out by the increase of evapotranspiration due to the
radiative effect of rising CO2 (details see Supplementary Text 1).

To further estimate the uncertainty associated with model structures, we wrote
a simulation protocol and performed more model simulations following the
protocol to investigate the climate effects of Earth greening. We also performed
experiments with the Accelerated Climate Modeling for Energy (ACME) from the
Department of Energy26 and the Australian Community Climate and Earth System
Simulator coupled model (ACCESS) from the Commonwealth Scientific and

Industrial Research Organisation27 following an identical simulation protocol to
that used for the IPSL model to verify the robustness of our results. ACME and
ACCESS were ran exactly following the simulation protocol as used for IPSLCM
(details see Supplementary Text 2–4).

Decomposition of LAI–climate feedbacks into separate mechanisms. The
surface energy balance controls land–atmosphere interactions. As shown in
Supplementary Fig. 14, there are two dominant factors in driving the changes of
land-surface 2-m air temperature (Ta): first, the radiative and thermodynamic
variations of land surface acts directly on land-surface temperature (Ts), the change
of Ts interacts on Ta locally through radiative (for example, long wave radiation)
and non-radiative (for example, sensible heat) fluxes (1T rad

a ); second, the change in
atmospheric circulation (for example, advection of cold and warm air masses) acts
more directly on Ta (1T cir

a ). That is:

1Ta =1T rad
a

+1T cir
a

(2)

We first estimate the change in Ts associated with the 1LAI-induced radiative and
thermodynamic forcings because the land-surface energy budget is calculated at
the land-surface layer (Supplementary Fig. 14). The land-surface energy balance is
given by:

Sn +Ln =λE+H +G (3)

where Sn is the net shortwave radiation at the surface, Ln is the net longwave
radiation at the surface, λ is the latent heat of vaporization, E is evapotranspiration,
H is the sensible heat flux and G is the ground heat flux, which can be neglected
due to its small magnitude on seasonal and longer timescales (Supplementary
Table 2). Equation (3) can be rewritten as:

Sn −λE=H −Ln (4)

where vegetation dynamics directly modify the two left-hand terms via albedo and
evapotranspiration, and imposes a LAI-induced forcing (disequilibrium of energy);
the right-hand terms are functions of Ta and Ts, and represent the fact that the
coupled land–atmosphere system adjusts Ta and Ts to keep the surface energy in
balance locally.

Sn, Ln, λE and H are given as:

Sn =Sτ(1−α) (5)

where S is the solar radiation flux at the top of atmosphere, τ is the atmospheric
shortwave transmissivity, α is the surface albedo. The variation of τ , depending on
changes in atmospheric water vapour and clouds, is calculated from the GCM
values. Increasing LAI thus influences α directly, and τ indirectly, through
LAI-related changes in cloud cover and atmospheric water vapour content.

As most of atmospheric water vapour is confined near the surface, some
empirical equations can provide very good estimates of downward longwave
radiation worldwide using surface observations41. In this study, the GCM-simulated
Ta at 2 m height was used in the bulk formula (see Supplementary Fig. 14).
According to the Stephan–Boltzmann law, given atmospheric air emissivity (εa),
the downward longwave radiation at the land surface can be estimated roughly as

L↓ =εaσT
4
a (6)

where σ is the Stephan–Boltzmann constant and Ta is the near-surface air
temperature. σ equals 5.67 × 10−8 W m−2 K−4. Similar to τ , εa is also calculated
from the GCM values and its variation is driven by changes in atmospheric water
vapour and clouds.

The upward longwave radiation is given by

L↑ =(1−εs)εaσT
4
a +εsσT

4
s (7)

where εs is the land-surface emissivity. Note the land-surface emissivity (εs) also
changes with land cover, soil moisture and snow cover. Here we treat it as a
constant of 0.95 for simplicity, as satellite-observed surface emissivity varies little
over mostly vegetated surfaces and changes only slightly from 0.95 among different
land covers42. Thus, the net longwave radiation over the land surface is given by

Ln =L↓ −L↑ =εsσ(εaT
4
a −T 4

s ) (8)

The latent heat can be written as:

λE=λβEP (9)

where EP is the potential evapotranspiration and β is a diagnostic parameter
(0≤β ≤1) related to all mechanisms through which actual E is below the potential
rate (EP). The ORCHIDEE parameterizations to calculate E are fairly complex35
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and they are replaced here by the simple diagnostic parameter β . LAI directly
influences β through aerodynamic conductance (part of the canopy conductance)
and also indirectly through stomatal conductance, because in ORCHIDEE the
stomatal conductance per unit leaf area depends on the near-surface atmospheric
humidity, impacted by LAI feedbacks on the atmosphere.

The sensible heat flux is given by:

H =ρCd
Ts −Ta

ra
(10)

where ρ is the air density, Cd is the specific heat of air at constant pressure and ra is
the aerodynamic resistance at 2 m height. ρ is equal to 1.21 kg m−3; Cd to
1,013 J kg−1 K−1. In this study, the change in ra is derived from the LAI-induced
change in surface roughness, but does not consider the effect of changing
vegetation structure (height, clumping) and changing vegetation density on the
surface roughness.

Making use of equations (3)–(10), the surface energy balance equation is
expanded into the following form:

Sτ(1−α)−λE=ρCd
Ts −Ta

ra
−εsσ(εaT

4
a −T 4

s ) (11)

Assuming that S, λ, ρ, Cd, σ and εs are independent of Ts, we further differentiate
the equation (11) with respect to Ts, giving the change 1Ts:

1Ts =
1
fs

(

−Sτ1α−λ1E+S(1−α)1τ +εsσT
4
a 1εa

+
ρCd(Ts −Ta)

r 2
a

1ra

)

+
ρCd/ra +4εsσεaT

3
a

ρCd/ra +4εsσT 3
s

1Ta (12)

where fs is an energy redistribution factor, given by:

fs =ρCd/ra +4εsσT
3
s (13)

f −1
s represents the land-surface temperature sensitivity to 1 W m−2 radiative forcing

at the land surface.
On the right-hand side of equation (12), the first term represents the

land-surface temperature change due to radiative and thermodynamic forcings
associated with LAI-caused changes in surface albedo, evapotranspiration,
shortwave transmissivity, air emissivity and aerodynamic resistance (1T rad

s =

(1/f )(−Sτ1α−λ1E+S(1−α)1τ +εsσT
4
a 1εa +((ρCd(Ts −Ta))/(r

2
a ))1ra)).

The second term (((ρCd/ra +4εsσεaT
3
a )/(ρCd/ra +4εsσT

3
s ))1Ta) quantifies the

strong coupling between Ta and Ts (Supplementary Fig. 14). On the one hand, it
reveals that Ts varies with Ta due to 1LAI-induced change in air advection, such as
the LAI-perturbed advection of cold and warm air masses
(1T cir

s =((ρCd/ra +4εsσεaT
3
a )/(ρCd/ra +4εsσT

3
s ))1T cir

a
). On the other hand, it

also shows that the change in Ts further drives a change in Ta via the change in
surface heating rate (1T rad

a =((ρCd/ra +4εsσT
3
s )/(ρCd/ra +4εsσεaT

3
a ))1T rad

s ).
Using equations (2) and (12) leads us to the derivation of equation (1) in the
main text:

1Ta =
1
f

(

−Sτ1α−λ1E+S(1−α)1τ +εsσT
4
a 1εa

+
ρCd(Ts −Ta)

r 2
a

1ra

)

+1T cir
a

(14)

where f is:

f =ρCd/ra +4εsσεaT
3
a (15)

f −1 represents the land-surface air temperature sensitivity to 1 W m−2 radiative
forcing at the land surface. The climatology of f is diagnosed from the multiyear
average of the ensemble simulations of each GCM (the CTRL ensemble simulations
by IPSLCM, the S1 ensemble simulations by ACME and ACCESS).

Observation-based estimate of the sensitivities of evapotranspiration and

surface albedo to increasing LAI. We use the three long-term global
evapotranspiration products, namely GRACE-MTE (1982–2009, based on the
water balance of different catchments43), FLUXNET-MTE (1982–2008, based on
surface flux measurements44) and an NDVI-based data set (1983–2006, based on
satellite-derived Normalized Difference Vegetation Index45). The long-term global
land-surface albedo product is from the GLASS dataset46, which is generated from
satellite observations and available from 1982 to 2011. The GLASS albedo product
is derived from AVHRR data from 1982 to 1999, and then from MODIS data from
2000 to 2011. This discontinuity results in an irrational positive sensitivity of
surface albedo to LAI during the whole study period (1982–2011). We thus

estimated the sensitivity of surface albedo to LAI, separating the GLASS data set
into two periods: 1982–1999 (GLASS-AVHRR) and 2000–2011 (GLASS-MODIS).
As the GLASS albedo product is self-consistent with the MODIS albedo product46,
we did not repeatedly show the sensitivity from the MODIS albedo product. The
observed sensitivity of land evapotranspiration to LAI (∂E/∂LAI) is estimated
based on the regression: E=k1LAI+k2P+k3Ta +k4, where P and Ta are the
observed annual land precipitation and land-surface air temperature for 1982–2011
from the CRU data set47; k1 is the estimated ∂E/∂LAI controlling P and Ta.
Similarly, the observed sensitivity of land-surface albedo to increasing LAI
(∂α/∂LAI) is estimated based on the regression: α=k1LAI+k2Csnow +k3, where
Csnow is the observed annual land snow cover from NASA DAAC at the National
Snow & Ice Data Center48; k1 is the estimated ∂α/∂LAI controlling snow cover.

Calibration of temperature change from GCMs based on observation-based

sensitivities. Using the climatology of S, τ , α, Ts, Ta, ra and f from the CTRL GCM
simulation, the changes of surface albedo, evapotranspiration, shortwave
transmissivity, air emissivity and aerodynamic resistance lead to a trend of
land-surface air temperature via equation (1) in the main text.

The observation-based sensitivities of evapotranspiration and surface albedo
can be substituted in equation (1) of the main text to calibrate the modelled
greening-induced change in Ta. We assume the same spatial patterns of
1LAI-induced changes in evapotranspiration (1E) and surface albedo (1α) as the
patterns in the GCM experiment (1). Then, we substitute the observed sensitivities
by multiplied 1E (1α) with λE (λα) in each pixel, where λE (λα) is the ratio
between the observation-derived sensitivity (see above) and the GCM-simulated
sensitivity, respectively. The calibrated greening-induced change in surface air
temperature (1T cali

a ) is obtained by

1T cali
a =1T mod

a +
−Sτ1α

f
(λα −1)+

−λ1E

f
(λE −1) (16)

where 1Tmod
a is the modelled greening-induced change in Ta from equation (1) in

the main text. Note that we have not calibrated the greening-induced changes in
shortwave transmissivity, air emissivity, aerodynamic resistance and circulations
due to the lack of observations, and thus used GCM results for these quantities.

Code availability. IPSLCM GCM model code is available at
http://forge.ipsl.jussieu.fr/igcmg/svn/modipsl/trunk. The program used to generate
all the results is MATLAB. Analysis scripts are available by request to S.Piao.

Data availability. The satellite-observed LAI3g data sets are available from the
NASA Earth Exchange (NEX) web site (https://nex.nasa.gov/nex). The AMIP SST
and sea ice boundary conditions are available at http://www-pcmdi.llnl.gov/
projects/amip. Model outputs are available on request from S.Piao.
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