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Background: Positron range impairs resolution in PET imaging, especially for high-energy emitters and for small-animal PET. De-blurring in image reconstruction is possible if the blurring distribution is known. Further, the percentage of annihilation events within a given distance from the point of positron emission is relevant for assessing statistical noise.

Aims:

The paper aims to determine positron range distribution relevant for blurring for seven medically relevant PET isotopes, 18 F, 11 C, 13 N, 15 O, 68 Ga, 62 Cu, and 82 Rb, and derive empirical formulas for the distributions. The paper focuses on allowed-decay isotopes.

Methods: It is argued that blurring at the detection level should not be described by positron range r, but instead the 2D-projected distance δ (equal to the closest distance between decay and line-ofresponse). To determine these 2D distributions, results from a dedicated positron track-structure Monte Carlo code, EPOTRAN, were used. Other materials than water were studied with PENELOPE.

Results:

The radial cumulative probability distribution G2D(δ) and radial probability density distribution g2D(δ) were determined. G2D(δ) could be approximated by the empirical function 1exp(-Aδ² -Bδ), where A = 0.0266 (Emean) -1.716 and B = 0.1119 (Emean) -1.934 , with Emean the mean page 2 positron energy in MeV and δ in mm. Radial density distribution g2D(δ) could be approximated by differentiation of G2D(δ). Distributions in other media were very similar to water.

Conclusion:

Positron range is important for improved resolution in PET imaging. Relevant distributions for positron range have been derived for seven isotopes. Distributions for other alloweddecay isotopes may be estimated with the above formulas.

Introduction

Because of the improving spatial resolution of the physical detectors, the distance from positron emission to positron annihilation (positron range) is becoming a factor of increasing importance for the spatial resolution of positron emission tomography (PET). Positron range introduces uncertainty in the position of the positron emitter, resulting in blurring of the PET images. This effect is very clearly seen for high-energy emitters such as 82 Rb, but also for less energetic emitters in small-animal PET imaging where blurring on a millimetre scale is important.

While positron range in itself is a fundamental physical aspect of the slowing-down processes leading to annihilation, it is possible to correct for the blurring in the reconstructed images, if the reconstruction algorithm incorporates knowledge of spatial distribution of the blurring effect [START_REF] Herraiz | Positron Range Effects in High Resolution 3D PET Imaging[END_REF][START_REF] Rahmim | Analytic system matrix resolution modeling in PET: an application to Rb-82 cardiac imaging[END_REF][START_REF] Ruangma | Three-dimensional maximum a posteriori (MAP) imaging with radiopharmaceuticals labeled with three Cu radionuclides[END_REF]. Therefore, the distribution of positron ranges and its effect on PET imaging is a subject of prime importance, especially as technical advances may further improve detector resolution.

A point source emitting positrons will give rise to a three-dimensional (3D) distribution of annihilation points, which will characterize the positron range effect in the reconstructed images. But since a PET scanner measures lines of response (LORs), not annihilation positions, the 3D distribution is hard to measure directly (this also holds for Time-of-Flight PET, which reduces the length of the LOR, but still does not determine a point position). To determine positron range, [START_REF] Derenzo | Precision measurement of annihilation point spread distributions for medically important positron emitters[END_REF] made a series of often-cited measurements using material of very low density, in an experimental set-up where only a narrow plane was measured at a time. This corresponds to projecting the 3D annihilation distribution onto a single line, giving the 1D representation often used in papers on positron range, see e.g. [START_REF] Blanco | Positron Range Effects on the Spatial Resolution of RPC-PET[END_REF][START_REF] Champion | Positron follow-up in liquid water: II. Spatial and energetic study for the most important radioisotopes used in PET[END_REF][START_REF] Levin | Calculation of positron range and its effect on the fundamental limit of positron emission tomography system spatial resolution[END_REF].

However, considering a single detector pair (rather than a full detector ring), the logical projection will be 2D: The detector pair measures in the plane orthogonal to the LOR defined by the two detectors, and positron range influences not only axial resolution (1D) but also transversal resolution. Thus, for a reconstruction algorithm modelling positron range at the level of LORs, the distribution of the 2D projection of annihilation points will be very relevant.

In any homogeneous medium and in absence of magnetic field, the situation is spherically symmetrical, and the mathematical information in the 3D, 1D, and 2D distributions will be the same, but converting e.g. a 1D distribution to a 2D distribution is not a simple calculation. However, 2D projections seem to have been given only little attention in the literature. [START_REF] Derenzo | Precision measurement of annihilation point spread distributions for medically important positron emitters[END_REF] The present work aims to determine in details the cumulative 2D distributions for a series of medically relevant PET isotopes by means of a previously published dedicated positron track-structure Monte Carlo page 4 simulation [START_REF] Champion | Positron follow-up in liquid water: I. A new Monte Carlo trackstructure code[END_REF][START_REF] Champion | Positron follow-up in liquid water: II. Spatial and energetic study for the most important radioisotopes used in PET[END_REF]. Furthermore, it is aimed to provide a systematic procedure for estimating the cumulative distribution for other allowed-decay PET isotopes given only the mean positron energy Emean. (A beta decay is allowed if parity is unchanged and nuclear spin change is 0 or ±1 [START_REF] Krane | Introductory nuclear physics[END_REF]); e.g. 1 + → 0 + as in the decay 18 F → 18 O.) The focus on allowed-decay PET isotopes is practical. The energy distributions can be described by known, analytical functions, and very many of the medical PET isotopes decay by allowed decay. Besides, differential distributions will be provided by following the same methodology. The results from the present Monte Carlo code (EPOTRAN) is compared with results from the more common PENELOPE code, and the influence of other biological media than water is estimated.

Material and methods

Geometry and notation

The complete blurring of a point source in an actual measurement will depend not only on positron range but also on photon non-collinearity and the properties of the detection system (such as crystal size and depth of interaction). However, all these effects can be considered individually and afterwards combined [START_REF] Levin | Calculation of positron range and its effect on the fundamental limit of positron emission tomography system spatial resolution[END_REF][START_REF] Qi | High-resolution 3D Bayesian image reconstruction using the microPET small-animal scanner[END_REF][START_REF] Rahmim | Analytic system matrix resolution modeling in PET: an application to Rb-82 cardiac imaging[END_REF]. In the present context we will assume point-like detectors and 180° relative angle of the two photons emitted from annihilations, i.e., focus on positron range. Consider a point source located at (0,0,0) in a Cartesian coordinate system. Assuming spherical symmetry, the volume density f(x,y,z) of annihilatons is function of range: f(x, y, z) = f(r). Following the notation of Cal-González et al (2010), we will define the radial density as g3D(r) = 4πr 2 f(r) = 4πr 2 f(x,y,z).

The LORs measured parallel to a given direction will be cylindrically symmetrically distributed. As the distribution of LORs will be the same for all directions, we can treat the situation as if all LORs were parallel to the same direction. Taking the z axis as the (arbitrary) choice of direction, the projection is onto the xy plane. The distance from origin in 2D, page 5

The cumulative probability distribution G2D(δ), i.e. the probability that a LOR will have distance from the point source no greater than δ, can be calculated by integration: .
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Our notation for g2D and G2D is consistent with that of [START_REF] Herraiz | Validation of PeneloPET Positron Range Estimations[END_REF], except that we have chosen letter δ for 2D radius (LOR distances from point source), reserving r for 3D radius (positron range).

Positron energy spectra and Monte Carlo simulation

The following series of medically relevant PET isotopes were considered: 18 F, 11 C, 13 N, 15 O, 68 Ga, 62 Cu, and 82 Rb. These are all allowed-decay isotopes whose energetic disintegration spectra are represented by [START_REF] Venkataramaiah | A Simple Relation for the Fermi Function[END_REF]) into 10 µm bins. Finally, the cumulative probability G2D(δ) was determined by numerical integration of g2D. page 6
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Generalization of distributions

The resultant functions G2D(δ) were compared among isotopes in two ways, namely, either by plotting G2D(δ) as a function of δ, or by plotting G2D(δ) as a function of δ/Rmean, where Rmean is the mean range of positrons for the isotope under consideration:
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An empirical formula for G2D(δ) was then derived for each allowed-decay isotope, based on two adjustable parameters. The dependence of the parameters on mean positron energy Emean was also investigated. To estimate differential distributions g2D(δ), the empirical formula for G2D(δ) was differentiated, and the results compared with distributions of g2D(δ) determined from the Monte Carlo data.

Effects of variation in biological tissues

For a medium of a given composition, the range and thereby δ will scale inversely with density. But the shape of the positron range distribution may change with different composition, see e.g. [START_REF] Lehnert | Analytical positron range modelling in heterogeneous media for PET Monte Carlo simulation[END_REF].

Presently, EPOTRAN is not able to simulate positron track structure in a biological medium other than water. We have thus used the Monte Carlo code PENELOPE (2006 release) [START_REF] Salvat | PENELOPE-A code system for Monte Carlo simulation of electron and photon transport OECD Nuclear Energy Agency Issy-les[END_REF] first to compare density-scaled range of positrons in biologically relevant materials with the range in water and secondly to study the decay of 18 F in water, lung and bone. PENELOPE is a Monte Carlo code of general purpose that permits us to simulate the coupled transport of photons, electrons and positrons in matter with a very good accuracy at low energies. Photons are transported within the conventional detailed method whereas electrons and positrons are simulated using a mixed scheme where interactions are classified into hard and soft. Hard events are simulated step by step and involve angular deflection or energy losses above user-defined cutoffs whereas soft events occurring between 2 hard collisions are simulated by means of an artificial single event. Simulation is controlled by seven parameters, fixed for the various materials used in the geometry:

(i) The absorption energies Eabs is the energy at which the track evolution is stopped. The kinetic energy of the particle is then locally deposited.

(ii) C1 is the average angular deflection between 2 hard elastic collisions.

(iii) C2 is the maximal fractional energy loss between 2 hard elastic collisions.

(iv) WCC is the cutoff energy for hard inelastic interactions.

(v) WCR is the cutoff energy for hard bremsstrahlung emission.

To be as close as possible as the simulations performed with EPOTRAN, we have chosen for water, lung and bone the same set of parameters which corresponds to a detailed simulation, thus Eabs = 100 keV for photons, electrons and positrons and C1, C2, WCC and WCR are equal to zero.

Tracking particles in PENELOPE is not obvious. It is however possible to determine the point of creation of particles, and in our case of annihilation photons. We have thus used a geometry consisting in concentric cylinders separated by 10 µm, which is the bin used for the distribution g2D(δ). The cylinders are centred on (0;0;0) which is the point of emission of positrons and they are full of water, bone or lung depending on the tissue under investigation. The simulation runs until the photons are detected on a spherical phase-space file (PSF) which stores a lot of information concerning the particles and especially the body (the cylinder in our case) where they have been created. Thanks to these data, we can thus determine directly the 2D distribution of annihilation points and obtain the cumulative probability G2D(δ).

Results

Ranges and cumulative probability distributions

The investigated radio-isotopes are listed in Table 1 along with mean and maximum values for energy and range for the emitted positrons; for more details see [START_REF] Champion | Positron follow-up in liquid water: II. Spatial and energetic study for the most important radioisotopes used in PET[END_REF][START_REF] Loirec | Track structure simulation for positron emitters of medical interest. Part I: The case of the allowed decay isotopes[END_REF].

Compared to other results from the literature (see Table 1 and figure 1) we obtain somewhat larger values for Rmean. This difference is due to the inclusion of Ps formation in the simulation, as the electrically neutral Ps loses energy more slowly than the charged e + particle [START_REF] Champion | Theoretical cross sections for electron collisions in water: structure of electron tracks[END_REF][START_REF] Champion | Positron follow-up in liquid water: I. A new Monte Carlo trackstructure code[END_REF].

The literature results for Rmean do not include experimental data. Experimental results on Rmean are, unfortunately, scarce. [START_REF] Cho | Positron ranges obtained from biomedically important positron-emitting radionuclides[END_REF] measured on a line source and determined an "effective range" from page 8 the FW(0.1)M on this distribution, and [START_REF] Derenzo | Precision measurement of annihilation point spread distributions for medically important positron emitters[END_REF][START_REF] Derenzo | Mathematical Removal of Positron Range Blurring in High-Resolution Tomography[END_REF] determined the root-mean-square (rms) spread for the 1D distribution. While such data can be used as indicators for Rmean, we are not aware of experimental results that aim at determining Rmean as such.

It should be mentioned that while the Monte Carlo code used here assumes the neutral Positronium (Ps) to lose its kinetic energy mainly through phonon interactions at all energies, recent experimental results (Brawley et al 2010a;Brawley et al 2010b) found unexpectedly large Ps interactions at sub-keV energies.

While these results are in themselves very interesting, a discrepancy in Ps cross section at very low energy will only have marginal influence on our results, since most of the path travelled by Ps will be with much higher kinetic energy.

The calculated cumulative probabilities G2D(δ) for closest distance δ are shown in figure 2. Not surprisingly, the distance δ that includes a given fraction of the LORs, depends on the energy spectrum of the emitted positrons. However, when the same data are plotted as a function of δ/Rmean, i.e. scaled by the isotope-dependent mean range, the results are rather similar among isotopes (see figure 3). 

Empirical estimation of cumulative probability distributions

Despite their similarity, the plots in figure 3 cannot be described by a single curve. Instead we have for each isotope fitted the cumulative probability curves reported in figure 2 by the following empirical function:
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This form is chosen such that for any positive values of A and B, it will correctly rise monotonously from ζ(0) = 0 towards 1, ζ(∞) = 1. Furthermore, for any probability 0 ≤ ζ < 1 considered, the corresponding value of δ can be found as the positive solution to the equation .
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The values obtained for the parameters A and B are reported in Table 2. page 11 The parameters A and B obviously depend on isotope. In figure 3 we scaled the curves by the isotopedependent Rmean. For the parameters A and B we investigated instead dependence of the more easily determined value Emean and found that they could be described as power functions of Emean: A = 0.0266•(Emean) -1.716 and B = 0.1119•(Emean) -1.934 , (6

)
where Emean is given in MeV, and the units of A and B are mm -2 and mm -1 , respectively. The variations of A and B with Emean as well as the interpolated power functions are reported in figure 4.

page 12 As a simple check of these expressions, we study also the case of 52 Fe, a radio-metal generatorproduced isotope which emits positrons of relatively low energy, Emax = 803.6 keV and Emean = 344 keV = 0.344 MeV. Clinically, 52 Fe has been used in haematological studies to follow iron kinetics, but such studies are complicated by the fact that 52 Fe decays to another PET isotope, 52m Mn [START_REF] Haddad | ARRONAX, a highenergy and high-intensity cyclotron for nuclear medicine[END_REF][START_REF] Lubberink | Quantification aspects of patient studies with Fe-52 in positron emission tomography[END_REF]. By using (6), we have estimated the fitting parameters as A = 0.1660 mm -2 and B = 0.8813 mm -1 .

Figure 5 shows the calculated G2D(δ) for 52 Fe along with the empirical function ζ(δ) described by these values of A and B.

page 13 

Radial probability density distributions

For determination of point spread functions (PSFs), the probability density distribution should be known, either as area density, f(x, y) = f(δ), or as radial density, g2D(δ). We here focus on the radial probability density, which can be compared to the result of differentiation of the estimate for cumulated probability, ζ(δ) from (4):
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It will be noted that dζ/dδ is normalized to total area 1, since ζ(0) = 0 and ζ(∞) = 1. The Monte Carlo data are compared with the result of (7) in figure 6.

page 14 7) (smooth lines), using values of A and B from table 2. For 52 Fe, the values of A and B from (6) were used. Monte Carlo data are reported with a 10 µm bin for 18 F, 11 C, 13 N, and 52 Fe, and with a 30 µm bin for 15 O, 68 Ga, 62 Cu, and 82 Rb.

Effects of variation in biological tissues

The PENELOPE results for density-scaled positron range in different media are given in Table 3. It is seen that soft tissue has only very small differences from water, while bone tissue deviates by about 13%.
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Discussion

Cumulative and differential 2D probability distributions

As noted in the introduction, the choice of 2D distributions is very relevant when considering measurements by individual detector pairs. The cumulative distribution G2D(δ) shows us that for all the investigated isotopes, almost 2/3 of the annihilations take place within δ ≤ Rmean (see figure 3), meaning that Rmean can be used as rough estimate of the expected broadening due to positron range.

When based on Monte Carlo data, rather than mathematical functions, the cumulative (integral) distribution is more robust than the differential distribution. But a reconstruction algorithm involving modelling of positron range will typically need the differential distribution, either as area density f(δ) or density As demonstrated in figure 6, the radial distributions can be well approximated by use of ( 7) with the values of A and B from Table 2. If A and B are determined from the simple, empirical relations (6) then the distribution will of course be less precise, but the curves for 52 Fe in Figures 5 and6 indicates that such distributions can be used as a first approximation for other allowed-decay isotopes than those in Table 2.

Our focus on radial density has the advantage of avoiding the very peaked (cusp-shaped) distributions found for both 1D [START_REF] Derenzo | Precision measurement of annihilation point spread distributions for medically important positron emitters[END_REF]) and 2D (Sánchez-Crespo et al 2004) non-radial distributions. These peaks are so sharp that the peak height becomes dependent on the details of the calculations (e.g., bin size), meaning that measures dependent on peak height (such as FWHM) do not have a strict meaning [START_REF] Levin | Calculation of positron range and its effect on the fundamental limit of positron emission tomography system spatial resolution[END_REF].

In fact, our own results indicate that the radial distribution g2D(δ) do not necessarily go to zero for δ → 0 (see figure 6), i.e. the area distribution f(δ) = g2D(δ) / (2πδ) may diverge for δ → 0, in which case FWHM is meaningless. Note that such a divergence is not unphysical as long as the area under the singularity is finite.

For example, a simple harmonic oscillator, x = A sin(ωt), will have a density distribution for x which page 17

diverges at x = ±A, because velocity is zero in these positions. In our case, g2D can be integrated into G2D, with the (physically correct) implication that only a finite number of positrons will be detected near δ = 0.

It can be argued against the form (4) for the cumulative distribution G2D(δ)estimate = ζ(δ) that it reaches and therefore the differential distributions g2D(δ)estimate = dζ/dδ never fall to 0, despite positrons having a maximum range. The effect of this can be seen on figure 6, where the final part of the curves g2D(δ)estimate tend to be slightly above the Monte Carlo data, especially for the high-energy isotopes. Similar objections could however be raised against describing positron range distributions by exponentials [START_REF] Derenzo | Precision measurement of annihilation point spread distributions for medically important positron emitters[END_REF] or Gaussian functions [START_REF] Palmer | Annihilation density distribution calculations for medically important positron emitters[END_REF]. Mathematically, it can be seen that dζ/dδ will eventually approach the zero value faster than a Gaussian function: dζ/dδ can be considered the product of a Gaussian, exp(-Aδ 2 ), and a factor that goes towards zero for large distances, (2Aδ + B)•exp(-Bδ), possibly after an initial rise. If a cut-off distance δcut-off is introduced, setting g2D(δ)estimate = 0 for δ > δcut-off, then the area under the curve will then be slightly less than 1, namely ζ(δcut-off). A possible choice for δcut-off can be Rmax which can be estimated from Emean as a linear function, based on Table 1 (fit not shown).

In short, our formulation based on A and B is suitable for applications dependent on the whole distribution (such a de-blurring), while it is less suitable or unsuitable for applications sensitive to the behaviour of a small fraction of the positrons (such as the determination of maximal distances). Figure 7 indicates that the same values of A and B can be used for different media if distances are scaled by density, as it has already been proposed by [START_REF] Lehnert | Analytical positron range modelling in heterogeneous media for PET Monte Carlo simulation[END_REF] for a 1D distribution model.

Limitations

The current study was made only for allowed-decay isotopes. Non-allowed-decay isotopes can have other relations between Emean and spectrum shape, meaning that the empirical relation ( 6) cannot be expected to give usable results for non-allowed-decay isotopes. As an example we tried it for 124 I (data not shown), which is non-allowed-decay, and found large discrepancies from expected G2D(δ).

Conclusion page 18

Nowadays, it is well-known that when high-energy positron emitters are used in PET scanning, the positron range adds to resolution degradation. In the major part of existing studies this degradation is related to the positron range (r). In present work, we have proposed to use not the positron range but instead the shortest distance (δ) between point of emission and the LOR. Annihilation point radial 2D density distributions as well as cumulated probabilities for a series of medically relevant PET isotopes were provided by means of Monte Carlo simulation. Empirical expressions of these distributions were then proposed for the allowed-decay PET isotopes here investigated.

These results allow easy estimation of the percentage of annihilations happening within a given distance and may give approximate density distributions for use in reconstruction algorithms taking positron range into account.
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  computed curves for 11 C, 68 Ga, and 82 Rb (from a 82 Sr source, which decays to 82 Rb by electron capture) showing the "Fraction projected annihilations occurring within a circle of radius R", i.e., the cumulated 2D probability distribution. Sánchez-Crespo et al (2004) investigated 18 F, 15 O, and 82 Rb by projecting the 3D distribution onto a plane and reported point spread functions of this projection along a line. And recently, Cal-González et al (2010;2011) have considered 2D representations of the annihilation distribution and compared them with other representations. But little other work seems to have been conducted on 2D representations of the annihilation distribution.

  the distance between the point source and the LOR. Again we have symmetry: The 2D density distribution f(x,y) is a function of these distances, f(x, y) = f(δ), with radial density g2D(δ) = 2πδ f(δ).

  with E and Emax the energy and maximal energy of β particles, p the corresponding momentum and C a normalization constant. F(Z,E) represents the Fermi factor used for taking into account the effect of the Coulomb field on the electron distribution.The 3D distributions f(x, y, z) of annihilation points were determined by using the full-differential Monte Carlo track-structure code, called EPOTRAN (an acronym for Electron and POsitron TRANsport in liquid and gaseous water) developed by Champion and Le Loirec to study the decay of positron emitters of medical interest[START_REF] Champion | Positron follow-up in liquid water: II. Spatial and energetic study for the most important radioisotopes used in PET[END_REF][START_REF] Loirec | Track structure simulation for positron emitters of medical interest. Part I: The case of the allowed decay isotopes[END_REF]. In brief, for each isotope considered, a large number (about 250 000) positron tracks were simulated until annihilation, including all the processes, namely, ionization, excitation, elastic scattering, and positronium (Ps) formation. For more details, we refer the interested reader to[START_REF] Champion | EPOTRAN: a full-differential Monte Carlo code for electron and positron transport in liquid and gaseous water[END_REF]. The distribution g2D(δ) were determined by

Figure 1 :

 1 Figure 1: Cumulative probabilities for 18 F obtained with EPOTRAN and PENELOPE.

Figure 2 :

 2 Figure 2: Cumulative probabilities G2D(δ) obtained for the radio-isotopes investigated

Figure 3 :

 3 Figure 3: Cumulative probabilities G2D(δ) versus δ/Rmean.

Figure 4 :

 4 Figure 4: The fitting parameters A and B (open and solid squares, respectively) versus the mean energy of the isotope under consideration.

Figure 5 :

 5 Figure 5: Calculated function G2D(δ) along with empirical function ζ(δ) from estimated values of A and B for 52 Fe (solid and dashed line, respectively). A direct fit to the data is shown as a dot-dash-dot line almost coinciding with the full line.

Figure 6 :

 6 Figure 6: Functions g2D(δ) taken from Monte Carlo calculations (broken lines) compared with the expression from (7) (smooth lines), using values of A and B from table 2. For 52 Fe, the values of A and B

  bone and lung. The data are plotted as a function of δ•ρ with ρ the density of the biological tissue. The tendency for bone-data to have larger distances can be seen as the bone curve being slightly below the other two curves in the upper half of the figure, but overall the density-corrected distributions are very similar for all three media.

Figure 7 :

 7 Figure 7: Cumulative probability for water (solid line), bone (dash line) and lung (dotted line) as a function of δ • ρ. All three curves are based on PENELOPE results.

Table 1 :

 1 Mean and maximum values for energy and range for the emitted positrons[START_REF] Champion | Positron follow-up in liquid water: II. Spatial and energetic study for the most important radioisotopes used in PET[END_REF][START_REF] Loirec | Track structure simulation for positron emitters of medical interest. Part I: The case of the allowed decay isotopes[END_REF].

	Isotopes Emean (keV)	Emax (keV)	Rmean (mm)		Rmax (mm)
					Literature	
					Rmean (mm) a	
	18 F	252	635	0.660	0.6	2.633
	11 C	390	970	1.266	1.1	4.456
	13 N	488	1190	1.730	1.5	5.572
	15 O	730	1720	2.965	2.5	9.132
	68 Ga	844	1899	3.559	2.9	10.273
	62 Cu	1280.6	2926	6.077		16.149
	82 Rb	1551	3378	7.491	5.9	18.603

a

[START_REF] Partridge | The effect of β + energy on performance of a small animal PET camera[END_REF] 

Table 2 :

 2 Fitting parameters for the empirical cumulative probability given by (4). The standard errors are indicated into brackets for each isotope.

	Isotopes	A (mm -2 )	B (mm -1 )
	18 F	0.2951 (± 3.6%)	1.5090 (± 0.57 %)
	11 C	0.1262 (± 1.7 %)	0.7010 (± 0.45 %)
	13 N	0.0885 (± 1.0 %)	0.4681 (± 0.38 %)
	15 O	0.0436 (± 0.54 %)	0.2266 (± 0.33 %)
	68 Ga	0.0414 (± 0.35 %)	0.1499 (± 0.34 %)
	62 Cu	0.0164 (± 0.28 %)	0.0671 (± 0.40 %)
	82 Rb	0.0126 (± 0.23 %)	0.0468 (± 0.42 %)

Table 3 :

 3 Approximate mean range for two isotopes (chosen to represent low and high energy) calculated with PENELOPE in the continuing slowing down approximation (CSDA). For soft and lung tissue, the largest difference from water is 1.2% whereas it is up to 13% for bone tissue.

	Biological materials (ICRP compositions) range • density (g•cm -2 )
	Name	Density ρ (g•cm -3 )	18 F	62 Cu
	Water	1.00	0.0622	0.595
	Lung	0.26	0.0634	0.597
	Adipose	0.98	0.0613	0.591
	Muscle	1.07	0.0635	0.602
	Bone	1.92	0.0702	0.666
	In figure 7, we have reported the cumulative 2D probabilities obtained in PENELOPE for 18 F in water,