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ABSTRACT

Context. The connection between the prestellar core mass function (CMF) and the stellar initial mass function (IMF) lies at the heart
of all star formation theories, but it is inherently observationally unreachable.

Aims. In this paper we aim to elucidate the earliest phases of star formation with a series of high-resolution numerical simulations that
include the formation of sinks from high-density clumps. In particular, we focus on the transition from cores to sink particles within a
massive molecular filament, and work towards identifying the factors that determine the shape of the CMF and the IMF.

Methods. We have compared the CMF and IMF between magnetized and unmagnetized simulations, and between different resolutions.
In order to study the effect of core stability, we applied different selection criteria according to the virial parameter and the mass-to-flux
ratio of the cores.

Results. We find that, in all models, selecting cores based on their kinematic virial parameter tends to exclude collapsing objects,
because they host high velocity dispersions. Selecting only the thermally unstable magnetized cores, we observe that their mass-to-flux
ratio spans almost two orders of magnitude for a given mass. We also see that, when magnetic fields are included, the CMF peaks at
higher core mass values with respect to a pure hydrodynamical simulation. Nonetheless, all models produce sink mass functions with a
high-mass slope consistent with Salpeter. Finally, we examined the effects of resolution and find that, in these isothermal simulations,
even models with very high dynamical range fail to converge in the mass function.

Conclusions. Our main conclusion is that, although the resulting CMFs and IMFs have similar slopes in all simulations, the cores
have slightly different sizes and kinematical properties when a magnetic field is included, and this affects their gravitational stability.
Nonetheless, a core selection based on the mass-to-flux ratio is not enough to alter the shape of the CMF, if we do not take thermal
stability into account. Finally, we conclude that extreme care should be given to resolution issues when studying sink formation with
an isothermal equation of state, since with each increase in resolution, fragmentation continues to smaller scales in a self-similar way.

Key words. turbulence — stars: formation — ISM: clouds — ISM: magnetic fields

1. Introduction

Although the process of star formation is now reasonably under-
stood, the mechanisms responsible for the mass distribution of
stars at birth, namely the stellar initial mass function (IMF), have
still not been uniquely identified. This is a major challenge for
astrophysics, since any variations or environmental dependen-
cies of the IMF would have significant implications, for instance
for the interpretation of galaxy and cluster properties, or for the
study of planet formation.

Due to its very definition, the shape of the IMF is actu-
ally not easy to reproduce observationally. Small stars are faint,
and therefore hard to resolve in the light of bright, massive
stars, so that the low-mass functional behavior of the IMF is not
very clear. In addition, even for young stellar clusters close by,
crowding of the field is unavoidable. Finally, at the time of the
observation, some of the massive stars are already gone, lead-
ing to uncertainties in the high-mass end. However, taking these
challenges into consideration, the data does seem to agree that,
both for stars in the field and in clusters, the stellar IMF peaks at
a few tenths of a solar mass, and that its high-mass end follows
a power-law distribution: dN(M)/dlogM o« log M~'3, where N
the number of stars above a mass M (Salpeter 1955; Offner et al.
2014).

Article published by EDP Sciences

Since all known star formation happens in dense molecu-
lar cores, the efforts to understand the IMF have shifted toward
understanding the origin of the core mass function (CMF) and
the fragmentation properties of molecular clouds. In fact, most
observational evidence supports the idea that the CMF is shaped
like the IMF, with a Salpeter-like power-law distribution at the
high-mass end (Testi & Sargent 1998; Motte et al. 1998; Alves
et al. 2007; Nutter & Ward-Thompson 2007; Konyves et al. 2010;
Offner et al. 2014). This suggests that, on average, each core
forms a star with an efficiency of about 0.1-0.3. However, given
that stars form in multiple systems, and that cores may split or
merge during collapse, this idea demands theoretical verification
(Holman et al. 2013).

Indeed, the origin of the CMF and its connection to the
IMF have been thoroughly investigated by theoretical work.
Inutsuka (2001) derives a CMF with a slope close to 2.5 from
the gravitational instability of a filamentary cloud, starting from
Gaussian perturbations. Klessen (2001) instead propose that,
in order to produce a CMF with a slope larger than —2, one
needs to take turbulence into consideration. Along the same
lines, Padoan & Nordlund (2002) obtain a high-mass CMF
slope similar to Salpeter by assuming super-Alfvénic turbu-
lent fragmentation of the cloud. Hennebelle & Chabrier (2008)
derive the observed stellar IMF from the assumption that the
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Jeans-unstable cores of a turbulent cloud directly produce the
stars. SPH simulations of a collapsing, turbulent molecular
cloud by Smith et al. (2009) lead to the conclusion that the
prestellar core and sink distributions are very loosely con-
nected, and that only the distribution of the first fragments to
form in the simulation that resembles the IMF slope (but see
Chabrier & Hennebelle (2010) where the opposite conclusion
is reached). Simulating parsec-sized portions of a molecular
cloud formed by supersonic converging flows, Gong & Ostriker
(2015) find that the CMF of all the cores in a single snap-
shot represented the observed CMF, while high-mass cores
were depleted when the cores were selected by gravitational
instability.

Recently, the idea that the filamentary morphology of molec-
ular clouds may play a role in the shape of the CMF has emerged
following the Herschel Gould Belt survey (André et al. 2010;
Molinari et al. 2010). In this paradigm, clouds fragment into fil-
aments, and filaments into cores. Even in this context, however,
turbulence seems to be an important factor in determining the
shape of the CMF (Roy et al. 2015). Lee et al. (2017) integrate
the geometry of molecular clouds into the theory of the CMF,
proposing that the CMF is a convolution of filament statistics and
the individual filament CMF. In their studies they included the
effects of magnetic fields, an element that was often neglected in
previous works.

In this work we examined more closely the role of magnetic
fields in the collapse properties of a turbulent, filamentary cloud
by means of numerical simulations, also looking into resolution
effects. We studied an Orion-sized filament, at isothermal condi-
tions, and focused specifically on the shapes of the CMF and the
IMF under different selection criteria.

We also compared our results with the recent work of
Hennebelle (2018), who use intense zooming to go from a kpc-
scaled box, filled with a stratified interstellar medium, where
turbulence was self-consistently driven by supernova explosions,
down to a resolution of 400 AU. In the remainder of this paper
we will refer to these simulations as FRIGG.

This comparison is important because the two sets of simu-
lations are complementary in a number of ways. To begin with,
the FRIGG zooming simulations contain significant core statis-
tics due to the large volume, but does not reach the resolution
necessary for the formation of sink particles, which we have
employed here. Also, although we set up the collapse of a fila-
ment in isolation and not self-consistently, as is done in FRIGG,
we included control runs without magnetization, something that
the FRIGG simulations lack. Further, we were able to study
the influence of the numerical resolution. Finally, by compar-
ing the two works we can pinpoint the influence of the initial
conditions, which are clearly, drastically different from each
other.

The plan of the paper is as follows. Our numerical method is
outlined in Sect. 2, our results are presented in Sect. 3, Sect. 4
summarizes and discusses our findings, and Sect. 5 concludes
the paper.

2. Isolated filament collapse: method and setup
2.1. Numerical code

We used the publicly available MHD code RAMSES (Teyssier
2002; Fromang et al. 2006) to perform numerical simulations of
a magnetized, turbulent, elongated cloud. The RAMSES code
solves the MHD equations on a Cartesian grid and has adaptive
mesh refinement (AMR) capabilities.
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The equations solved by the code are:
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where p the gas density, v the velocity, E the total energy,
Py the pressure, B the magnetic field and ¢ the gravitational
potential. The Poisson equation is solved with a Fast Fourier
Transform technique at the coarsest level, while a relaxation
method is used for the finer levels (Teyssier 2002).

2.2. Numerical setup

The initial setup for all models consists of an elongated ellipsoid
of mass M, = 10> M, with a radial density profile that follows
the relation:

P
) 2
1+ &0 2
o )

p(r) = (6)

where p. is the central density of the cloud, and (ry, zo) the radial
and vertical size of the inner region of the cloud where the pro-
file flattens. The setup accepts a number of parameters which
are common among the different models. The parameter C
defines the contrast between the density of the cloud edge and
that of the ambient medium, and is here set to C¢; = 10. The ini-
tial relation between thermal pressure and gravitation, quantified
by gh = t/tsound, Where tg the free-fall time, and #;oynq the sound
crossing time, is set to 0.07. The corresponding initial relation
between turbulence and gravitation, quantified by qurb = /fims
where s the turbulence crossing time, is set to unity. In this
setup the turbulent velocity field has been precalculated and read
in as an initial condition. It has a Kolmogorov power spectrum,
and its amplitude is adjusted to give the desired @, parame-
ter. All clouds have an initial ellipsoidal shape, with two axes of
equal length and the third of 2.5 times their length. The longest
cloud dimension is aligned with the z axis. Finally, all runs have
an isothermal equation of state, with a temperature of about
10 K.

Based on the above choice of parameters, we calculated the
central density of the cloud, ng = 1500 cm™>, and the length of
the major axis, L. =33 pc. The box size was set to 2L, so that
the boundaries are reasonably far from its edges.

These parameters were chosen to give an initially gravita-
tionally unstable cloud, that nonetheless contains a significant
degree of turbulence, much like observed clouds.

We performed three simulations: two pure hydrodynamical
simulation (Models H and Hhr), and an MHD simulation where
there is an initially uniform magnetic field along the x direction
(Model M). The ratio of the free-fall time to the Alfvén crossing
time of the cloud for model M is amag = 5/ta =0.2. Models H
and Hhr differ only in numerical resolution, and we used model
Hhr for numerical convergence tests.

In these models we employed the adaptive mesh refinement
(AMR) feature of the code, resolving the Jeans length always
with at least ten cells. The coarsest grid is 512° and we activate
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Table 1. Simulation parameters.

Name Magnetic field Min and max AMR level
M 5uG 9-16
H 0 9-16
Hhr 0 9-17

Notes. The AMR level, 1, is defined as the exponent of 2/ that determines
the number of cells at each side of the box, assuming that the whole box
would be processed at that resolution. For example, an AMR level [ =7
means that the whole box would contain 27 = 128 cells if this were a
uniform grid simulation.

Table 2. Reference comparison times for the models.

Reference Model Time (Myr) Mass in sinks (M)
HM,
M 0.63 1528
H 0.55 1731
HM,
M 0.86 8837
H 0.76 8717
HHhI‘l
H 0.59 2948
Hhr 1.17 2465
HHhI‘g
H 0.69 5842
Hhr 1.26 5038

Notes. For the model names refer to Table 1 and to the text.

seven levels of refinement for models M and H, and eight levels
of refinement for model Hhr. For runs M and H this corresponds
to a resolution of about 1073 pc while for runs Hhr, this corre-
sponds to a resolution of 5x 10~ pc. For reference, these are
about four and eight times better than the canonical resolution
used in FRIGG, respectively. The properties of the models are
summarized in Table 1.

Finally, star formation was modeled by turning the dens-
est parts of the cloud (n > 108 cm™ in models H and M,
n > 10° cm™ in model Hhr) into “sink” particles. A sink is a
collisionless component in the code, coupled to the hydrodynam-
ical solver by a Particle Mesh method. In this implementation,
a gaseous clump forms a sink if it has reached the set density
threshold and in addition is virialized, contracting, and does not
already contain a sink. The details of the algorithm are described
in Bleuler & Teyssier (2014). Stellar feedback was not included
in these simulations.

Due to the slightly different initial conditions, each of the
models takes a different amount of time to reach an initial
statistical equilibrium. For this reason, rather than comparing
the models at the same evolution times, we compare them at
the time when a similar amount of mass has been accreted
onto sink particles. The four comparison pairs are indicated
in Table 2. As a tradeoff between adequate evolution of the
dynamics and computational resources, we stop the evolu-
tion of the models after approximately one dynamical time.
This corresponds roughly to the latest comparison times in
Table 2.

3. Filament collapse

Figure 1 shows column density plots on the xz plane for models
H and M, gradually zooming into the central region of the cloud
as indicated by the labels of the x and z axes. At large scales
the cloud structure is similar between the two models. However,
there is much more small-scale structure, leading to more frag-
mentation in model H with respect to model M. A good example
is the 0.2 pc roundish structure in the central region of Model M,
which is entirely absent in Model H (bottom panel of Fig. 1).
This is a clear indication of the influence of the magnetic field
on the distribution of angular momentum.

A frequently used diagnostic of the star-forming state of a
molecular cloud is the column density probability density func-
tion (pdf). According to theory, the column density pdf of a
turbulent cloud should be lognormal, while a gravitationally
collapsing gas should show a power-law pdf (Klessen 2000;
Kritsuk et al. 2011; Federrath & Klessen 2013; Tremblin et al.
2014; Lee & Hennebelle 2018a). Indeed, observational studies of
Infrared Dark Clouds (IRDCs) do show clear power-law tails in
clouds with ongoing star formation (Froebrich & Rowles 2010;
Schneider et al. 2015).

Here we used the number density pdfs to describe the dynam-
ical state of the cloud, shown in Fig. 2 for all the models. The
distributions in models H and M both peak at roughly 10° cm™,
while the increase in resolution causes a small shift in the log-
normal peak of model Hhr to higher values. All models produce
a power-law at high densities (log (n/em™) > 6), with slopes
between —1.3 and —1.6, in agreement with previous numerical
studies. For example, Federrath & Klessen (2013), in a param-
eter study of turbulent environments, find power-laws of slope
between —1 and -2 at high densities for turbulence driven by a
mix of solenoidal and compressible modes, and a star formation
efficiency between zero and five percent.

The presence of the power law here indicates that gravity
is acting at high densities, continuously creating new cores and
sinks. In fact, as Klessen (2000) and Dib & Burkert (2005) point
out, these power-law tails should be time-dependent, becoming
flatter as more structures become denser and collapse.

The effect of resolution is visible here, as the power-law in
model Hhr extends to higher values than in model H. There is
also a noticeable change in the power law at log (n/cm™>) =8,
where the sink formation threshold is set. The fact that there is
gas above that threshold reflects the additional criteria for sink
formation and for accretion onto a sink.

3.1. Core properties
3.1.1. Identifying cores

Cores were selected using an implementation of the HOP algo-
rithm (Eisenstein & Hut 1998), which is specifically designed
for grouping dense regions. HOP successively links each grid
cell to its densest neighbor, until it reaches a location which
is its own densest neighbor. It then hops to another location.
Eventually, all grid cells that are linked to the same local den-
sity maximum are grouped together, excluding locations below a
user-defined density threshold (here 3000 cm~3). The algorithm
is only mildly sensitive to the choice of this threshold, since it
essentially defines at which contour level the cores will be split.

Some of the thermally unstable cores identified by HOP in
simulations H and M are illustrated in Figs. 3 and 4, respectively,
together with their immediate environment, in column density
plots on the xy plane. Overplotted on the column density plots
is the local velocity field, represented by black arrows. The local

A82, page 3 of 15



A&A 625, A82 (2019)

(a) Model H

t=0.763 (Myr)

Model H

z(pc)

~

[N

o
log(N) em

30 40
a (pc)

£=0.763 (Myr)

40

)

35

z{pc)
log(N) em

30

30 35 40
= (pc)

t=0.763 (Myr)
f

=(pc)

34.0
x (pc)

(b) Model M

t=0.838 (Myr)

Model M

30
@ (pc)

£=0.838 (Myr)

-2

™
N
®
log(N) cm

30 32 34 36 38
= (pc)

t=0.838 (Myr)

z(pc)

33.6
= (pc)

338

Fig. 1. Column density on the xz plane, for Models H and M, gradually zooming into the center (from top to bottom panels), at reference times

HM,.

velocity was calculated by subtracting the center-of-mass veloc-
ity from each map. The axes are numbered in the same way as in
Fig. 1. In Appendix A we show only the locations belonging to
the cores, as they are identified by the algorithm.

It is clear that both the density and the velocity structures
appear in a variety of morphologies in both simulations. There
is a reappearing pattern in both models of cores along filaments,
resembling “beads on a string”, which is illustrated by two exam-
ples at the bottom right panels of Figs. 3 and 4. There is also a
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large number of very elongated cores at sheared regions, exam-
ples of which are included in both the aforementioned figures.
However, in order to make more general comments on potential
differences between models, we had to turn to statistics.

Since we were interested in studying cores that will eventu-
ally turn into stars, before we calculated the statistical properties
for the identified cores, we applied certain selection criteria. For
example, we looked at the distributions of only the kinetically or
thermally unstable cores, as measured by their virial parameter
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Fig. 2. Logarithm of the probability density functions of the density for
Models H and M, at reference times HM,, and for Models H and Hhr,
at reference times HHhr,. The dashed lines show power-law fits to the
high-density gas.

@ = Eyijn/Egray (Where Eyi, and Egy,, are the kinetic and grav-
itational energies of the core), and thermal virial parameters,
ah = Eq/ Egray (Where Ey, is the thermal energy of the core). The
thermal and the gravitational energies are direct outputs of the
code, so they are readily calculated for each core. The internal
velocity dispersion, and from it, the internal kinetic energy of
each core, is also fairly simple to calculate after subtracting the
center of mass velocity of the structure.

3.1.2. Kinematic and mass-size relations

The kinetic virial parameters are plotted as a function of core
mass in Fig. 5 for models H and M, in the form of a 2D
histogram. Here, the colorbar indicates the total mass in each
mass-virial parameter bin. In both cases, more massive cores
have smaller virial parameters, although this tendency is slightly
more pronounced in model M. Moreover, there is a lack of very
small-mass (M < 10~* M), low-virial parameter cores in model
M with respect to model H.

The thermal virial parameters are shown in Fig. 6 as a func-
tion of core mass. Since the simulations are isothermal, the
thermal pressure support depends on the density, so this rela-
tion is much tighter than in Fig. 5. On average, the trend is for
massive cores to be more unstable to collapse. However, while
the typical core in model H has a mass around 1M, and a ther-
mal virial parameter around unity, the typical core in model M is
slightly larger and more unstable.

It is worth noting that both the kinetic and the thermal
virial parameters span a very wide range of values, which partly
reflects the wide range of masses and radii. However, a direct
comparison of Figs. 5 and 6 shows that in model H there are
several very low-mass (log (M/M,) < -3 ) cores, which are kinet-
ically unstable (@ < 0.5) but thermally stable. In contrast, model
M not only contains on average cores of higher mass, but its
low-mass end (log (M/M) < — 2) also shows the opposite trend:
kinetically stable, but thermally unstable cores.

In Fig. 7 we selected only the thermally unstable cores (sub-
virial, or ay, < 1/2) and plotted their velocity dispersions and
specific angular momenta as a function of their mass and radius,
respectively, as well as their mass-size relation, in the form of
2D histograms. Overplotted in the middle panel are the observed
size-angular momentum relation from Belloche et al. (2002; con-
stant angular momentum with radius) and Goodman et al. (1993;

j o« R'9), as outlined in Li et al. (2014). In the bottom panel
we show the observed Larson relations (Larson 1981) between
mass and size as a dashed line, the mass-size limits for diffuse
clouds by Elmegreen & Falgarone (1996) as a blue shaded band,
and the mass-size relation of dense cores in Taurus as quoted by
Kirk et al. (2013) on the Onishi et al. (1996) data (blue dashed
line in Fig. 7 of Kirk et al. 2013), as a dotted-dashed line. We
have also overplotted as a solid line the critical Bonnor—Ebert
mass for a temperature of 10 K, Mg =2.4 RBch/ G, where G the
gravitational constant, ¢y the isothermal sound speed, and Rpg
the radius of the sphere, which is also very close to the mean
unstable core in the models. Here the core size was defined as
the largest dimension of the core, similarly to the usual obser-
vational definition (defining the radius as the third root of the
volume leaves this figure practically unchanged).

The first thing we notice is that the sizes, masses and spe-
cific angular momenta of the cores are very similar between
the two runs. Only the three-dimensional velocity dispersions
are systematically higher in the magnetized, with respect to the
hydrodynamical model.

In general, the cores in both models have mean kine-
matic properties consistent with observed trends, but with a
much larger scatter. For example, the velocity dispersion spans
almost two orders of magnitude for each given mass, much
more than expected for a single cloud. Such large variations in
velocity dispersion are usually reported in observational stud-
ies when there are significant variations in the surface density
of the clouds studied. In fact, Heyer et al. (2009), calculate
that, for clouds in virial equilibrium, the velocity dispersion
should depend on the column density, leading to a large spread
in the velocity dispersion-mass relation. This is also very
nicely illustrated in Fig. 1 of Ballesteros-Paredes et al. (2011),
where the authors plot observed cores from different regions
on the same axes. Large spreads in velocity dispersions in
pre-stellar cores due to a dependence on surface density have
also been reported in theoretical work (Ballesteros-Paredes &
Mac Low 2002; Camacho et al. 2016). However, the cores in
this study are drawn from environments of similar surface
density. Therefore, the large scatter in velocity dispersion is
propably owed to collapse velocities being interpreted as velocity
dispersions.

The dependence of the core angular momenta on their
radii that we find here are significantly higher than the rela-
tion j=10""7R'® reported by Goodman et al. (1993). These
authors, however, study much larger cores and clouds than those
we identified here. On the smaller core size, Ohashi (1999) and
Belloche et al. (2002), suggest there might be a break at around
5000 AU (log (R/pc) =—1.6), where the relation apparently flat-
tens to j=10"2 kms™! pc, from a constant angular velocity of
Q=1.8kms™' pc™!. Our results seem to be standing somewhere
in between: the specific angular momenta scale with radius
almost as R'®, but the scatter is so large that they are also con-
sistent with a flat distribution. In both models H and M they are
slightly above the constant value j =103 kms~! pc proposed by
Ohashi (1999) and Belloche et al. (2002), although well within
the observed limits of about 1073~1072 kms~! pc.

Unsurprisingly, the cores are systematically above the Larson
(1981) mass-size relation for diffuse clouds. In contrast, they
are in good agreement with, for example, the results on dense
cores in Aquila as reported by Konyves et al. (2015), and those
in Taurus reported by Kirk et al. (2013; see also the review by
Hennebelle & Falgarone 2012).

From a simulation standpoint, it is interesting that Chen &
Ostriker (2015) find a similar trend (Mcore < R?) for magnetized
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Fig. 3. Column density of selected cores on the xy plane, for Model H, at reference time HM,. The black arrows show the projected velocities on

the same plane.

cores formed in a post-shock layer, a very different setup than
ours. Finally, these results are in good agreement with what has
been inferred in Hennebelle (2018) for the FRIGG simulations,
especially the mass-size relation, visible in the top-left panel of
their Fig. 3, and the velocity dispersion, portrayed in the top-right
panel of that same figure (see also top-left panel of their Fig. 5,
as well as their Fig. 6 for the distribution of angular momenta).
These are all elatively similar to the results shown in Fig. 7 of
the present paper, although with more statistics. In particular,
FRIGG contains more massive cores (M > 10 M), which are
lacking in the present study. On the other hand, here we capture
the very small cores, that FRIGG cannot reach due to limited
resolution. The similarities between the two simulations have
important implications for both types of models, since FRIGG
used very different initial conditions to create the collapsing fil-
aments, namely a stratified, multi-phase ISM, with turbulence
created self-consistently from supernova explosions, no sink par-
ticles, and a maximum resolution lower by a factor of four with
respect to this work, triggered by a number of geometrical cri-
teria, plus the local Jeans mass. The similarity of the results
indicates that these core properties are not very strongly depen-
dent on the particular choice of initial conditions, as long as the
clouds are gravitationally unstable, and that, in large-scale simu-
lations, a resolution of about 400 AU is sufficient to capture the
core dynamics.
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3.1.3. Core mass spectra

Given the small differences between runs, it is interesting to
compare the total mass distributions of the cores to the mass
distributions of only those cores with kinetic, or thermal, virial
parameters below one half, namely those more likely to collapse.
The mass histograms of the cores with @ < 0.5 and a4, < 0.5 are
plotted in Fig. 8. In the same plots the histograms of the full mass
distributions are drawn with dashed lines. It appears that select-
ing cores with a low kinetic virial parameter has a much more
dramatic effect on the core mass distribution than selecting them
based on thermal stability. This happens because a high veloc-
ity dispersion does not only imply internal turbulence, but it can
also be due to gravitational contraction. Therefore this criterion
possibly excludes also collapsing cores (Traficante et al. 2018).
The effect is more pronounced in run M, where the cutoff affects
many high-mass cores. In contrast, applying a cutoff based on the
thermal virial parameter has the effect of moving the peaks of the
distributions toward higher values. On close inspection we can
see that this shift is larger for model H than for model M, prob-
ably because there are still magnetically supported cores among
the thermally supercritical distribution (see Fig. 9).

Indeed, we can perform a similar exercise by studying the
stability of the cores with respect to their magnetization. This
is measured by means of their mass-to-flux ratio, g = M o/,
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where M o the mass of the core and @ the magnetic flux
in its interior (Mouschovias & Spitzer 1976; Tomisaka et al.
1988). The mass-to-flux ratios of the thermally unstable cores in
model M, normalized over the critical value or collapse accord-
ing to Mouschovias & Spitzer (1976), are plotted in the top
panel of Fig. 9 as a function of their masses. We can see that
the typical thermally unstable core in model M is around a few
solar masses and magnetically supercritical. On average, there
is almost a linear relation between y and core mass. However,
there is a significant spread in g, which varies by almost two
orders of magnitude for the same core mass. Again, this result is
very reminiscent of the bottom-left panel of Fig. 5 in Hennebelle
(2018).

The bottom panel of the same figure contains the mass his-
togram of the thermally unstable cores with a mass-to-flux ratio
with values above unity. This histogram, in red, is overplotted on
top of the total (black dashed), and the thermally unstable-only
(blue) core mass distributions. There is a systematic shift of the
peak of the distribution toward higher masses as we gradually
select cores based on their gravitational instability, confirming
the lingering suspicion from Fig. 8 that the thermally unstable
core selection still contains gravitationally stable cores. In the
end, while the total mass distribution peaks at about a tenth of
a solar mass, the peak of the magnetically and thermally unsta-
ble cores is at a few solar masses. This shows that there is an
additional selection for forming stars in model M with respect

to model H, which could lead to differences in the stellar initial
mass function.

While the general aspects of the core mass spectra are sim-
ilar to what is presented in Fig. 4 of Hennebelle (2018), we see
that here the peak of the distribution occurs at a relatively higher
mass: in particular, the thermally unstable core distribution of
the present work peaks at about 0.5 M. The corresponding dis-
tribution for FRIGG peaks at about 1.5-2 M. This is consistent
with the conclusion of Hennebelle (2018), that the peak of the
core mass function is determined by the spatial resolution, an
issue that we examine in Sect. 3.3.

3.2. Sink properties

The sink mass distributions for models H and M are plotted in
Fig. 10 for both reference times. The overall shape of both distri-
butions is similar to that of the CMF, with one clear peak and a
power-law slope toward high masses. The slope of the high-mass
end in both models is compatible with Salpeter, especially at late
times. As with the core masses, model M produces sinks with
larger masses than model H, mirroring the relative lack of small-
scale structure. However, the peak of the sink distributions of
both models is located at higher masses than the respective core
mass distributions.

This puzzling difference probably results from a definition
issue: the cores we identified in post-processing are not the same
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Fig. 5. Virial parameter, « as a function of core mass in Models H and
M, at reference times HM,.

cores that generated the sinks, but those identified at the same
time as the sinks. This is similar to observing a cloud where
young stars are still located close to their birth sites. In fact,
based on an analysis not shown in these figures, most of the sinks
located close to the clumps are not bound to them, and detach in
a timescale of only a few thousand years, below the time reso-
lution of the code output. The few bound sinks are the youngest
ones, while the most massive, older ones, that have had time to
accrete, have detached dynamically from their parent core.

Let us stress however that the existence of the peak is entirely
numerical, and therefore any conclusion regarding its position
must be considered with great care. We return to this issue in the
following section.

3.3. Resolution effects

The fragmentation of an isothermal cloud under ideal MHD can
proceed in ever smaller scales as we increase the resolution. It
is therefore useful to compare the properties of the formed cores
and sinks between models H and Hhr and identify any resolution
effects.

The core velocity dispersions and specific angular momenta
are plotted in Fig. 11. Overall, there are barely any differences
with resolution, which indicates that the self-similarity in mass is
reflected in the kinematics of the cores. Increasing the resolution
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Fig. 6. Mass-weighted 2D histograms showing the thermal virial param-
eter, ag, as a function of core mass in Models H and M, at reference
times HM,.

extends all distributions toward smaller values. Interestingly
though, the dense cores in model Hhr are closer to the line of
critical Bonnor—Ebert spheres. This is probably a result of the
fact that their internal structure is better resolved.

Similarly, if we apply a cut at virial and thermal virial param-
eters as we did previously, we see that the mass histograms
of the most unstable cores (Fig. 12) are very similar between
models H and Hhr, especially the high-mass ends. Only the low-
mass populations (M < 107" M) differ strongly between the
two models when applying this selection. The reason is that the
most massive cores are, in general, the most thermally or kine-
matically unstable in both cases, and these cores are not affected
by the change in resolution. The peak of the core mass function
shifts toward smaller mass although by a factor lower than 2.
It is however sufficiently clear to claim that numerical conver-
gence is not reached. Higher resolution simulations should be
performed to examine whether numerical convergence can be
achieved regarding the core mass function.

Finally, resolution also affects the mass distributions of the
sinks, apart from better statistics (Fig. 13). Both models produce
a Salpeter-like slope at late times (bottom panel of the figure),
with the peak at slightly lower masses in run Hhr with respect
to run H. This is in good agreement with the simulations pre-
sented in Lee & Hennebelle (2018b,a) where a series of runs
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Fig. 7. Mass-weighted 2D histograms showing the core properties at reference times HM,. From top to bottom: 3D velocity dispersion as a
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shows the mass-size limits for diffuse CO clouds from Elmegreen & Falgarone (1996), the black solid line corresponds to a critical Bonnor-Ebert
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cores in Taurus quoted by Kirk et al. (2013) on the Onishi et al. (1996) data. Only thermally unstable cores are shown.

with several spatial resolutions is performed. In particular, these
authors find that with an isothermal equation of state, numeri-
cal convergence is never reached. The peak of the distribution is
determined by the numerical resolution and shifts toward smaller
mass as the resolution improves. When an adiabatic equation of

state is used at high density, that is to say when the effective
equation of state presents an effective polytropic index larger
than 4/3, numerical convergence can be reached. In realistic con-
ditions, this requires a spatial resolution typically smaller than
20 AU.
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Fig. 9. Top: mass-to-flux ratio, u, as a function of the mass of the ther-
mally unstable clumps in Model M, at reference time HM,. Bottom:
mass distribution of the thermally unstable cores with u > 1 for Model
M at the same reference times, overplotted on the distributions of all
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Salpeter IMF slope.

4. Summary and discussion

We have presented high-resolution numerical simulations of a
massive, collapsing molecular filament, including sink particles,
in order to follow the transition from the CMF to the IMF. We
performed one magnetized run and two hydrodynamical runs
at different resolutions, in order to study both the effects of
magnetization and of resolution on the properties of sinks and
cores.

Our most striking result is that the magnetized model pro-
duces unstable clumps and sinks of higher masses than those of
the hydrodynamical model. In other words, that the presence of
a magnetic field reduces small-scale structure. This finding is in
agreement with the work of Hennebelle (2013), who showed that
in simulations of magnetized, turbulent fluids, magnetic tension
helps maintain structures coherent even in the presence of shear
stress. Another effect is certainly the extra support that magnetic
field provides against gravity.

In our simulations, the magnetized clumps have higher
velocity dispersions than their hydrodynamical counterparts, but
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Fig. 11. Mass-weighted 2D histograms showing the core properties at reference times HHhr,. As in Fig. 7, from top to bottom, 3D velocity
dispersion as a function of core mass, specific angular momentum as a function of core size, and mass-size relation, with the observed relations as
dashed lines, and the mass-size relation for a critical Bonnor—Ebert sphere as a black solid line. Only thermally unstable cores are shown.

similar mass-size relations and specific angular momenta. This is
a clear indication that the magnetic field alters the way momen-
tum is channeled from large to small scales in a nonlinear
way, but the common ingredients among these models, namely
gravity and turbulence, play a dominant role in the statistical
kinematic behavior of the cores. However, as Seifried & Walch
(2015) point out, the initial relative orientation of the magnetic
field with respect to the filament main axis is a parameter that

can alter the fragmentation properties of the filament altogether,
and is one that we have not explored in this work.

In order to identify the processes that shape the IMF, we
examined the effect of certain selection criteria on the mass dis-
tribution of the cores. A selection by virial parameter (@ <0.5)
is the most impactful, in the sense that it removes a lot of cores
from the total distribution. However, such a selection removes
also the collapsing cores, since they host high internal velocities.
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Therefore, although the way kinetic energy is imparted to the
cores is crucial in determining their stability, and therefore also
the IMF, it is hard to determine the virial state of the cores by
measuring the velocity dispersion.

Of course, some effects have been neglected in the calcu-
lation of the virial parameter that could potentially alter the
results. For example, Kirk et al. (2017), based on their findings
on Orion A, suggest that the pressure of the ambient cloud has
to be taken into account when calculating the virial state of the
cores, something we have not included in this analysis.

Selecting gravitationally unstable cores by means of their
thermal virial parameter or (@, <0.5) is more successful in
excluding the low-mass cores. This causes the peak of the dis-
tribution to move toward higher mass values. However, magnetic
support needs to be taken into account as well. Interestingly, on
average the logarithm of u scales broadly linearly with mass. In
general, the mass-to-flux ratio of the thermally unstable, mag-
netized cores, spans a wide range of values, including many
subcritical cores. Therefore, a further selection according to
magnetic criticality is necessary in order to isolate the collapsing
cores.

In all runs, the sink mass function of both models resembles
the observed IMF, but peaks at higher masses, which is clearly
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a resolution effect. However, at the same resolution, model M
produces sinks with typically a factor of two higher masses than
model H. One possible reason for this that magnetization stops
core fragmentation, either by reducing the small-scale structure,
either by imparting larger amounts of angular momentum to the
cores.

The typical core mass in our models is lower than the typical
sink mass, independently of magnetization or resolution. In fact,
only a few sinks are still bound to the clumps at any given time,
and are those with ages typically below a few thousand years.
This is somewhat surprising, because it indicates that sinks can
accrete, grow and detach from their parent core very fast. On the
other hand, stellar feedback processes are not included in this
work, and could change this finding drastically.

We can gain some intuition into the matter of sink detach-
ment by looking at the work of Gong & Ostriker (2015), who
studied the formation of cores and sinks in converging flow
environments, focusing on small regions (1 pc) and therefore
achieving higher resolution than our simulations. In their study
they distinguish between the instantaneous core distribution,
which they find to be close to the observed, and the mass dis-
tribution of the cores at their individual collapse time, which
shows a deficit of massive cores, concluding that massive cores
continue to accrete after their collapse time. Although we do not
make this distinction in core selection, this early detachment of
the sinks from the cores means that cores continue to exist and
accrete after they have already formed stars.

Our simulations fall in the range of scales between galactic
simulations of the ISM and small-scale, core collapse simula-
tions, so it is instructive to compare to works covering larger and
smaller scales. Throughout the text we have been comparing in
detail to the results of the FRIGG simulations from Hennebelle
(2018), who present trends similar to this work in terms of the
virial parameters, velocity dispersions, mass-to-flux-ratios and
angular momenta of the cores. Another state-of-the-art project
involving zooming simulations is the SILCC project (Walch
et al. 2015), where a large portion of a galaxy is simulated
with different supernova feedback recipes, chemistry, and mag-
netic fields. In particular, in Girichidis et al. (2018) the authors
discuss the role of magnetic fields in the evolution of molecu-
lar clouds, in simulations with a maximum resolution of 1 pc.
Their Fig. 23 shows the mean mass-to-flux ratio of the clouds in
different simulations as a function of time, which at 60 Myrs of


http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201834094&pdf_id=0
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201834094&pdf_id=0

E. Ntormousi and P. Hennebelle: Simulated CMF and IMF in filaments

evolution agrees very well with the distribution we obtain for
a single cloud (Fig. 9). Since our initial filament is set up as
gravitationally unstable, and the finest mesh refinement in these
large-scale simulations is triggered by the local Jeans instability,
these similarities with large-scale simulations imply that the core
properties do not depend strongly on the specific mechanism that
drives the turbulence on large scales, or on the presence of sinks,
but probably on the gravitational instability of the cloud.

On the other hand though, Kuffmeier et al. (2017) perform
zoom-in simulations from a full molecular cloud scale down to
sub-AU sizes and found a variety of cores, the star-forming prop-
erties of which depend on the magnetic and velocity field of their
environment. This is an indication that at sub-AU scales there
could be other processes at work that homogenize or differenti-
ate the products of star formation, and are not taken into account
in any of these works, such as radiative feedback, and magnetic
diffusion.

Again on the small-scale end, Lee & Hennebelle (2018a)
study the collapse of small clouds with a polytropic equation
of state, which allowed them to achieve convergence in the IMF.
They found that cold cloud collapse simulations with an isother-
mal equation of state the peak of the IMF constantly shifts to
smaller values, which confirms our observations.

5. Conclusions

Our main conclusion is that a magnetic field affects the gravi-
tational collapse behavior of a turbulent massive filament in a
complex way.

In particular, we found that a magnetized filament is less
fragmented, and hosts cores with slightly higher internal velocity
dispersions than a hydrodynamical filament. Otherwise though,
the cores in the two types of models are very similar: their
specific angular momenta and their mass-size relation are com-
parable, and all in line with the observed values.

Regarding the core masses, we observed that the CMF of
a magnetized filament that contains only thermally and mag-
netically supercritical cores peaks at higher values than the
CMF of a hydrodynamical filament that contains only thermally
supercritical cores. Correspondingly, the sink mass distribu-
tion of a magnetized filament peaks at higher values than the
corresponding distribution of an unmagnetized filament. How-
ever, we did stress out that the location of the peaks is purely
numerical.

Finally, we also saw that in the magnetized run, the thermally
unstable cores have a wide distribution on mass-to-flux ratios
U, but on average, the logarithm of their masses relates almost
linearly to the logarithm of their u.

These results have important implications for any star forma-
tion theory, because they indicate that magnetization cannot be
ignored in the understanding of the CMF and IMF, especially
with respect to the core stability.

In terms of numerical convergence, we found that the veloc-
ity dispersions and specific angular momenta of the cores are
consistent between the two hydrodynamical simulations at dif-
ferent resolutions. They are also similar to those found in
large-scale MHD simulations. However, increasing the resolu-
tion did shift the peak of the CMF and of the sink mass function
to lower values. We concluded that in high-resolution collapse
simulations it is essential to include the relevant small-scale
physics, such as stellar feedback, or a different equation of state
at higher densities in order to achieve convergence.

Of course, there is a number of factors that could affect
these conclusions and merit further investigation. As an example,

stellar feedback could stop sink accretion very rapidly, and inter-
act with the magnetic field of the filament. In addition, a further
investigation into the topology and strength of the magnetic field
is needed in order to draw more general conclusions.
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Appendix A: Core definition the HOP algorithm. Figures A.1 and A.2 show core projections
on the xy plane, as in Figs. 3 and 4 of the text, but without the

In order to give a clearer idea of the core definitions, here we  .gre environment.

illustrate the core locations as selected by our implementation of
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Fig. A.1. Column density of the cores shown in Fig. 3, showing only the locations selected by the HOP algorithm.
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Fig. A.2. Column density of the cores shown in Fig. 4, showing only the locations selected by the HOP algorithm.
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