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ABSTRACT

Context. Determining the radial positions of galaxies up to a high accuracy depends on the correct identification of salient features in
their spectra. Classical techniques for spectroscopic redshift estimation make use of template matching with cross-correlation. These
templates are usually constructed from empirical spectra or simulations based on the modeling of local galaxies.

Aims. We propose two new spectroscopic redshift estimation schemes based on new learning techniques for galaxy spectra repre-
sentation, using either a dictionary learning technique for sparse representation or denoising autoencoders. We investigate how these
representations impact redshift estimation.

Methods. We first explored dictionary learning to obtain a sparse representation of the rest-frame galaxy spectra modeling both the
continuum and line emissions. As an alternative, denoising autoencoders were considered to learn non-linear representations from
rest-frame emission lines extracted from the data. In both cases, the redshift was then determined by redshifting the learnt representa-
tion and selecting the redshift that gave the lowest approximation error among the tested values.

Results. These methods have been tested on realistic simulated galaxy spectra, with photometry modeled after the Large Synoptic
Survey Telescope (LSST) and spectroscopy reproducing properties of the Sloan Digital Sky Survey (SDSS). They were compared to
Darth Fader, a robust technique extracting line features and estimating redshift through eigentemplates cross-correlations. We show
that both dictionary learning and denoising autoencoders provide improved accuracy and reliability across all signal-to-noise (S/N)
regimes and galaxy types. Furthermore, the former is more robust at high noise levels; the latter is more accurate on high S/N regimes.
Combining both estimators improves results at low S/N.

Conclusions. The representation learning framework for spectroscopic redshift analysis introduced in this work offers high per-
formance in feature extraction and redshift estimation, improving on a classical eigentemplates approach. This is a necessity for

next-generation galaxy surveys, and we demonstrate a successful application in realistic simulated survey data.

Key words. methods: data analysis — techniques: spectroscopic — galaxies: distances and redshifts

1. Introduction

Galaxy redshift surveys are among the main observational tools
to probe cosmological models. The leading methods measure
the distance scale imprinted in the large-scale distribution of
galaxies by oscillations in the primordial baryon-photon plasma
(Kazin et al. 2014; Alam et al. 2017; Bautista et al. 2018). This
baryonic acoustic oscillation (BAO) sound horizon can be used
as a standard ruler to characterize the expansion rate of the Uni-
verse at different times, thereby providing constraints on cos-
mological parameters such as the total matter and dark energy
densities (Blake & Glazebrook 2003; Seo & Eisenstein 2003). A
precise measurement of the redshifts of galaxies is fundamental
to extract this cosmological information from large galaxy sur-
veys, and it is also key to the supplementary goals of constrain-
ing models of galaxy formation and evolution. To achieve these
aims, most current and upcoming surveys such as the extended
Baryon Oscillation Spectroscopic Survey (eBOSS) and the Dark
Energy Spectroscopic Instrument (DESI) choose to observe
the spectroscopic energy distribution (SED) of galaxies in the

optical or near-infrared wavelength range with multiplexed fiber
spectrographs (Dawson et al. 2016; DESI Collaboration 2016).

Spectroscopic redshift estimation methods are typically
based on the identification and fitting of spectral features — such
as emission and absorption lines from electronic transitions in
different elements — or of distinctive continuum features — such
as the 4000 A break due to the absorption of high-energy pho-
tons from metals in stellar atmospheres and the reduced num-
ber of hot blue stars in old galaxies (e.g., Baldry et al. 2004;
Hutchinson et al. 2016). Especially for bluer, higher redshift
galaxies without a prominent continuum break, one of the main
hurdles for redshift estimation is the identification of relevant
spectral features; high noise levels may introduce features that
could be interpreted as physical lines if the analysis is too sensi-
tive to noise, or true features might not be identified if attempts
are made to mitigate false positive detections (Machado et al.
2013).

Another significant difficulty is ensuring that the spectral
templates upon which many fitting methods depend are physi-
cally consistent and sufficiently representative of the observed
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galaxy population in a particular survey (Bautista et al. 2018).
Redshifts are generally determined by cross-correlation or y?
fitting between observed spectra and a reference set of spec-
troscopic templates (Glazebrook et al. 1998). These template-
matching methods strongly rely on a catalog of galaxy spectra
at zero redshift to which the unknown redshift galaxies will be
compared, namely the template set. A template set can be pro-
hibitively large if we wish to ensure correct retrieval of most
of the significant features of an observed spectrum; addition-
ally, there might be many degeneracies in the information spread
throughout the full template set.

Former approaches exploit principal component analysis
(PCA) to reduce the dimensionality of the problem and sum-
marize the most relevant signal features in a set of principal
components (most famously Glazebrook et al. 1998). One can
then choose to retain a certain number of derived eigentem-
plates based on an “energy” metric that summarizes the amount
of information captured. However, the resulting representation
would only be efficient if the whole catalog shared common
features (continuum, emission lines) that could be encoded effi-
ciently with a few orthogonal templates. In other words, each
eigentemplate used to represent a galaxy spectrum will probably
contain a combination of features not specific to the galaxy we
need to represent.

Moreover, modern large-scale surveys observe increasingly
large data sets of galaxy spectra. In this context, although visual
identification of the key features in the spectrum constitutes the
most common method for validating galaxy redshift estimation
(Hinton et al. 2016), the huge amount of data impels the devel-
opment of robust and fully automated data-processing schemes
to analyze the data and extract useful information such as the
redshift.

We explore in this article unsupervised feature extrac-
tion from galaxy spectra through modern learning techniques.
Notably, we investigate dictionary learning (DL) for sparse
decomposition and denoising autoencoders (DAE) for spec-
tra representation. Compared to PCA, dictionary learning with
sparse representation is much more efficient to capture features
that are not shared among the training data (such as combi-
nation of emission lines for instance) or different structures in
the data (e.g., lines and breaks). It is therefore a good can-
didate for robust representation of structures specific to the
tested spectra, leading to robust redshift estimation. Denoising
autoencoders were selected for their ability to capture complex
non-linear features present in the data, as already illustrated in
Frontera-Pons et al. (2017). Ultimately, we exploit these new
representations for spectroscopic redshift estimation. We assess
the relative performance of the two resulting algorithms by com-
paring them with the redshift estimation code Darth Fader (DF;
Machado et al. 2013), based on cross-correlating estimated line
features with eigentemplates learnt from a training set. We also
investigate whether combining the results of both proposed esti-
mators improves the performance in redshift estimation.

This paper is organized as follows. In Sect. 2, the Darth Fader
algorithm that is used for comparison is briefly recapped. The
Sect. 3 is devoted to presenting dictionary learning for spec-
tra representation and its application for redshift estimation. In
Sect. 4, we detail the denoising autoencoder architecture and its
corresponding redshift estimation scheme. Section 5 describes
the simulated galaxy spectroscopic data used in the analysis.
Section 6 describes the different code configurations and ana-
lyzes the results of the runs, comparing the performances of the
different methods. Section 7 summarizes the results of the paper.
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2. Redshift estimation with Darth Fader

Darth Fader is a robust redshift estimation code (Machado et al.
2013). Line features are firstly extracted from the galaxy
SED, and then cross-correlated with eigentemplates as in tradi-
tional redshift estimation methods (Glazebrook et al. 1998). The
robustness of the method comes from the robustness of the line
feature extraction step, as well as a criterion to estimate redshift
only when a sufficient number of line features are detected. This
significantly improves redshift measurement performance and
is one of the main advantages of Darth Fader over the alterna-
tives (Machado et al. 2013). Lines are estimated from the spectra
using wavelet filtering and sparsity to remove continuum emis-
sion and represent line features in a galaxy SED (Machado et al.
2013). Wavelets are particularly suited for these tasks, given
that measured SEDs are composed of a slowly varying contin-
uum with mostly uncorrelated high-frequency noise and a few
very sharp emission and absorption features. In the following
we describe the main steps and features used in this approach to
estimate the redshift.

2.1. Spectra modeling

To perform feature extraction and denoising, Darth Fader
assumes that it can model spectra as a combination of lines,
noise, and continuum,

S=L+N+C, ey

where after continuum subtraction lines can further be broken
down between emission and absorption lines, L. > 0 and L, < 0.
It further assumes that line features are only important on small
and intermediate wavelength scales and that the continuum pos-
sesses solely large-scale information. These assumptions are not
rigorously true; in particular, strong lines can spread to larger
scales and contribute to the continuum. Conversely, weak lines
can be confused with noise in a low signal-to-noise (S/N) regime.
In the next paragraphs, we describe how Darth Fader deals with
these issues.

2.1.1. Continuum subtraction

To subtract the continuum, Darth Fader first identifies strong
emission and absorption lines, and extracts them from the orig-
inal spectrum using a pyramidal median transform (Starck et al.
1996). The reason for this choice of transform is that strong
lines will be flux outliers compared to the continuum, hence the
advantage of a median transform. Furthermore, it is a multiscale
transform, which means that it filters features of varying widths.
Applying the transform, outliers are identified and removed. The
remaining spectrum is a good representation of continuum and
noise. Darth Fader then applies a starlet transform (Starck et al.
2015) to this representation to identify and remove the contin-
uum. The starlet transform is a particular form of a wavelet
transform — an undecimated isotropic wavelet transform — which
decomposes the signal as follows:

J
S =D+ ) wild), @
j=1

J

where the w; are the details at scale 27/. The largest scale coeffi-
cient, ¢y, will be the best representation of the continuum, which
can then be subtracted from the original SED.
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2.1.2. Line feature denoising

Once the continuum is subtracted, the key step is to separate
lines from noise. Darth Fader employs sparsity constraints in a
wavelet representation to achieve this goal in low S/N regimes.
The shape of the spectral line features suggests that a particular
choice of basis functions — in this case, a family of wavelets —
will ensure that the decomposed signal contains at most a few
significantly non-zero coefficients. Imposing this sparsity condi-
tion by minimizing a {; norm on the wavelet-transformed line
signal, and enforcing additional constraints on line and input
wavelet coefficients, we can reconstruct the solution £. that best
matches the input data. More rigorously, we consider the fol-
lowing minimization problem to consecutively estimate emis-
sion and absorption lines:

mLin||’WL||1 st. S ecC, 3

where W is the wavelet transform operator, ||.||; is the £; norm
promoting sparsity — so that overall we look for a sparse solution
in the wavelet domain, — and C is a convex set of constraints.
We denote C the intersection of a set of positive (resp. negative)
constraints on emission lines L. (resp. absorption lines L,) and a
data fidelity constraint built as

wgs](z) - WEL](A) <e, V() eM, “)

where M is the multiresolution support. This multiresolution
support is first built by detecting significant wavelet coefficients
at scale j and wavelength A in the continuum-free spectrum
using a prescribed threshold based on false discovery rate (FDR)
for each wavelet scale (Starck & Murtagh 2006). This method
ensures that, on average, false positives generated by noise will
be kept at a chosen level, which has been shown to be a more effi-
cient method for detection of features in low S/N data regimes
than alternatives such as Ko clipping.

2.2. Construction of eigentemplates and redshift estimation

To estimate redshift using these extracted line features, eigen-
templates are first constructed from a training set of rest-frame
line features by removing the continuum of a set of noise-
free galaxy spectra as previously described. The tested spec-
tra processed for line feature extraction as described above
are then cross-correlated with these eigentemplates to derive a
redshift estimate as in traditional redshift estimation methods
(Glazebrook et al. 1998). For the purposes of providing bench-
mark results for the new methods developed in this paper, we
will not preselect the galaxies by counting the number of line
features in the spectra as was done in Machado et al. (2013), to
illustrate the raw performance of the methods.

3. Redshift estimation with dictionary learning

The first learning technique we propose for redshift estimation
relies on learning a representation for the full galaxy spectrum
(i.e., continuum and emission lines) with a dictionary learning
approach, assuming that spectra can be sparsely decomposed in
such a dictionary (i.e., only a few atoms are used or similarly
a few coefficients are non-zero for each decomposition). Esti-
mating the redshift is then performed by finding the redshift
where the sparse decomposition in this dictionary leads to the
lowest approximation error. In the following, we first present

our motivation for using dictionary learning to represent galaxy
spectra, then describe how we perform dictionary learning, and
explain how such an adaptive dictionary can be used for redshift
estimation.

3.1. Motivation

Dictionary learning techniques were proposed in the early 2000s
(Olshausen & Field 1996; Enganetal. 1999; Aharon et al.
2006) and have since been applied to many restoration prob-
lems (e.g., Elad & Aharon 2006; Mairal et al. 2008, 2009;
Zhang & Li 2010). Contrary to methods relying on PCA (e.g.,
Glazebrook et al. 1998; Machado et al. 2013) where template
information is compressed in several orthogonal eigentemplates
learnt from data or simulations, these techniques rather learn cor-
related templates assuming the observed spectra can be sparsely
represented in a dictionary obtained from the data. Such tech-
niques are therefore adapted to learn features (such as combina-
tion of emission lines for instance) or different structures in the
data (e.g., lines and breaks) that are not necessarily common to
all data but representative of a subset of it and are potentially
correlated, whereas PCA rather extracts orthogonal features
common to all data. This makes dictionary learning a good can-
didate for galaxy spectrum representation and redshift estima-
tion, considering that it is unlikely that we can obtain a close
sparse approximation of a tested spectrum if we redshift this
learnt representation using an incorrect redshift value.

3.2. Dictionary learning for galaxy spectrum representation

To fix our notations, a spectrum x € R"s is approximated by
a sparse decomposition De in a dictionary D € R"*" with n,
atoms and with only a few coeflicients of « different from zero.
The dictionary D is derived from a training set of n, examples
X € R by solving the bilinear minimization problem

argmin || X — DA||12F s.t.
DeD.A

Vi3 ”at”() <7 (5)

where A € R™™ is the matrix containing the coefficients
{a@;}i=1..n, as columns for each training example, ||-||r denotes the
Frobenius norm, ||-||p counts the number of non-zero entries of a
vector, T enforces a targeted sparsity degree, and O designates
the set of dictionaries with atoms in the unit ¢, ball.

The training set used for learning can either be derived from
real or simulated data. In practice, the critical point lies in the
choice of a representative training set in terms of spectral vari-
ety and an observed wavelength range large enough to encom-
pass the band of wavelength for testing the entire probed red-
shift range. The training set is then constructed by blueshifting
these spectra to obtain rest-frame data that are used to learn a
dictionary.

In the training phase, the joint non-convex problem described
in Eq. (5) is typically handled by using an alternate minimiza-
tion strategy, alternating sparse coding steps with dictionary
updating steps as illustrated in Algorithm 1. The former is per-
formed by minimizing Eq. (5) with respect to A for D fixed
to its previous estimate. The latter corresponds to minimizing
Eq. (5) with respect to D for A fixed to the previously estimated
codes. Both steps can be achieved using standard algorithms. In
this work, we will use the classical dictionary learning method
of optimal directions (MOD) as detailed in Engan et al. (1999)
with orthogonal matching pursuit (OMP; Mallat & Zhang 1993;
Pati & Krishnaprasad 1993) as a sparse coder.
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Because the problem described in Eq. (5) is non-convex, ini-
tialization of the dictionary is important so as not to obtain a non-
meaningful local minimum. Furthermore, we would like to learn
both continuum and line features on spectra to preserve as much
information as possible (to be robust to noise and to reduce line
confusion). In order to capture such a variety of features, we pro-
pose to use the procedure described in Algorithm 2 to initialize
the learning algorithm. We first separate lines from continuum
in our rest-frame training set by masking known line emission
bands and extrapolating the resulting data in the region of the
mask (step 1). A dictionary is then learnt for the line features
and a second one for the extracted continuum (step 2). Finally,
we concatenate the two dictionaries to initialize the learning pro-
cedure for the dictionary to represent both continuum and lines
(step 3). The global dictionary is learnt, with a targeted spar-
sity degree T given by the sum of the targeted sparsity degrees
selected to derive the two sub-dictionaries.

Algorithm 1 Dictionary learning with MOD (Engan et al. 1999)

1: Initialization: Choose the number of atoms n,, the targeted
sparsity degree 7, initialize the dictionary. Choose the num-
ber of iterations N;;.

2: forn =0to N; do > Main Learning Loop

3: for i =1..n,do > Sparse Coding

4: Compute the sparse code @; using OMP with stop-
ping criterion ||@;llo < T

5: end for

6: Update D using MOD > Dictionary Update

7: end for

8: return D

Algorithm 2 Dictionary learning for galaxy spectra
representation
Initialization step:
I: Line/Continuum separation: From the original train-

ing set X, obtain two training sets: Xy, for line features and
X for continuum extraction.

2: Sub-dictionary learning: Choose the number of atoms
My (resp. M), a targeted sparsity degree 7, (resp. 7¢), and a
number of iterations Ny, (resp N¢). Use Algorithm 1 to learn
a dictionary for lines Dy, based on Xj, and a dictionary for
continuum D¢ based on X¢, with a dictionary initialized by
randomly picking training examples.

3: Concatenation: concatenate Dy, and D¢ to obtain a dic-

tionary Dy with M; + M atoms.
Dictionary Learning:

4: Use Algorithm 1 to learn a dictionary D from the origi-
nal training set X, setting the number of atoms M; + M¢ and
the targeted sparsity degree 7, + 7¢, with N iterations, with
the initial dictionary Dr.
return D

3.3. Redshift estimation

Once the dictionary has been built, the redshift for the tested
spectra can be estimated using a cross-matching procedure. For
a tested redshift value, the atoms of the dictionary are redshifted
and the best sparse decomposition is computed using the same
targeted sparsity degree as in the training phase. Finally, for each
spectrum, the redshift is chosen as the one providing the best
sparse approximation among all the evaluated redshift values.
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More precisely, for an observed spectrum x., at a certain red-
shift z, our estimate is
. _lx. = DYa®|3
Z = argmin ————=  s.t.

5 lle®llo < 7, (6)
1T, lIx115

where D® is the dictionary computed previously whose atoms
have been redshifted by ¢ accounting for the observed wave-
length range, @ are the corresponding sparse coefficients esti-
mated using OMP with the same targeted sparsity degree T as
in the training phase, and 7~ is a grid of tested redshift values
that should be sufficiently finely sampled to typically avoid line
confusion.

This approach therefore assumes that whenever the tested
redshift is incorrect, a sparse decomposition in the redshifted
dictionary cannot adequately approximate the signal, because all
features captured in the dictionary do not match the observed
spectrum. We note that the extreme case of a sparsity degree of
one in the testing phase (which we will not use) would lead to a
selection of the best matching atom in our dictionary.

4. Redshift estimation with denoising autoencoders

In this section, we investigate another type of representation
for spectroscopic data built with a deep learning architec-
ture, namely denoising autoencoders. Autoencoder architectures
define a direct encoding function that transforms the input into a
more suitable representation and a decoding function that recon-
structs the corresponding input signal (Bourlard & Kamp 1988).
More suitable representations preserve a significant amount of
information, which enable reconstruction of the original signal.
We detail in this section the application of denoising autoen-
coders for unsupervised line feature extraction in spectroscopic
data. Ultimately, the learnt features will be used for redshift
estimation.

4.1. Motivation

Recent advances in machine learning and deep learning tech-
niques have shown their capability in solving supervised tasks.
They provide state of the art results in classification for computer
vision (e.g., Krizhevsky et al. 2012), speech recognition (e.g.,
Hinton et al. 2012; Dahl et al. 2012), natural language process-
ing (e.g., Collobert et al. 2011), galaxy surface analysis (e.g.,
Tuccillo et al. 2017), and other applications. Moreover, repre-
sentation learning methods have been praised as a powerful tool
to derive unsupervised data-driven representations (Bengio et al.
2013). These methods allow us to design features that effi-
ciently unfold complex underlying structures contained in the
data. Unsupervised feature-extraction techniques such as denois-
ing autoencoders have been successfully exploited and compared
to PCA for galaxy SED representation in Frontera-Pons et al.
(2017). In this work, the denoising autoencoders’ ability to
capture useful information, such as the redshift, has been high-
lighted, which motivates the study of this model for galaxy spec-
trum representation and redshift estimation.

4.2. Denoising autoencoders for template representation

In the classical autoencoder framework, the encoder fy provides
the representation vector from the input galaxy spectrum h; =
fo(x;), where X = [xq,...,xn]T € R™ corresponds to the spec-
trum with only extracted line features for each galaxy in the con-
sidered population {xi, ...xy}, h; € R™ is the feature vector or



J. Frontera-Pons et al.: Representation learning for spectroscopic redshift estimation

code, and nhid is the number of hidden units or the dimension of
the representation vector. Analogously, the decoder gy projects
from the code space back into the input space, yielding a recon-
struction of the original spectrum, X; = gg(h;). More specifically,
these functions are usually written as affine transformations, typ-
ically followed by a non-linearity, fy(x) = sp(by + W,x) and
go(h) = so(bg + W, h), where sy and s, are the encoder and
decoder activation functions, and € is the set of parameters that
characterize the encoder and the decoder. Common options for
the activation functions include the element-wise sigmoid, the
hyperbolic tangent non-linearity, or the identity function, if stay-
ing linear, among others. The parameters b, and b, are the bias
vectors of the encoder and decoder respectively, and Wy and W,
are the encoder and decoder weight matrices. Different weight
matrices in the encoder and decoder are permitted in the archi-
tecture. However, weight-tying, in which one defines W, = W},
is most often adopted and so it will be assumed hereafter. More-
over, the bias vectors b, and b, have not been considered in this
work to construct the representation.

The optimization of the parameters is performed to minimize
the reconstruction error for the galaxy spectra, L(x, X) over all the
samples in the training population. Therefore, the cost function
can be written according to

N
JAE®) = " L(xi, go(foXi))). @)
i=1

This minimization is generally carried out by stochastic gra-

dient descent. The choice of the reconstruction error measure
L(-) depends on the input data domain range and nature. In other
words, it is selected so that L(-) returns a negative log-likelihood
for the observed value of x. The mean squared error loss has been
used for feature extraction, L(x,X) = ||x — X|>.
It is worth mentioning that with this configuration the basic
autoencoders could learn the identity function to perfectly recon-
struct the input. In order to avoid this trivial solution, some reg-
ularization constraints should be included during the training
stage. Some studies, like Rifai et al. (2011) and Alain & Bengio
(2014), underline the improvement brought by regularized
autoencoders compared to the basic autoencoder framework.
The purpose of this regularization is to render the representation
invariant to local variations in the input.

In this article we focus on denoising autoencoders. In this
case, the regularization by denoising makes the whole transfor-
mation robust and insensitive to small random perturbations in
the input. Other variations could be explored such as under-
complete representations that allow for a compression of the
input data, or over-complete representations imposing sparsity
on the code (Coates et al. 2011).

Denoising autoencoders were originally introduced by
Vincent et al. (2008). In this approach, the training objective in
Eq. (7) is modified to recover a clean input spectrum from an
artificially corrupted version of it. Specifically, the cost function
to be minimized becomes

N
Toae(0) = > By [L(Xi, ga(fa®)], ®)
i=1

where E xx,)[] denotes the expectation over all the corrupted
samples in the training population and Jpag is optimized by
stochastic gradient descent. Therefore, the recovered signal does
not seek a perfect reconstruction of the original galaxy spec-
trum X, but to retrieve the mean of the distribution that might
generate X. The different corruption processes discussed in

Vincent et al. (2008, 2010) involve additive Gaussian noise, salt
and pepper noise, or masking noise. If some prior knowledge
about the kind of perturbation the data might encounter is avail-
able, it can be incorporated into the corruption stage to make
the model robust against this perturbation. Otherwise, the above-
mentioned corruptors are useful in most scenarios. Moreover, the
underlying structure and the information contained in the galaxy
population have to be retained by the scheme in order to undo
the effect of the corruption process, that is, to perform denoising.
Good generalization of the model translates to a low reconstruc-
tion error for galaxies with similar characteristics to those in the
training population, while yielding high reconstruction error for
most other configurations.

4.3. Redshift estimation

The denoising autoencoders presented above are used to learn
representations from rest-frame spectroscopic data. Then, the
redshift is estimated for each spectra as the value providing
the smallest reconstruction error from the model that has been
redshifted in order to match the observed test spectra (Fig. 1).
Specifically, the model is built from a catalog of galaxy spec-
tra at zero redshift, named the training set as for the dictionary
learning framework. The denoising autoencoder architecture is
optimized in order to minimize the reconstruction error for the
samples in the training set. These samples have to be representa-
tive of the expected galaxy population in the analysis.

After training, for every redshift value evaluated the model
parameters are redshifted. Thereupon, the tested spectra are pro-
jected to the representation space through the encoder function
defined by the denoising autoencoder and projected back to the
input space with the decoder, leading to an approximation of the
input signal. The redshift is estimated as the value minimizing
this approximation error. In other words, we hope that, when the
discriminating features of the test spectra are aligned with their
rest-frame counterparts used for the training stage, the model
will be able to reconstruct the input signal with a small error
while yielding a large reconstruction error in any other case. The
error is computed using an Euclidean metric, and for each test
sample the redshift is obtained according to

. 1% = ggo (fgo (xXI3
Z = argmin > ,
€T X[l

€))

where 6 denotes the denoising autoencoder model redshifted at
t and 7 is the grid of tested redshift values. In other words, the
columns of the weighting matrix W are redshifted and treated
similarly as the atoms in a dictionary described in Sect. 3.

5. Data

In order to assess how these two new methods perform for spec-
troscopic redshift estimation in a realistic setting, we wish to use
a simulated data set consisting of a combination of photometric
and spectroscopic data mimicking modern galaxy surveys. We
require that this data obey the following constraints:

(1) There is a realistic distribution of galaxy types, photomet-
ric properties, and redshifts corresponding to an idealized selec-
tion function for a state-of-the-art photometric galaxy survey.

(ii) Each galaxy is consistently matched to a correspond-
ing SED from a template library containing realistic continuum,
emission, and absorption features. The matching must ensure
that the integrated flux through broadband filters corresponding
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to the original photometric sample is consistent with the original
observations.

(iii) The SEDs are resampled, integrated, and noise is added
to simulate realistic spectra from existing or planned galaxy
spectroscopic surveys.

To generate a realistic distribution of galaxies with simulated
redshift values, SEDs, and broadband photometry, we employ
the COSMOSSNAP simulation code (Jouveletal. 2009).
COSMOSSNAP uses real data from the 30-band COSMOS pho-
tometric redshift catalog as a basis (Ilbert et al. 2008), thereby
ensuring that realistic relationships between galaxy type, color,
size, and redshift are taken into account. The catalog was
originally generated from a combination of observations from
astronomical surveys covering the spectral range from the UV
(Galaxy Evolution Explorer), through the optical (Subaru) and
to near- and far-infrared bands (CFHT, UKIRT, Spitzer). This
data set is matched to Hubble Advanced Camera for Surveys
imaging data, thus including realistic size-magnitude distribu-
tions from high-quality shape measurements originally made for
weak lensing applications (Leauthaud et al. 2007).

From this seed catalog, and assuming that the measured pho-
tometric redshifts are “true” redshifts, COSMOSSNAP can cre-
ate simulated catalogs for any broadband photometric survey.
The procedure is as follows: based on each galaxy’s properties,
COSMOSSNAP chooses a spectral template from a predefined
library, such that the integrated fluxes through the 30 broad-
band filters provide the best fit to the observations. It uses the
Coleman Extended library, which includes four spectral types —
Elliptical, Sbc, Scd, and Irregular (Coleman et al. 1980). It
extends the spectral range into the UV and IR using synthetic
spectra from the Galaxy Isochrone Synthesis Spectral Evolution
Library (Bruzual & Charlot 1993) and adds an extra fifth type
to represent starburst galaxies. To add realistic spectral features
atop the original templates, galaxy emission line fluxes are cal-
culated based on continuum properties of each galaxy. From
the UV rest-frame luminosity of a given galaxy, a star forma-
tion rate is inferred using a calibration from Kennicutt (1998).
This is then translated into an [OII] line flux, a relation which is
valid for different galaxy types. Additional emission line fluxes
are calculated relative to the [OII] flux, based on observations
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(Moustakas et al. 2006). The final SED of each galaxy is then
corrected by host extinction (i.e., dimming due to dust within
the galaxy itself, estimated from the photometric properties) and
redshifted following the best-fit photometric redshift value.

At the end of this process, each galaxy has a “true” red-
shift and its associated SED model. Given an arbitrary choice
of broadband filter and a model of the full filter throughput —
including atmospheric transmission, telescope optical effects,
and more — the SED can be integrated to calculate simulated
noiseless magnitudes. A realistic two-component model of mag-
nitude errors with tunable observational properties is applied for
each galaxy in the catalog. The resulting magnitude and error
distributions can reproduce closely those of current and future
large-scale galaxy surveys. For this analysis, we decide to create
a photometric catalog modeled after the expected throughput of
the six Large Synoptic Survey Telescope' (LSST) broadband fil-
ters commonly referred to as “ugrizY”, and with the expected
depth properties of the science-ready “Gold” sample (Abell et al.
2009). Hence we exclude from the catalog galaxies fainter than
25.3 AB magnitude and with S/N < 10 in the i-band. We obtain
218966 galaxies in an effective area of 1.24 deg? with realistic
photometric properties, together with best-fit spectral templates
with realistic continuum and emission line properties.

COSMOSSNAP produces SEDs with a chosen wavelength
resolution for the continuum and absorption lines. The emis-
sion lines are added at higher resolution, to ensure that their
shapes and amplitudes are fully characterized. To work with
realistic spectra, we need to resample, integrate, and add noise
to the best-fit SEDs. On a real fiber-fed spectrograph such as
the ones designed for the BOSS (Smee et al. 2013) and DESI
(DESI Collaboration 2016) surveys, the resolution is a variable
property that depends on the characteristics of the instrument, in
particular on the interplay between the 1D point spread function
full width at half maximum of the spectrograph and the pixel size
of the CCD. Noise on the 1D spectra is mainly due to Poisson
sampling of photons from the source and CCD readout noise,
among other effects. For our purposes of evaluating the perfor-
mance of redshift algorithms, we assume a constant resolution

! http://www.lsst.org/
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R = A/AA — which implies a wavelength binning constant in
logarithmic scale — and uncorrelated Gaussian noise with
constant variance o on all wavelength bins. The SEDs are log-
binned with a constant bin size of 2.17 x 10~ log 10 A - corre-
sponding to a resolution of R ~ 850 — and integrated within those
bins. We add noise of different S/N levels, where the level is
defined according to the spectral energy flux integrated in the 7-
band?, following Bolton et al. (2012) and Machado et al. (2013):

6760 A

5600A - (10)

S /N, = median [ﬂux]

o

We work with S/N € {2,5,20}, where S/N = 20 is our
“clean” case.

For the remainder of this paper, we work with a training
data set that includes 2000 clean resampled spectra randomly
sampled from the original COSMOSSNAP data from a redshift
range [0, 1.7]. These training SEDs are blueshifted to the rest
frame and cropped to the wavelength range [1250 A, 10500 A].
For testing, we randomly sample galaxies of different types.
COSMOSSNAP classifies its spectra in 36 classes, organized in
four groups: E11S0, SaSc, SdSm, and SB. We build a test set
by randomly sampling 5000 galaxies from each of the groups to
investigate potential systematic effects in our methods depend-
ing on the galaxy type. This galaxy type information was not
included in the training phase. All test galaxy spectra are cropped
to the wavelength range [3000 A, 10500 A].

6. Experimental results

Let us now present the results for redshift estimation obtained
with the proposed dictionary learning and denoising autoencoder
representation learning frameworks. These two approaches have
been compared to the Darth Fader algorithm (Machado et al.
2013), based on robustly extracting line features and cross-
correlating them with eigentemplates to infer a redshift. We start
by describing how we set this algorithm up for this comparison
and then describe the parameters for the two proposed methods.

6.1. Darth Fader

We run Darth Fader on the 4 X 5000 test galaxy spectra for all
S/N levels. Our configuration choices mostly follow the stan-
dard setup. We briefly describe them now, and refer the reader
to Sect. 2 and to Machado et al. (2013) for more details. We
derive eigentemplates from the clean training data set described
in Sect. 5. We set the threshold for the principal components
so that the eigentemplates retained contain 99.93% of total
eigenvalue weight, as in Machado et al. (2013). We keep 26
eigentemplates as a result. If the preserved percentage of the
variance and the number of retained eigentemplates are not suffi-
cient for reconstruction, the performances of the redshift estima-
tion scheme can degrade. On the other hand, if all the energy was
intended to be retained by the representation, a larger number of
eigentemplates may yield a drop in performance for noisy sce-
nario. According to our experiments, these factors worsen the
redshift estimation but not significantly. For denoising the test
spectra, we restrict the multiscale transform to six scales and
keep the regularisation at 0.01. For redshift estimation, we cross-
correlate the eigentemplates with the denoised version of the test

2 The LSST r-band filter is not identical to the SDSS one. Therefore,
our definition of S/N is not identical to that in Machado et al. (2013).
This does not have any impact on our analysis and conclusions as they
are self-consistent.

spectra to avoid the misclassification of noise features as spec-
tral lines, even though denoising may result in removing physical
features in low S/N regimes. Contrary to what is recommended
for optimal use of Darth Fader, we do not clean the resulting cat-
alog with FDR thresholding. Although this results in sub-optimal
performance metrics, we wish to compare the performance of the
algorithms on the full galaxy set, and not only on those relatively
few galaxies where Darth Fader successfully retrieves many
features.

6.2. Dictionary learning

As illustrated in Algorithm 2, the first step in our analysis
involves constructing a meaningful initial dictionary for the
subsequent learning phase. This implies constructing two sub-
dictionaries for line features and continuum, and therefore the
separation between line features and continuum emissions in the
rest-frame training set. The line features have been removed with
a mask centered on known wavelength value for each emission
line, and extended to a width of 80 A in order to ensure that
no emission line energy is leaking into the continuum. Then,
a multiscale iterative inpainting technique is used to extrapo-
late the continuum inside this region: we iteratively keep only
low-frequency scale coefficients in the mask while enforcing val-
ues outside the masked region not to be affected by the proce-
dure. Some statistics on the separation are summarized in Fig. 2,
which illustrates its good performance.

A “continuum” template dictionary of 40 atoms with a tar-
geted sparsity degree of three and 100 iterations was learnt using
the training data set with continuum features. Similarly for the
set with line features, a “line” template dictionary of 20 atoms
with a targeted sparsity degree of three and 100 iterations was
learnt. The number of atoms and sparsity degree were heuristi-
cally fixed from the overall complexity observed in the training
data (using more atoms leads to high correlation preventing the
learning) and as a trade-off between estimation error, efficient
learning, and robust subsequent redshift estimation. Indeed, even
though increasing the sparsity degree would decrease the overall
approximation error, it would also increase the risk of line con-
fusion by potentially selecting as atoms more isolated features in
the spectra.

The atoms learnt for the two sub-dictionaries are represented
in the upper panels of Fig. 3. Several things can be understood
from this figure: first, in both cases, the atoms are correlated
contrary to what would have been obtained with PCA; sec-
ond, in particular because of the small targeted sparsity degree,
the atoms learnt for lines all contained a combination of line
features, which would help to avoid line confusion; third, the
4000 A break feature is captured by most but not all atoms in
the continuum sub-dictionary. Learning was finally performed
on the original training data set by initializing the dictionary
with the 60 atom dictionary obtained by concatenating the two
previous ones, using ten iterations and a sparsity degree of six.
The two components of the final dictionary are displayed in the
lower panels of Fig. 3, showing that some leakage between the
two components has been introduced during the final learning
phase, which was actually beneficial to reduce approximation
errors. This also leads the continuum part to contain more high-
frequency features, which could result in better redshift estima-
tion by combining several correlated line and continuum features
in the atoms. For spectroscopic redshift estimation, the redshift
grid 7 tested was built by uniformly sampling the range from 0
to 1.7 with a density of 0.001 and sparse coding was performed
for all galaxy spectra at the given sampled redshifts.
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6.3. Denoising autoencoders

Firstly, the model was constructed using TensorFlow
(Abadi et al. 2016). TensorFlow is an open source soft-
ware library for numerical computation using data flow graphs.
It was developed by Google and tailored for machine learning.
Extensive documentation describing all the functionalities can
be found on the website below?.

3 https://www.tensorflow.org/
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The denoising autoencoder was trained with the training
set described above composed of N = 2000 samples spanning
from 1250 A to 10500 A resulting in a vector of dimension
m = 4258. The training samples followed the same prepro-
cessing as in the Darth Fader scheme for continuum line sub-
traction, and the continuum of the spectra has been removed
through wavelet filtering as explained in Sect. 2.1.1. The num-
ber of visible units is fixed to m = 4258 in agreement with the
size of the input data and the number of hidden units is a free
parameter.
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The representation size has to be large enough in order to
retain sufficient information for reconstruction. As the repre-
sentation size increases, the approximation error will decrease.
This improvement will be significant only for the galaxy true
redshift and will not impact on its estimation. As the com-
putation time for the redshift estimation algorithm is pro-
portional to nhid, we chose a value providing a sufficiently
reliable reconstruction of the original signal for the redshift esti-
mation, but greater values could be used instead. We have inves-
tigated nhid = 20,100,200, 1000 and chosen an architecture
with nhid = 100. Smaller values did not provide a useful recon-
struction of the spectra and greater values did not improve the
redshift estimation step. Thus, this choice is a trade-off between
approximation error and computation time.

The weights are randomly initialized from a uniform distri-
bution and are tied across all the experiments. Moreover, the acti-
vation function for both the encoder and the decoder is set to be
a hyperbolic tangent. The input is artificially contaminated with
a Gaussian noise such that the S/N will be constant and equal
to five through all the training set. Furthermore, the optimiza-
tion of the parameters is performed through stochastic gradient
descent; and the reconstruction cost criteria to be minimized is
the squared reconstruction error. The learning rate has been set
to 10™* and the batch size to 100. The training stops after 500
epochs. The choice of the learning rate, the batch size, and the
number of epochs is done in order to ensure a convergence on
the training stage. Figure 4 displays the encoder weights learned
by the denoising autoencoder. This illustrates what kind of fea-
tures the model is sensitive to and gives an idea about how the
input data are coded. The earmarks highlighted by the filters are
in agreement with the position of the absorption and emission
lines dominating the training samples. Moreover, Fig. 5 displays
one sample belonging to the training set (a), its representation
(b), and its corresponding reconstruction (c). From the way the
information is coded in Fig. 5, it is hard to give a straightforward
interpretation. Due to the mixing performed by the encoder, the
information is distributed over all the code and nothing can be
said about hidden units individually.

Let us now illustrate the results for redshift estimation with
the denoising autoencoders. Figure 6 illustrates some approx-
imation error profiles over all the investigated redshift values.
The redshift has been uniformly sampled from 0 to 1.7 with
0.001 steps. From this figure, it is clear that the proposed method
correctly finds the redshift in the studied scenario. Moreover,
the technique described in this work is highly sensitive to the
true redshift value and its precision depends on the redshift
sampling grid. However, some strong oscillations due to the
matching of the different features present in the spectra show

that some line confusion could occur in the subsequent redshift
estimation.

6.4. Comparison of results

In this section, we compare the results of all three methods, pay-
ing special attention to dictionary learning and denoising autoen-
coders. These methods improve performance in all S/N regimes
and for all galaxy types when compared to Darth Fader, but each
has its own advantages and drawbacks.

Figure 7 compares the estimated to true redshift values for
all three methods in three different S/N regimes. For S /N = 20,
all methods perform well, with small dispersion around the truth
and very few catastrophic outliers. Nonetheless, there are qual-
itative differences in the distribution of these outliers. Dictio-
nary learning encounters small difficulties with most types of
galaxies, in particular at intermediate redshifts. Darth Fader and
DAE, on the other hand, show a common pattern of secondary
linear features, which is due to feature confusion: when an insuf-
ficient number of features is present, the redshift estimation
process confuses between features in a predictable matter. For
example, an He hydrogen transition line can be misidentified
as an OII oxygen line. The phenomenon is stronger with Darth
Fader, which in addition has another cluster of outliers at low-
estimated/high-true redshift.

At S/N = 5, Darth Fader performance is significantly
degraded. DAE and DL outlier rate increases slightly, but the pat-
terns of errors remain the same for them. However, DAE starts
showing a similar cluster of outliers that were already present in
Darth Fader’s S /N = 20 results. This trend is even stronger when
DAE reaches S/N = 2. There are striking similarities between
its results in this regime and Darth Fader’s at S/N = 5, seeming
to indicate that both algorithms are reacting to the same under-
lying patterns in the data. The situation is markedly different for
dictionary learning. In the S/N = 2 regime, the number of out-
liers increases but they still follow a pattern of clustered groups
of outliers relatively close to the true redshift values.

Figure 8 investigates the distribution of catastrophic out-
liers per redshift range and galaxy type for the same three S/N
cases. Failure rates are clearly dependent on these variables.
In particular, galaxy type strongly influences the performance
of the algorithm. This is to be expected: the SED of starburst
galaxies, for example, typically includes very strong emission
lines due to intense star-formation activity, whereas the SED of
elliptical galaxies includes a strong break on the 4000 A rest-
frame continuum as its most prominent feature. At S/N = 20,
most DF failures take place at the highest redshifts, for most
types. DAE demonstrates almost perfect performance, while
DL has a relatively low rate of failure, mostly concentrated on
redshifts larger than one. Ellipticals and lenticulars (EIISO) at
intermediate redshifts are a curious case: Darth Fader and — in
particular — DAE maintain a low rate of catastrophic outliers for
this subclass. However, DL shows bad performance for this sub-
class, even at high S/N = 20. What we observe for this type of
galaxy and this redshift bin is confusion of features in the contin-
uum in the representation learnt via dictionary learning. Indeed,
these galaxies represent only 5% of the training set, dominated
by starbursts (SB) galaxies (about 86%), so learning is mainly
driven by approximation of SB galaxies rather than elliptical
galaxies. Errors in modeling the continuum of EIISO are expected
therefore to be larger, which could translate to incorrect red-
shift estimation if this affects discriminative features for redshift
estimation. Furthermore, for this redshift bin, the 4000 A break
is close to the end of the observable range, and confusion of
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features arise with other discontinuities in the continuum located
before or after this break.

For /N =5 and S/N = 2, both DAE and DL markedly out-
perform Darth Fader in all galaxy classes. Comparison between
DAE and DL methods is more ambiguous. DAE achieves excel-
lent results for all galaxy classes in higher S/N regimes, as seen
in the top and middle panels of the middle column in Fig. §;
catastrophic outlier rates are nearly zero everywhere. However,
performance rapidly degrades when S/N decreases, as seen in the
lower panel. Moreover, comparison to the middle lower panel of
Fig. 7 shows that those failures are random within a band of esti-
mated redshift, which signals a pathological behaviour. DL, on
the other hand, keeps a consistent pattern of failures, maintain-
ing lower than 20% catastrophic outlier rates for most galaxy
types and redshift bins. In that sense, both methods are comple-
mentary. In terms of galaxy types, all methods perform best with
starburst galaxies; even in the low S /N =2 regime, Darth Fader
still succeeds in keeping the catastrophic outlier rate of this class
below 20% for redshifts smaller then z = 1.

Table 1 presents a quantitative overview of the catastrophic
outlier rates. In addition to the total success rates for each algo-
rithm in the different S/N regimes, we also investigate the par-
tial rates when different combinations of algorithms succeed in
measuring precise redshifts. We see, for example, that it is
exceedingly rare for Darth Fader to succeed when both dictio-
nary learning and denoising autoencoders fail. Even if only one
of them succeeds, it is still quite rare for Darth Fader to succeed
also. In other words, once we have DL and DAE results, DF
results are superfluous; they measure accurate redshifts mostly
when the other two methods also do. Focusing on the S/N = 2
case, we see the potential advantage of combining the meth-
ods. The total success rate when both DL and DAE succeed is
71.4% (i.e., (5203 + 9082)/20 000), which is already significant
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for a low S/N regime. However, if we identify a way of selecting
the best method when one or the other succeeds, we can reach
18739/20000 = 93.7% success rate. In the next subsection, we
will develop an algorithm to select the best redshift possible in
each case and study its accuracy.

We now turn to investigating the dispersion of redshift esti-
mates around the true values after excluding catastrophic outliers
from consideration. Figure 9 compares the dispersion distribu-
tion of DAE and DL for all galaxy types in the S/N = 5 and
S/N = 2 cases. Yet again, the presence of sharp features clearly
influences the performance of both methods, with dispersion of
estimated redshifts decreasing from elliptical to starburst galax-
ies. Additionally, DAE is more precise (i.e., smaller o) than DL
(except in the particular case of ellipticals at S/N = 5, where
performance is comparable). As could be expected, overall dis-
persion of the estimated values is higher for S/N = 2 than
S/N = 5, but this is the only quantitative difference between
the two noise levels. In summary, inclusion of continuum for DL
allows us to obtain a more consistent redshift estimation when
noise increases compared to DAE (lower confusion), but adding
this essentially low-frequency information also degrades the pre-
cision in estimating the redshift, since modeling errors on contin-
uum (giving low precision in redshift estimation) may dominate
over modeling errors of line features (giving high precision in
redshift estimation).

The results described in this section suggest a clear strat-
egy for leveraging the strengths of the different methods: for
cases with high S/N in the continuum, DAE redshifts are
more precise and contain less catastrophic outliers. With lower
S/N, DL remains more robust and should be preferred. These
results may depend on the noise characteristics, among other
SED properties, and should be re-evaluated for each separate
application.

6.5. Defining a “best” redshift from a DAE/DL combination

As we discussed in the past subsections, the DAE and DL
algorithms show complementary performance, indicating that a
method for combining their results based on observational prop-
erties can increase the accuracy of redshift estimation. In this
subsection, we devise an algorithm to take advantage of their
strengths, and assess the performance of the resulting redshifts.
The two main observational properties that we consider are the
estimated redshifts from each method and the galaxy types. The
latter are not an observational property per se. Nevertheless, a
broad division in four types, such as the one we are using, can be
approximated by color cuts in broadband magnitudes from the
optical galaxy targeting surveys that serve as a base for spectro-
scopic surveys. We will postpone a more realistic analysis of this
particular aspect to future work.
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Algorithm 3 Method to choose a best redshift estimate zpeg-

for all galaxies do

if DAE/DL redshifts agree then
Take DAE zcg.

else
for DAE/DL methods do

Associate galaxy to a type/zes bin.

Get catastrophic outlier rate f;. in that bin.

end for

Take zes of method with lower f;.

end if
end for

The method we propose is described in Algorithm 3. For
each galaxy, we assess whether DAE and DL estimated red-
shifts agree within a precision threshold. We define it as Az =
0.003, which is more strict than the catastrophic outlier rate
threshold due to the absence of a true-redshift dependance.
Whenever those values agree, we choose the DAE redshift,
which has been shown to have smaller dispersion around the
true redshifts. If the redshift values do not agree, we resort to
using true redshifts to define catastrophic outlier rates in esti-
mated redshift and type bins. For each galaxy, we locate it
in a redshift-type bin, and then choose the method for which
this bin has a lower catastrophic outlier rate. The catastrophic
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Fig. 8. Catastrophic failure rate (measured as |[Az/(1 + z)| > 0.003) by galaxy type and redshift bins, Darth Fader (top row), dictionary learning
(middle row), and denoising autoencoders (bottom row) inthe S /N = 20, 5, and 2 cases (left, middle, and right columns, respectively). Performance
degrades as noise levels increase for most galaxy types and redshifts, especially in Darth Fader’s case. Denoising autoencoders perform particularly
well in the high S/N regimes, while dictionary learning is more stable across S/N regimes.

outlier rates are defined with estimated, not true, redshifts in
those cases, meaning that there will be two different binning
schemes.

Figure 10 shows the results of applying this algorithm to the
three different galaxy samples. Compared to the results of the
individual methods shown in Fig. 7, the improvement is mani-
fest. In the S/N = 20 and S/N = 5 cases, where DAE redshifts
are very accurate, only a handful of galaxies is selected with
DL, which brings marginal improvements to the global catas-
trophic outlier rates. In the S /N = 2 case, however, the improve-
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ment is non-negligible. Of the galaxies, 71.4% have redshifts
in agreement with each other. After combination, we obtain a
global success rate of 93.15%. If we had only adopted DL red-
shifts, the global success rate would have been 89.1% — a few
percentage points lower — with the larger DL scatter. If instead
we wanted to use DAE redshifts to retain a lower scatter, we
would be restricted to only 77.7% of the sample. Figure 11
shows the catastrophic outlier rates for each galaxy type and
redshift bin for each S/N. While S/N = 20 and S/N = 5 are
mostly equivalent to DAE results, the S/N = 2 figure shows
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Table 1. Success rate of the redshift estimation algorithms in the different S/N cases, where failure is defined as zZest — Ziwe > 0.003 (1 + Zirye)-

S/N =20

S/N=5

S/N =2

Total DF success: 19479 (97.4%)
Total DL success: 18668 (93.3%)
Total DAE success: 19954 (99.8%)

Total DF success: 13125 (65.6%)
Total DL success: 18694 (93.5%)
Total DAE success: 19880 (99.4%)

Total DF success: 5586 (27.9%)
Total DL success: 17822 (89.1%)
Total DAE success: 15545 (77.7%)

Total “best” success: 19945 (99.7%)

Total “best” success: 19895 (99.5%)

Total “best” success: 18630 (93.1%)

DF DL DAE DF DL DAE DF DL DAE

v S vV 18185 v Vv 12238 v/ v 5203
v X 14 v X 18 v v X 87
v X Vv 1264 VX v 856 v X Vv 256
x v 455 X Vv Vv 6357 X v 9082
v X X 16 v X X 13 v X X 40
X X 14 x Vv X 81 x X 3450
X X v 50 X X Vv 429 X X v 1004
X X X 2 X X X 8 X X X 878

Notes. The “best” algorithm combines DL/DAE results as described in Sect. 6.5 and shown in Fig. 10. The lower half of the table shows the partial
statistics for different combinations of algorithm success; for example, the first line counts the number of galaxies for which the three algorithms
succeeded in retrieving the true redshift, the second line counts the number of galaxies where DF and DL succeeded while DAE failed, and so

forth.
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Fig. 9. Dispersion between true and estimated redshift values for all galaxy types in the S/N = 5 (fop row) and S/N = 2 (bottom row) cases.
Denoising autoencoders (blue histograms) have generally smaller dispersion than dictionary learning (orange histograms).

more specifically how the combination of results helps to reduce
the number of catastrophic outliers. In particular, the interme-
diate redshift elliptical galaxy failures by DL are replaced by
DAE better redshifts; conversely, in the lower and higher red-
shift regimes for the other galaxy types, where DAE fails much
more frequently, DL redshifts are retained, bringing catastrophic
outlier rates significantly down in those bins when compared
to DAE redshift performance. These results clearly demonstrate
the advantage of combining the two methods. The exact values
of the improvement will depend on the specifics of each simu-
lation or data, but the complementarity is related to the differ-
ent algorithms and should be qualitatively similar in other data
settings.

7. Conclusion

In this paper, we introduced two new methods of spectroscopic
redshift estimation, and benchmarked them on simulated data
against a reference method based on line feature estimation
and cross-correlation with eigentemplates. Both new methods
rely on deriving an efficient representation for the data that is
then used for redshift estimation. The first one uses the MOD
dictionary learning technique to obtain a sparse representation
for the full galaxy spectra (continuum and lines), which is then
used to estimate redshifts from noisy spectra by searching for
the lowest sparse approximation error among all tested redshift
values. The second method applies denoising autoencoders for
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Fig. 10. Best estimated redshift versus true redshift for three S/N cases. Blue and orange dots indicate that the redshift was chosen from the DAE
and DL method, respectively. In the higher S/N cases, most estimated redshifts come from the DAE method, due to its almost perfect accuracy.
At lower S/N values, where the method often starts failing, our algorithm increases the proportion of DL values, which are more robust but with

higher variance.

Fig. 11. Catastrophic failure rate (measured as [Az/(1 + z)| > 0.003) by

galaxy type and redshift bins for the best redshift estimation algorithm,

in the S/N = 20, 5, and 2 cases (left, middle, and right columns, respectively). Degradation of performance at all noise levels has mostly been

remedied due to the complementarity of DL and DAE strengths.

non-linear unsupervised feature extraction, learning the features
from rest-frame spectra, and deriving the best-fit redshift value
by passing the test spectra through the autoencoder and minimiz-
ing the reconstruction error on the input signal.

Both methods show significant improvement over the orig-
inal Darth Fader pipeline, being able to recover redshift val-
ues with high accuracy and precision at high S/N regimes, with
markedly less line confusion. Moreover, the more pronounced
the line features on SEDs — as characterized by galaxy type -, the
more precise results are. As S/N is reduced, measurement dis-
persion and catastrophic outlier rates increase as expected. In all
sub-cases investigated, denoising autoencoders achieve smaller
dispersion around the true redshift value. However, the catas-
trophic outlier rate increases rapidly as S/N is lowered. On the
other hand, the catastrophic outlier rate from sparse dictionary
learning is more resilient to the effects of noise, outperforming
denoising autoencoders for S /N = 2 and below.

Given those complementary strengths, we designed an algo-
rithm to combine DAE and DL results in an optimal way. If they
both measure the same correct redshift value, we favor DAE val-
ues due to their smaller intrinsic scatter. If they do not agree, we
use catastrophic outlier rates — calibrated with true values — to
decide which value to pick. This strategy yields much-improved
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results: in the S/N = 2 regime, we ensure that 71.4% of the
galaxies can be identified whose redshifts agree, and this robust
sample has a 0.5% catastrophic outlier rate. If completeness is
a priority, we obtain a global galaxy sample with 6.85% catas-
trophic outlier rate, which is an improvement of ~5% over the
DL method alone.

These results are encouraging. Fully automated spectro-
scopic redshift estimation methods that perform in a robust
manner would be of great benefit to upcoming large-scale spec-
troscopic galaxy surveys such as DESI and Euclid, especially if
they work in low S/N regimes. A next step would be to investi-
gate the performance of the algorithms in simulations that fully
reproduce the expected data quality from those surveys. Addi-
tionally, a combination of methods for different regimes, reliant
solely on observed properties, can potentially produce extremely
clean and robust redshift catalogs, although this is dependent on
the specific properties of the data and noise, and will need to be
investigated further.
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