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Abstract

We present in this work the development of a solar data assimilation method based on an axisym-
metric mean field dynamo model and magnetic surface data, our mid-term goal is to predict the solar
quasi cyclic activity. Here we focus on the ability of our algorithm to constrain the deep meridional
circulation of the Sun based on solar magnetic observations. To that end, we develop a variational data
assimilation technique. Within a given assimilation window, the assimilation procedure minimizes the
differences between data and the forecast from the model, by finding an optimal meridional circula-
tion in the convection zone, and an optimal initial magnetic field, via a quasi-Newton algorithm. We
demonstrate the capability of the technique to estimate the meridional flow by a closed-loop experi-
ment involving 40 years of synthetic, solar-like data. By assimilating the synthetic magnetic proxies
annually, we are able to reconstruct a (stochastic) time-varying meridional circulation which is also
slightly equatorially asymmetric. We show that the method is robust in estimating a flow whose level
of fluctuation can reach 30% about the average, and that the horizon of predictive capability of the
method is of the order of 1 cycle length.
Keywords: Sun: meridional circulation, activity, dynamo, methods: numerical, data assimilation

1. INTRODUCTION

1.1. Solar activity: Observations and Models

The Sun is an active star. Solar activity includes sur-
face magnetic variability, solar eruption, coronal activity
and its effects on planets through magnetic disturbances.
The Sun is a nonlinear system and it is a real challenge
to predict its future activity. Since solar activity im-
pacts space-weather, which in turn alters our modern
technology-based society significantly, it has become in-
creasingly important to obtain good solar predictions.
The most common index to quantify solar activity is the
sunspot number (SSN). (For recent discussion of SSN,
see Clette & Lefèvre 2012; Clette et al. 2014; Svalgaard
& Schatten 2016; Vaquero et al. 2016). Sunspots are dark
areas on the solar disc, where mostly vertical magnetic
field of ∼ 3kG peak values, is present (Stix 2002). In
1850, Rudolf Wolf introduced the relative sunspot num-
ber Rz = k(10g + s), where g is the number of sunspot
groups, s is the number of individual sunspots, k is a con-
stant to account for the differences in observations from
various observers and astronomers (Wolf 1850). The cor-
responding sunspot series started in 1749. In addition
to the sunspot number, the surface magnetic field of
the Sun is also an important observable. Observations
of solar magnetic field can at least be traced back as
early as in 1908 through the pioneering observations of
Hale (1908). Systematic, daily observations of solar mag-
netic field over the solar disk started in early 1970s at
the Kitt Peak National Observatory, with synoptic maps
nearly continuously measured from early 1975 through
mid 2003 (Hathaway 2010). Tracing the surface radial
magnetic field as a function of time and latitude, aver-

aged over longitude, enables to construct the so-called
butterfly diagram. It shows the position where sunspots
appear during a solar cycle, and exhibits their phase re-
lationship with the strength of the polar field. One of
the most prominent features of the solar activity is the
quasiperiodicity of the sunspot cycles of 11 years. Those
cycles, however, vary in both their period and their am-
plitude (for more recent time series, consult Svalgaard
et al. 2017).

The long-term (multi-decadal) variation shows ran-
domness, but with highs in sunspot number every 7 or
8 cycles (Gleissberg 1939; Usoskin 2013). Furthermore,
sometimes the solar activity is broken up; the periods of
such depression are called grand minima. The significant
modulation of solar activity raises questions regarding
its predictability. Studies suggest that the predictability
also depends on whether the source of the variability of
solar dynamo is deterministic or not (Ossendrijver et al.
2002; Tobias et al. 1998; Brandenburg & Spiegel 2008);
even a weak stochastic perturbation can lead to a loss in
predictability (Bushby & Tobias 2007).

Dynamo models based on magnetohydrodynamics
(MHD) are a common class of models established to ac-
count for the solar activity (Charbonneau 2010). The
model used in our assimilation framework (to be dis-
cussed below) is a dynamo model based on the mean
field induction equation, in spherical coordinates with
azimuthal symmetry. Its mechanism was proposed by
Babcock (1961) and elaborated by Leighton (1969). This
model can also account for Joy’s law (Hale et al. 1919).
Numerical studies of the so-called Babcock-Leighton
dynamo model are widely established (e.g. Dikpati &
Charbonneau 1999; Jouve & Brun 2007, and references
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therein).
In this flux transport solar dynamo model, the merid-

ional circulation in the convection zone is the key ingredi-
ent determining the length of the solar cycle. The effects
of the meridional circulation on the magnetic cycle and
magnetic field are investigated in detail in Jouve & Brun
(2007), Hazra et al. (2014) and Belucz et al. (2015). A
meridional circulation with one cell per hemisphere is fre-
quently used as a reference in this model to account for
the cycle length, maxima and phase relationship in solar
activity. Additional cells in radius and latitude can result
in different effects on the advection of magnetic field and
cycle length. A 2-cell in radius meridional flow implies
the presence of a return flow at mid-depth which slows
down the transport of the flux from the surface to the
tachocline, resulting in a longer cycle length. The flow
becomes poleward at the tachocline thus introducing a
poleward branch in the time-latitude plot of the toroidal
flow at the base of the convection zone. The toroidal field
at the base is weaker than that of the unicellular case as
the polar fields are advected from the bottom at low lat-
itudes rather than being brought from the poles. On the
other hand, for a dynamo model with a 2-cell in latitude
(in each hemisphere) meridional flow, the cycle length is
shorter than in the unicellular case because of the shorter
primary conveyor belt, while a poleward branch in the
toroidal field at the tachocline is also present, as in the
2-cell in radius case. For a larger number of latitudinal
cells, the toroidal field at the base is also weaker than in
the unicellular case as the dynamo is confined to low lat-
itudes where the differential rotation is smaller (Belucz
et al. 2015). It is also found that the influence of having
several radial cells on the model is stronger than that
of adding cells in latitude (see Jouve & Brun 2007, for
details).

While a flux transport dynamo model with unicellu-
lar meridional circulation is commonly used to account
for the 11-yr solar activity, recent estimate of meridional
circulation from helioseismology below the solar surface
suggests the possibility of more complex flow structures.
For example, in Zhao et al. (2013a), a meridional cir-
culation with 2 cells in the radial direction is reported,
though the errors of the estimate below 0.80R� (R� is
the solar radius) are considerably higher than that at
the surface. In Schad et al. (2013), more complicated
structure like 2 cells in radius and 4 cells in latitude is
suggested, based on perturbation of Solar p-modes eigen-
functions by meridional flow. Submerged meridional cell
has been discovered by local helioseismic technique of
ring diagram analysis of MDI data from 1998-2001, which
disrupts the orderly poleward flow and equatorial sym-
metry in those years (Haber et al. 2002b). Time distance
helioseismic measurements using GONG data also sug-
gest multicellular large scale meridional flow in the con-
vection zone (Kholikov et al. 2014). In summary, there
is no unique conclusion on the meridional flow structure
in depth, which also raises the interest of estimating the
meridional flow with an independent method resting on
a dynamo model.

1.2. Solar Prediction and Data Assimilation methods

Because of the irregular nature of the Solar activity dis-
cussed above, a wide range of solar prediction methods
are developed, from the studies of geomagnetic precur-

sors to extrapolation methods based on time series anal-
ysis of the past activity and correlation studies (Hath-
away et al. 1999), and to more sophisticated methods
using numerical models which simulate the evolution of
the system on the basis of the relevant physical equa-
tions. Such numerical models require the definition of
adequate initial conditions which are obtained through
the technique of data assimilation (Petrovay 2010; Dik-
pati & Gilman 2006; Pesnell 2016). Data assimilation
is an emerging technique in solar cycle and activity pre-
diction, which is a way to incorporate observations in
numerical models (Brun 2007). Suppose some solar ob-
servations are available on a time interval. By controlling
the initial condition and key control parameters of a nu-
merical model, the task of a data assimilation method is
to obtain a model trajectory which can best account for
the observations.

Modern data assimilation techniques can be split into
two general classes, sequential and variational. The
Kalman filter and Ensemble Kalman Filter (EnKF) are
common methods for the sequential class, and make use
of observations on the fly, as soon as they are available.
For the variational approach, by controlling selected pa-
rameters of the physical model, an optimal fit of data is
obtained over the entire time window, making use of all
the observations available. A common example is 4D-
Var, in which the minimization of the objective function
can be implemented by the development of an adjoint
model (Fournier et al. 2010; Talagrand 2010). The re-
spective merits and drawbacks of the sequential and vari-
ational approaches have been discussed at length (see e.g.
Fournier et al. (2010), §2.2.3 and references therein). Suf-
fice it to say here that both lead to similar answers (iden-
tical in the linear case with Gaussian error statistics) and
that a sequential method is generally easier to implement
than a variational method (which requires the implemen-
tation of the adjoint model). The variational approach
is more flexible, and it uses all the observations available
over a given time window to define an optimal initial
set-up at the beginning of the window. For sequential
data assimilation, use of EnKF assimilation in analysis
or prediction of solar activity, for example, is illustrated
by Kitiashvili & Kosovichev (2008) and Dikpati et al.
(2014). On the other hand, the use of variational data
assimilation method with solar dynamo models is illus-
trated by Jouve et al. (2011). In that paper, an αΩ mean
field dynamo model defined on a Cartesian coordinates
system is adopted. The corresponding adjoint model is
developed, followed by a twin experiment which success-
fully estimates the spatial dependence of the physical in-
gredients of the model, such as the profile and strength
of the α-effect. Similar developments based on a flux
transport dynamo model in axisymmetric spherical co-
ordinates are presented in Hung et al. (2015) (hereafter
Paper I) to estimate the steady meridional flow of the
model with synthetic magnetic observations, as a first
step towards predicting the solar cycle.
In this study, we are going to extend the framework de-
veloped in Paper I, by adding the initial conditions to the
control vector and estimating a time dependent merid-
ional circulation.

In Paper I, we included the meridional circulation
as the main control parameter of our data assimilation
pipeline. We verified that the variational assimilation
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method is capable of estimating the meridional circu-
lation of the model by minimizing the misfit between
synthetic magnetic observations and model trajectory.
Again, this study assumed a steady meridional circula-
tion. In reality, the solar cycle is significantly modulated,
and the meridional flow is fluctuating (Ulrich 2010; Basu
& Antia 2010; Komm et al. 2015), (for more about ob-
servations of meridional flow, see Haber et al. 2002a,
2003; Zhao et al. 2004, 2012, 2013a; Švanda et al. 2007,
2008; Schad et al. 2013; Upton & Hathaway 2014), so the
next step of development is to verify the applicability of
the method to capture the variability of the modulated
activity.

Similar studies were performed recently, for example,
by Dikpati et al. (2014) and Dikpati et al. (2016). In
Dikpati et al. (2014), a numerical experiment was used
to reconstruct the time-varying amplitude of the flow, by
applying the EnKF to the Babcock-Leighton flux trans-
port dynamo model. In this work, we apply a variational
data assimilation method, to reconstruct a time varying
meridional circulation, by ingesting synthetic observa-
tions produced by a dynamo model with a meridional
flow modulated both in amplitude and shape.

We present our work as follows. In Sec. 2, we de-
scribe the motivation and methodology of the assimila-
tion framework. In Sec. 3, we present the results of the
numerical experiment. We discuss the results of hind-
casting in Sec. 3.1. Then we investigate the predictive
capability of the assimilation procedure and of the model
in Sec. 3.2. Furthermore, we test the robustness of the
procedure by inverting the synthetic observations based
on a meridional flow with different levels of fluctuations
(Sec. 3.3). We summarize and discuss our results in Sec.
4. Along with Paper I, in the Appendix, we describe the
Babcock-Leighton mean field dynamo model (Sec. A),
and we include some details about the algorithm which
incorporates the initial condition in the assimilation pro-
cedure (Sec. B). We finally give a brief analysis of the
observation of the flow at the surface of the Sun (Sec.
C).

2. METHODOLOGY

2.1. Generation of synthetic data based on a dynamo
model with a time varying meridional circulation

We presented in Paper I a first step toward predicting
future solar activity levels using variational data assimi-
lation. As a proof of concept, we performed twin exper-
iments for which the assimilated data were produced by
the flux-transport (Babcock-Leighton) model itself. De-
tails on the model and its numerical implementation can
be found in Appendix A. The system is axisymmetric
and we express the magnetic field B(r, t) as sum of its
toroidal and poloidal component, and the latter is fur-
ther expressed as the curl of a vector potential with the
axisymmetric assumption:

B(r, t) = Bφ(r, t)eφ +∇× [Aφ(r, t)eφ], (1)

where eφ is the azimuthal unit vector, the first and sec-
ond term are the toroidal and poloidal component of the
magnetic field respectively, and Aφeφ is the vector poten-
tial of the poloidal field. The model equations are par-
tial differential equations describing the time evolution
of Aφ and Bφ. This model is very similar to the one in

Paper I, except that (i) the meridional flow (defined with
ψ) is steady in Paper I but time dependent in this work,
and (ii) the diffusion profile is slightly modified here com-
pared with that in Paper I. The axisymmetric meridional
circulation is described using a stream function ψ(r, t),
in which r and t denote position in the meridional plane
and time, respectively.

Since the flux-transport model we adopted was based
on a constant meridional circulation, the regular and pe-
riodic synthetic activity it generated lacked some of the
salient features of solar activity, namely its variability
in cycle length and amplitude. In fact, the duration of
the 23 sunspot cycles since 1749 distribute broadly about
11± 3 years.

To be able to account for these important observa-
tional facts, we make the meridional flow of our flux-
transport model time-dependent, and write the corre-
sponding stream-function ψ(r, t) as the sum of a constant
(background) term ψ(r) and a time-dependent term (of
zero mean) ψ′(r, t)

ψ(r, t) = ψ(r) + ψ′(r, t). (2)

1 cell 2 radial cells

ψ(t) = c1(t)× +c2(t)×

ψ/ψmax

−100 −10−1 −10−2 10−2 10−1 100

Figure 1. Stream functions of those two components of the merid-
ional circulation used to generate synthetic observations. The left
one (ψ1) is the stream function for unicellular flow, the right one
(ψ2) is the stream function for the equatorially antisymmetric flow.
Note that the equatorial parity of the stream function is opposite
to that of the corresponding flow.

In this study, ψ corresponds to an equatorially anti-
symmetric, one-cell per hemisphere, constant flow whose
maximum surface amplitude is v0 = 22.3 m s−1. This
flow pattern will be denoted ψ1 henceforth, and its
streamlines are shown in the left panel of Fig. 1. The
integration of the model with ψ alone leads to a regular
activity of period 11.5 years.

The fluctuating part ψ′(t) comprises two components,
whose amplitude is time-dependent: the first is ψ1 and
the second (ψ2 henceforth) corresponds to an equatori-
ally symmetric, two cells per hemisphere (on the merid-
ional plane, one radial node) flow, shown in the right
panel of Fig. 1. As indicated in this figure, the total flow
is therefore a combination of two components and can be
written as

ψ(r, t) = c1(t)× ψ1(r) + c2(t)× ψ2(r). (3)

We specify the explicit expression of ψ(r, t) in this case in
terms of its expansion on a chosen set of basis functions
in Appendix A. The coefficients c1 and c2 are constructed
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as follows

c1(t) = 1 +A1F [δ1(t)], (4)

c2(t) =A2F [δ2(t)], (5)

in which each δi(t) is a random number (drawn from a
uniform distribution) whose amplitude is normalized so
that δi = 1 implies a maximum surface velocity equal to
v0.
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Figure 2. Stream function coefficients c1 and c2 adopted in the
dynamo model to generate the synthetic data, as a function of
time. The coefficients are normalized such that the corresponding
maximum surface flow is vo. The two vertical broken lines on the
left mark a typical one year sampling window of data assimilation,
and the leftmost and rightmost broken lines indicate the whole
course of 40 year assimilation.
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Figure 3. Histograms of cycle length of the dynamo model over
100 (synthetic) sunspot cycles, with 10% (black), 20% (red) and
30% (blue) fluctuation in the meridional flow. Solid (resp. dashed)
lines refer to statistics in the Northern (resp. Southern) hemi-
sphere.

Substituting Equations (4) and (5) into (3), we see that
in this study, the time independent part ψ(r) is ψ1(r),
and the time dependent part is

ψ′(r, t) = A1F [δ1(t)]ψ1(r) +A2F [δ2(t)]ψ2(r). (6)

The width τi of the interval between two consecutive val-
ues of δi is chosen based on the available observational
evidence. As shown in Appendix C, a spectral decompo-
sition of the solar surface flow inferred by Ulrich (2010)
shows that the equatorially symmetric flows are domi-
nant with respect to their antisymmetric counterparts.
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Figure 4. (a) Latitudinal component of the flow at the surface
as a function of time, in the case of a fluctuation of the meridional
flow characterized by A1 = A2 = 0.3. (See text for details.) The
assimilation period in the numerical experiment which follows is
indicated by the dashed vertical lines. The sign convention is posi-
tive for a flow due south. (b) Latitudinal component of the flow in
time-radius contour plots at latitude 45◦ (top) and −45◦ (bottom);
same flow setup as in (a).

The auto-correlation times of the amplitudes vary from
∼ 1 year for the antisymmetric modes to 3 years and
more for the symmetric modes. In this study, for the
sake of simplicity, we shall take that time to be 3 years for
both families, and consequently set τ1 = τ2 = 3 years.

We next interpolate in time between two consecutive
values of δi using a sine function and this interpolation
is symbolized by the F operator in Equations (4), (5).
To explicitly define F , for any nonnegative integer n,
suppose random numbers δi,n, i = 1, 2, are generated at
t = nτi, then

F [δi(t)] =
1

2
{δi,n + δi,n+1 + (δi,n − δi,n+1) cos [π(t/τi − n)]} ,

for nτi ≤ t < (n+ 1)τi.
(7)

Figure 2 shows an example of realization of (c1, c2),
for which the chosen level of fluctuation amounts to 30%
of the mean flow (in other words, A1 = A2 = 0.3 and
the maximum surface velocity that can originate from
ψ2 alone is 7 ms−1, and the maximum total fluctuation
at the surface (from ψ′(r, t)) can reach ∼ 14 ms−1 ).

The level of fluctuation in ψ′ controls the amount of
variability in the simulation, which can be assessed sta-
tistically.

We show the histograms of cycle duration of the model
for different fluctuation levels A1 (A2) in Figure 3,
namely 10, 20, and 30 %. The cycle length is defined by
the time between two consecutive minima of the modeled
magnetic proxy which will be defined shortly after [Equa-
tion (8) and (9)]. Each corresponding model has been
integrated for a long enough time to enable 100 cycles to
be achieved. The statistics shown here are separated into
their Northern and Southern contributions. For a per-
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turbation of flow speed of 30%, the cycle length varies
from ∼ 9 to ∼ 14 years, which is in reasonable agree-
ment with observations based on the available records of
the 23 cycles at our disposal.

Unless otherwise stated, we will use this fluctuation
level of 30% in the remainder of this study. An example
of realization of the meridional flow is shown in Fig. 4 for
the θ component of the flow, given the c1 and c2 already
displayed in Fig. 2. The meridional flow is dominated by
unicellular structure in each hemisphere, with equatorial
asymmetric fluctuations. This meridional circulation is
chosen for our numerical tests in this work, as unicellular
structure is observed mostly (Ulrich 2010; Basu & An-
tia 2010), though helioseismological studies suggest the
presence of counter cells in the convection zone (Haber
et al. 2002a; Zhao et al. 2013b; Schad et al. 2013). In
particular, we present the surface flow in Fig. 4 (a), and
note again that similar time variability is also reported in
the Sun (eg., Ulrich & Boyden 2005; Komm et al. 2015).
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Figure 5. Top: time-latitude representation of the toroidal field
at the tachocline. Bottom: time-latitude evolution of the magnetic
field in the line of sight at the surface.

The plots show the asymmetry of the flow about the
equator. The corresponding simulated magnetic field is
shown in Fig. 5, which shows the advection of the toroidal
field toward the equator at the base of the convection
zone, and the polar branch at the surface shows the radial
field is advected polewards.

Since the model does not produce sunspots per se, we
introduce a proxy for the total sunspot number, in the
form of a pseudo-Wolf number W̃ o defined by

W̃ o(t) =

[∫ θ=π

θ=0

∫ r=0.71

r=0.70

Boφ(r, θ, t)r2 sin θ drdθ

]2

,

(8)
where the superscript o denotes observations, and the
radial coordinate r is normalized with the solar radius
R�. We further decompose W̃ o into its North and
South components

W̃ o(t) = W̃ o
N (t) + W̃ o

S(t), (9)

in which the North (resp. South) component W̃ o
N (resp.

W̃ o
S) is computed by restricting the integration in Eq. 8

to the Northern (resp. Southern) hemisphere. In radius,
the integral is restricted to a thin layer (between 0.70R�
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Figure 6. Time series of the synthetic sunspot number in the
Northern (resp. Southern) hemisphere shown in black (resp. red).
Circles represent the monthly data extracted from these reference
time series and used for the assimilation. A 10% random error has
been added to the reference values to generate this data.

and 0.71R�) where toroidal flux tubes are thought to
originate. The corresponding pseudo-Wolf numbers are
shown in Fig. 6. As the flow applied is equatorially
asymmetric, so do the corresponding magnetic proxies.
Furthermore, there is a clear phase difference between
W̃ o
N (t) and W̃ o

S(t), which suggests symmetric and anti-
symmetric dynamo modes as well (DeRosa et al. 2012).
In these figures, note that the y-axis and rightmost dot-
ted lines represent the edges of the 40-year time window
over which we will conduct our assimilation experiments.

Synthetic (and noised) time series of W̃ o
N (t) and W̃ o

S(t)
will constitute one kind of synthetic observations used in
our assimilation experiments. The other class of data
will consist of synthetic (and noised) maps of the line-
of-sight component of the magnetic field at the model
surface, Bolos, defined as

Bolos(θ, t) = Bor (r = 1, θ, t) sin θ

= er · ∇ × (Aφeφ)

= (cos θ + sin θ∂θ)A
o
φ(r = 1, θ, t).

(10)

The level of noise should be consistent with that of the
observations of the Sun. We estimate the noise of the
surface magnetic field from the ratio of its coefficient of
monopole to the coefficient of dipole component of the
observed field (the former, theoretically, should be zero
for noise free situation). The data is available at WSO,
and the ratio is ∼ 10%. For the modeled sunspot
number proxy W̃N , W̃S , we refer to real sunspot number
data, the average uncertainty of the data is about 10% of
the root mean square of the whole time series (estimated
from sunspot series provided by Solar Influences Data
Analysis Center (SIDC)). Therefore, we add 10% noise
(with respect to the root mean square of the observables)

to the synthetic data Bolos and W̃ o
N , W̃

o
S for our numerical

experiment. Note that this 10% added noise differs from
the stochastic forcing Ai of the meridional flow, it comes
in addition to the fluctuating time series.

2.2. Assimilation setting

In this section we describe the data assimilation pro-
cedure that we have developed to minimize the misfit
between synthetic observations and magnetic trajecto-
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ries of the dynamo model, by estimating the meridional
circulation and the initial conditions which give an opti-
mal fit to the data. We also present some technical de-
tails in Appendix B. The meridional circulation depends
on time, and from a study of the observed surface flow
(Ulrich 2010; Basu & Antia 2010; Komm et al. 2015) the
temporal variability is of the order of one year. Therefore
we use an assimilation window of width one year, and we
will assimilate data for 40 consecutive years. We should
stress at this stage that within this one-year window, the
flow is steady. It can vary from one window to the next,
if data demand it; the flow is therefore mathematically
speaking piecewise constant, over intervals of constant
width one year. We choose a course of 40 years because
in the future we intend to apply our method to invert the
magnetic field on the solar surface, using the systematic,
daily observations the field on the solar disk from WSO
(which are digitalized and available from 1975 onward).

We include the initial magnetic field of the model in the
control parameters ; this is a new property of our method
compared to Hung et al. (2015) (Paper I). In Paper I,
the initial condition was approximated by the magnetic
configuration of a dynamo field produced by a model
with a steady flow. This approximation gets worse when
the field is based on a time-varying flow, to the point
where it precludes the success of the assimilation. The
assimilation model relies on solving the flux transport
model as an initial value problem, so we need a better
control of the initial conditions. As a result, we add it
to the control vector together with the flow. We then
express schematically the control vector x as:

xn = (xn,IC , xn,MC)T . (11)

Here subscript 1 ≤ n ≤ 40 denotes the step of the as-
similation window. The component xn,IC represents the
initial conditions in the parameter space, and xn,MC is
the meridional circulation, which is represented by c1 and
c2. For our current study there will be 2 coefficients rep-
resenting 2 different structures of flow. For the initial
condition state vector xn,IC , we will discuss below that
we restrict its dimension to m = 20, and further justify
the consistency between this choice and the results in
Appendix B.

The initial conditions for the assimilation model
Aφ(r, θ, ts) and Bφ(r, θ, ts), where ts is the beginning
of the assimilation window, are defined on the grid of
nr×nθ = 129×129 points. However, if we represent the
initial condition pointwise in the parameter space, the
number of parameters (2nrnθ ∼ 32000) will be too large
compared to the number of observations, which results in
over-fitting. For the latter, let No

t , No
θ be the number of

sampling in time and latitude respectively, and the total
number of observations No = No

θN
o
t + 2No

t . (The sec-

ond term on the right hand side corresponds to W̃ o
N and

W̃ o
S (if they are included as observations).) At the same

grid size, an assimilation window of 1 year (sampled on
a monthly basis, i.e. No

t = 12) of the surface magnetic
field (spatial sampling in every latitudinal grid point ex-
cept the poles No

θ = 127) only gives No ∼ 1500. To stay
realistic we do not want an artificially fine sampling in
time which of course can give a higher No. In practice,
sampling frequency of the real magnetic field is, for ex-
ample, daily in WSO down to 45 s cadence with HMI

onboard SDO satellites (Schou et al. 2012). Latitudinal
resolution on real data also depends on the instrument
used.
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Figure 7. (a) Eigenvalue spectrum of the covariance matrix of
the dynamo field for a steady unicellular flow. The eigenvalues
λ are normalized with the greatest eigenvalue λmax in the plot.
(b) Error in the approximation of the magnetic field of the same
dynamo field at a particular time to = 2.91(R2

�/ηt) as a function
of the size of a truncated eigenbasis. Black: error in the poloidal
field. Red: error in the toroidal field.

For instance, the maximum spherical harmonic degree
`max, is 60 for WSO maps and about 190 for MDI (note
that HMI has 16 times the resolution of MDI) (Scher-
rer et al. 1995). Therefore, we choose to represent the
magnetic field on the meridional plane with a truncated
set of basis functions rather than pointwise. This comes
down to constructing the covariance matrix of the dy-
namo magnetic field P, to account for the magnetic vari-
ability of the Sun. We define and discuss the construction
of such a covariance matrix P in detail in Appendix B.
We can then describe our initial magnetic state by re-
taining only the most prominent eigenvectors of P as a
basis.

Fig. 7 shows the eigenvalue spectrum λ and the ap-
proximation of the magnetic field driven by a simple uni-
cellular meridional flow, with the eigenbasis of its own
covariance matrix. We define the error of approximating
the field as

dX/X =

√∫

D

(Xapprox −Xtrue)2da

/∫

D

X2
trueda,

(12)
where da ∼ rdrdθ, X is Aφ or Bφ, dX/X is the error
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in approximating Aφ,true or Bφ,true with Aφ,approx or
Bφ,approx, respectively. The domain of integration D is
the meridional plane.

We can see that we get a good approximation with
only m = 20 basis functions (Fig. 7 (b)), so we will
limit the number of parameters for the initial condition
at m = 20 under this representation. We also update
the covariance matrix Pn with the most recent forecast
at the end of each year n. The dimension of xn,IC is 20,
together with the 2 parameters in xn,MC , the dimension
of the parameter space is 22, well below No = 1500.

For the first year of the assimilation window, the initial
guess for the initial condition (xg1,IC) and meridional flow

(xg1,MC) comes from a dynamo model based on a unicel-

lular flow with a magnetic cycle of 22 years (superscript
g stands for guess). Then, for the subsequent data as-
similations, the initial guess will be the forecast magnetic
field and velocity at the end of the previous assimilation.
The former is obtained by evolving the dynamo model for

one year with xfn−1,IC , and xfn−1,MC (with superscript f

stands for forecast), the latter is simply xfn−1,MC . Within
each 1 year window, we estimate the coefficients of the
stream function and initial condition which give minimal
misfit, and consequently we obtain an estimate of the
time variation of the flow profile in Fig. 2 by approxi-
mating it with a piecewise constant function.

Guess magnetic field,
guess meridional flow for
the first year (n = 1)

Evaluate covari-
ance matrix of
the guess field

Data assimilation proce-
dure: forward model, adjoint
model, optimization of J

Evaluate co-
variance matrix
of the forecast

Next year obs.
available?

Obs:
Bo

los,

W̃ o
N ,

W̃ o
S

Forecast:
Bf ,
vf

xgn,IC
Pn

xfn,IC

xgn+1,IC

Pn+1

No

Yes

xgn+1,IC

Pn+1

xgn+1,MC

xgn,MC

xfn,MC

xgn+1,MC

= xfn,MC

Figure 8. A schematic diagram illustrating the data assimilation
procedure used in this study. Integer subscripts refer to discrete
time indices.

A schematic view of the procedure is shown in Fig. 8.
We start from a guess state representing a dynamo model
based on unicellular meridional circulation xg1,IC , x

g
1,MC ,

and with the input of magnetic observations of the first

year, we get the forecast state xf1,IC , x
f
1,MC from the as-

similation procedure. Based on the forecast state we can

evaluate the initial guess state xg2,IC , x
g
2,MC of the second

year, and we repeat the assimilation procedure when new
observations are available.

Note that the covariance matrix is evaluated and there-
fore modified after each year, so that the projection on
the corresponding truncated eigenbasis gives a good ap-
proximation of the initial condition in each assimilation.

2.3. Data and objective function

We aim to minimize an objective function defined in
term of the differences between the observations and the
model trajectory,

J =
∑

α

Noα,t∑

i=1

Noα,θ∑

j=1

[yα(θj , ti)− yoα(θj , ti)i]
2

σ2
α(θj , ti)

, (13)

where α denotes the type of magnetic proxy y to be com-
pared. The proxies with the superscript o stand for obser-
vations, and without superscript for the forecast values,
and σα stands for the uncertainty of the measurement.
For each type α we sum the observations over the obser-
vation times and latitudes, No

α,t and No
α,θ, respectively.

Recall that J is defined over an interval of total duration
1 year.

As mentioned above, the synthetic observations used
for the experiment are the magnetic sunspot proxy
(Equation (8)) and the surface line of sight magnetic field
Bolos (Equation (10)). Historically, sunspot series given
in Wolf number started from 1749, and daily, continuous
and digitalized observations of the surface magnetic field
of the Sun have become available later. Therefore, we
first look for the possibility to estimate the (synthetic)
time varying flow with the assimilation procedure by in-
gesting the modeled synthetic sunspot proxy (Equation
(8)) as the only observable. This is to investigate the
feasibility of estimating the meridional circulation of the
Sun since 1749. However, this would be more difficult
as SSN is only one value (two for hemispheric SSN) at
a particular observation time, instead of a latitude map
provided by Bolos. We first make this relatively more chal-
lenging attempt of assimilating the synthetic hemispheric
sunspot proxy only, with an assimilation window of 1
year, with various sampling frequencies, from monthly
to every 6 days. We find that in these attempts, the esti-
mate of flow in the first year assimilation is not physical,
as the surface flow is found to be 20 times higher than the
truth. This gives an unstable dynamo model for further
assimilation after the first year, making the algorithm
unstable. This is because the information contained in
the data is not rich enough to estimate the meridional
circulation as well as the initial magnetic field within
the assimilation window concerned. Moreover, with the
sunspot number alone, there is a sign ambiguity for the
magnetic field. Furthermore, we showed in Paper I that
compared with temporal dependence in observations, lat-
itudinal dependence is more important for the estimation
of internal dynamics.

To proceed, we can add more information to the
pipeline. For example, we can add constraints to the
optimization procedure based on physical knowledge as
a background term in the objective function, which does
not need more observations. Or we can add more obser-
vations within the assimilation window. In this study, we
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are going to include the characteristics of the butterfly
diagram in the observations. As a result, we introduce
more observations with spatial data distribution, in or-
der to help the minimization of the objective function.
A more effective objective function to be minimized can
then be:

J =

Not∑

i=1





Noθ∑

j=1

[Blos(θj , ti)−Bolos(θj , ti)]2
σ2
Blos

(θj)

+
[W̃N (ti)− W̃ o

N (ti)]
2

σ2
W̃N

+
[W̃S(ti)− W̃ o

S(ti)]
2

σ2
W̃S

}
,

(14)

where σBlos , σW̃N , and σW̃S in this study are fractions
of the root mean squares of the line of sight surface
field, synthetic sunspot number proxy in the North-
ern and Southern hemispheres, respectively, in order
to model the uncertainties of the data, i.e. σα(θj) =

εα

√
< yoα(θj)

2
>t, where εα is the level of noise of the

species α, and < · >t is averaging over time. As stated
in Sec. 2.1, the noise levels added to Bolos and W̃ o

N , W̃
o
S

for our numerical experiment are of order 10%.
The total number of observations is No = (No

θ +2)No
t .

In our case, within an assimilation window of 1 year,
sampling monthly (No

t = 12), and uniformly in latitude
(No

θ = 127), we have No = 1548. (Here we also tested
that for a coarse sampling in latitude, say No

θ = 63, we
can get similar results and performance. For a systematic
study of the effect of latitude sampling on the assimila-
tion procedure, see Hung et al. 2015) (Paper I).

The normalized misfit, is defined as

Jnorm =

√∑

α

Jα
No
α

. (15)

An optimal fit gives Jnorm ∼ 1, while Jnorm � 1 indi-
cates the misfit is too large considering the noise added
to the synthetic observations, and Jnorm � 1 implies
statistical overfitting.

3. RESULTS OF ASSIMILATION PIPELINE

In this section we demonstrate that by assimilating,
in a sequence of windows of width 1 year, the synthetic
observations displayed in Fig. 5 and 6, we are able to
estimate the meridional flow shown in Fig. 2. We illus-
trate the data of 40 years under study and the first year
of data for assimilation in Fig. 5 with broken dashed
lines. We start the assimilation with a unicellular flow
as an initial guess for the meridional circulation. For the
initial condition on the magnetic field components Aφ
and Bφ for the first year of the assimilation, we conduct
2 trials with 2 different guesses. The first guess is a dy-
namo field based on a unicellular flow (c1 = 1, c2 = 0
in Equation (3)), where the fields have a definite parity
about the equator, i.e., symmetric for Aφ and antisym-
metric for Bφ. The second guess is a dynamo field based
on a unicellular flow but slightly modified with an anti-
symmetric flow which contributes to 1% of the vo (of the
background flow at the surface). The flow is then slightly
asymmetric and so does the corresponding dynamo field.
The motivation behind the second trial is an attempt
to account for the equatorially asymmetric nature of the

synthetic observations in Fig. 5 and 6. We discuss sepa-
rately the hind-cast of the data assimilation for 40 years,
and the ability of the model to forecast beyond the 40th

year. For the latter, we estimate the magnetic field 25
years after the latest assimilation, making a total study
of 65 years. For clarity and convenience in discussion,
in the following, in our figures where a time evolution is
shown, t = 0 corresponds to the time at which we start to
ingest observations, i.e., t = 0 at the left broken vertical
line in Fig. 5, at (model time) year 1144 of the synthetic
observations.

In the following, the term dynamical trajectory refers
to the time series of the magnetic field in the compu-
tational domain, as predicted by the numerical dynamo
model. The true, or reference trajectory is the one ob-
tained using the combination of control parameters, ini-
tial condition and time-dependent meridional flow used
to generate the synthetic data. This reference trajectory
serves as a gauge to evaluate the quality of the assimi-
lated trajectory. The assimilated trajectory has an ini-
tial magnetic field vector, and an initial meridional flow
which are not those of the reference trajectory, and the
goal of the assimilation is precisely to have this trajec-
tory get closer to the true trajectory. In contrast, the
term free run refers to the trajectory obtained, starting
from this wrong initial set-up, without assimilating any
data.

3.1. Hindcast by assimilation of the synthetic data

In this section we discuss the results of the recon-
structed meridional circulation, the misfit of data and the
estimate of magnetic field when data is available. This
is possible, as under the basis of numerical experiment,
the flow driving the dynamo and resulting magnetic field
on the meridional plane are known.

3.1.1. Reconstruction of the time varying flow and
minimization of data misfit

We show the estimated coefficients of the stream func-
tion in Fig. 9. By inverting the data, the estimated pro-
files capture the temporal variation of the stream func-
tion reasonably, except at the beginning.

With a unicellular prior for the flow, the difference be-
tween the estimate and the truth is obvious for the first
few years. The synthetic observations are asymmetric
about the equator as they are based on an equatori-
ally asymmetric true flow. The prior for the flow in the
first year is symmetric so does the corresponding dynamo
field, the covariance matrix and eigenbasis of the guess
dynamo model. Therefore, such a prior cannot take the
asymmetry of the observations into account at the onset
of the data assimilation. As the model in the assimilation
technique involves solving an initial value problem where
the initial conditions are important, the estimation of the
meridional flow is inaccurate. However, in data assimila-
tion of subsequent years, the estimated flow starts cap-
turing the asymmetry, so does the forecast dynamo field.
The corresponding updated covariance matrix gives an
eigenbasis which can account for asymmetric configura-
tion. This shows the ability of the method to adjust
the model to give a better approximation to the reality.
As a result, the estimation of the flow improves start-
ing as soon as the second year. In Fig. 10, we plot the
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Figure 9. (a) Time series of the coefficient of the unicellular com-
ponent of the stream function. The reference time series is shown
in black. The piecewise constant red (resp. blue) curve is the end
result of the assimilation of synthetic observations starting from a
unicellular (resp. asymmetric) prior information. (b) Same for the
coefficient of the antisymmetric component of the stream function.

stream functions corresponding to the estimated coeffi-
cients (Fig. 9), and (10 times) the differences between
the estimate and the truth in some selected years. It
clearly shows that the error in the estimate of the flow
decreases at the beginning.

In the trial with a prior based on slightly equatorially
asymmetric flow, as early as the first year, the covariance
matrix is able to account for the asymmetry of the obser-
vations partially. Therefore, the estimation of the flow in
the first year is better than that obtained using a prior
based on pure unicellular flow. We can also identify such
behavior when evaluating the misfit of the synthetic ob-
servations in Fig. 11. Depending on the assumed prior
in the first year, the normalized misfit is considerably
higher than unity for the first 5 to 10 years. It converges
towards unity after ∼ 10 years, and remains in very good
agreement afterwards. Also, irrespective of the first year
assumed prior, the flow reconstructed and the misfit con-
verge to the same value respectively after about 5 ∼ 10
years of warm-up time.

The implication here is that the outcome of the as-
similation in the first few years depends highly on initial
guess of the initial conditions in the first data assimila-
tion window in this implementation.

Next, we show in Fig. 12 the distribution of the misfit
of the surface line of sight magnetic field as a function
of latitude. As the artificial noise added to generate the
synthetic observations is normally distributed, theoret-
ically, for optimal fitting, 68% and 95% of the sampled
misfit should fall within once and twice of the noise level,
respectively. The plot shows such a consistency.

The statistics of the initial guess of the dynamo field
determine the basis of representation of the initial con-
ditions in the control parameter space. An initial guess
closer to the truth gives a more complete representation
and vice versa. This can be improved after assimilation
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Figure 10. The true and estimated stream functions at different
epochs during the assimilation experiment. Also shown at various
epochs is 10 times their differences (estimate-truth).
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Figure 11. Time series of the normalized misfit over the course
of the assimilation, starting either from a unicellular prior (black)
or from an asymmetric prior (red). See text for details.

in subsequent years. Therefore, there is a spin-up time
for the assimilation procedure to adapt to the truth, but
it is reasonably short compared to the interval over which
data are available.
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Figure 12. The distribution of the misfit of sampled surface
line of sight magnetic field in 40 years of assimilation, at different
latitudes. Black (resp. red) curve: Fraction of estimated surface
line of sight magnetic field fall within one standard deviation (resp.
two standard deviations) from the synthetic observations.

3.1.2. Estimation of the magnetic field and proxies

With the estimate of the parameters {xfn}1≤n≤40 (flow,
initial condition) from the assimilation procedure, we can
reconstruct the magnetic field and the magnetic proxy
(Equation (8)) within the 40 consecutive years. We com-
pute the estimated magnetic field Aφ and Bφ, and com-
pare with the true magnetic field, on the meridional plane
(Fig. 13). We measure the (relative) error with Equa-
tion (12). We show the difference in Fig. 14. The
initial guess is based on a unicellular flow. After the first
5 years of assimilation to capture a dynamo model closer
to the truth, the relative errors in the estimated field
(inside the 40 consecutive years of assimilation windows)
stay within 10% from the truth. This is about the same
or slightly more than that of the representation of the
magnetic configuration introduced in Sec. 2.2 (Fig. 7
(b)).

Since the initial magnetic field is in the control param-
eter space in this assimilation procedure, we also show
the estimate of the magnetic field on the meridional plane
at the first and 10th year, the truth and (10 times) their
differences, in Fig. 13. This also shows that the proce-
dure cannot pick up the asymmetry of the field on the
first year when the prior is based on a unicellular flow,
but the asymmetry can be recovered as assimilation time
evolves (as shown in year 10).

It is believed that the sunspot number is closely re-
lated to the toroidal field in the tachocline (Parker 1993;
Charbonneau & MacGregor 1997; Dikpati & Charbon-
neau 1999; Choudhuri et al. 1995), so it is important to
study the effect of data assimilation with the modeled
Wolf number W̃ o

N , W̃ o
S on the reconstruction of the mag-

netic field. We compare our reference case with the case
where only the surface magnetic field is used as observa-
tions in Fig. 15. We also present a free run of a 22-year
dynamo model, based on a unicellular meridional flow,
and evaluate the difference from our reference model in
the same figure for comparison. The free run is the sit-
uation when there is no data assimilation. In the pres-
ence of the synthetic sunspot-like proxy as observations,
there is only tiny improvement in the estimated toroidal
field, while the estimated poloidal field is more or less the
same. This is consistent to the case we showed earlier,

that W̃ o
N and W̃ o

S alone do not give enough information
for a reasonable estimate of the state vector. The spatial
dependence of the observation is important, and such a
dependence of the proxy is lost for W̃ o

N and W̃ o
S as it

is defined as an integration over latitudes. Of course as
discussed earlier there are ways to improve the data as-
similation algorithm based on SSN data only. Beyond
the 40-year interval of analysis, the error increases when
no data is available.

Notice there are 2 subtle features about the error in the
estimate. (i) The tiny and discontinuous rises in error at
the beginning of the yearly assimilation windows shown
in Fig. 14 are due to an update of the truncated eigenba-
sis of the covariance matrix for each year of assimilation,
which are also within a few % of the true field.

(ii) The errors in Fig. 14 show a nearly periodic rise
and fall for every sunspot cycle. As this is an evalua-
tion of the relatively error of the dynamo field, and the
dynamo field possesses a modulation of cycle ∼ 11 years
(or magnetic cycle of ∼ 22 years), the relative error can
be large if the dynamo field is small. We show the ab-
solute error of the estimate in Fig. 15, in which there
is no such periodicity in the error. (However, Fig. 14
illustrates the size of the error compared with the value
of the field, which is not illustrated in Fig. 15). In Fig.
15 we compare the error with the difference between the
true trajectory and that of a free dynamo run with a
simple unicellular flow, without assimilation. Compared
with the free run, the error decreases in the first 5 years,
and then the estimated field stays close to the true field
until the end of the 40 years series. We clearly see the
advantage of assimilating data.

Furthermore, we show the fitting of surface magnetic
field at latitude ±20◦, in Fig. 16. We also show the
free run trajectory based on a unicellular flow as refer-
ence. The synthetic observations are based on an equa-
torially asymmetric flow, so the observations are asym-
metric about the equator. As a result, we clearly see
that the free run quickly goes out of track. We also note
that the free run trajectory based on the symmetric uni-
cellular flow only fits the observations reasonably in one
hemisphere but not in the other (in this case it gets close
to the data in the Northern hemisphere.) With the as-
similation procedure, taking into account the monthly
observations each year, the estimated surface magnetic
field reconstructed from the forecast flow, gives a smaller
misfit in both hemispheres, and clearly the asymmetry
is accounted for. During the first few years, the misfit is
slightly higher than later years, as the prior is unicellu-
lar flow, it takes time for the procedure to adapt to the
asymmetry. Similar results are also observed for the re-
construction of the modeled hemispheric sunspot proxy
W̃ o
N and W̃ o

S , defined from the estimated toroidal field at
the tachocline, in Fig. 17.

So we can conclude that our method is robust and
able to reconstruct complex, possibly asymmetric inter-
nal flows from observations of surface magnetic field, and
yields good agreement with activity in both hemispheres.
We can now test how well it performs for forecasting.
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Figure 13. Top: meridional plots of the magnetic field at year 1 of the assimilation experiment. From left to right: True poloidal
field, estimated poloidal field after assimilation, ten times the differences of these two, true toroidal field, estimated toroidal field after
assimilation, and ten times the differences of these two. Bottom: same for year 10 of the assimilation.
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Figure 14. Relative difference between the magnetic field esti-
mated by data assimilation and the true magnetic field versus time,
shown in black (resp. red) for the poloidal (resp. toroidal) field.

3.2. Forecast of the magnetic field and proxies beyond
the assimilation window

In this section we discuss the predictive capability of
the procedure based on this flux transport model. We
estimate the magnetic field beyond the 40 years of as-
similation, i.e., without assimilation, by evolving the dy-
namo model in time, based on the forecast magnetic field
and the flow at the end of the 40th year.
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Figure 15. Top: Absolute difference between various estimates
of the toroidal magnetic field and the true magnetic field versus
time. Blue: free run of the dynamo model (unconstrained by data).
Black: data assimilation estimate, with data consisting of magnetic
fields in line of sight and pseudo sunspot number. Red: data as-
similation estimate, with data restricted to magnetic fields in line
of sight. Bottom: Same for the poloidal magnetic field.

We show in Fig. 15 the difference between the true field
and the field obtained from the model beyond 40 years of
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Figure 16. Time series of surface magnetic field in line of sight at
latitude 20◦. Red: free run of the dynamo model (unconstrained
by data). Circles: monthly data extracted from the reference time
series. Blue: reference time series. Light blue: data assimilation
estimate. Green: time series of the forecast. (b) Same for the field
at latitude −20◦.
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Figure 17. (a) Time series of the synthetic sunspot number at
the Northern hemisphere. Red: free run of the dynamo model
(unconstrained by data). Circles: monthly data extracted from the
reference time series. Blue: reference time series. Light blue: data
assimilation estimate. Green: time series of the forecast. (b) Same
for the synthetic sunspot number at the Southern hemisphere.

assimilation. The error starts to grow for 10 ∼ 20 years
but remains smaller than that of the free run. After
that, it saturates and the magnitude of the error is of
the same order or slightly lower than that of the free run
trajectory.

Therefore, if we try to predict the magnetic observa-
tions by extrapolating the model based on the magnetic

field and the flow at the end of the hindcast, the pre-
diction is reliable within 10 years if we are conservative,
and up to 20 years with low confidence level. After 20
years, there is essentially no predictive capability in this
experiment. This is longer than the time scale of the
fluctuations, τ = 3 years, added to the reference flow to
produce the synthetic observations. The reasons are (i)
the modeled flow contains a non-fluctuating part ψ(r)
which is also captured during the assimilation process,
(ii) the long term average of the fluctuations is zero, so
that the assimilation procedure results in recovering the
long term averaged flow up to a certain extent.

In Fig. 16, and the modeled sunspot-like proxy in Fig.
17, we also show the model trajectory after 40 years when
no assimilation is performed. In particular, for the mod-
eled sunspot proxy in Fig. 17, the trajectory still fits the
observations reasonably after the 40th years, for 1 ∼ 2
cycles (10 ∼ 20 years). And then the trajectory diverges
from the observations after 20 years, but still closer in
phase compared with the free run. We are then confident
that our data assimilation model can provide improved
predictions in each hemisphere for up to 15 ∼ 20 years.

3.3. Numerical experiments with synthetic data based on
different levels of stochastic fluctuation on the flow

We showed the estimation of the profile of the flow by
the data assimilation technique using synthetic observa-
tions from the flux transport dynamo model with 30%
fluctuations on the meridional circulation. In this section
we study the performance of the assimilation algorithm
with respect to the magnitude of the fluctuations on the
meridional flow when generating the synthetic observa-
tions. We test the assimilation method with synthetic
observations with 10% and 20% fluctuations, together
with the 30% case illustrated above.

The fluctuations in cycle length of the synthetic ob-
servations increase with the level of the fluctuation in-
troduced in the meridional circulation. As illustrated in
Fig. 3, spread of the cycle length increases with the level
of fluctuation of the flow. For the 30% case the range of
the distribution is comparable to the sunspot cycles, but
the lag between the northern and southern hemisphere
is perhaps too large compared to that the real Sun, so
lower level of anti-symmetric fluctuations in the flow (A2)
is useful to assess.

To compare the fitting of the synthetic observations of
the flow among 3 tests (10%, 20% and 30% fluctuations),
we show the corresponding integrated difference between
the estimated and true toroidal field in Fig. 18. As the
reference case, both the synthetic sunspot proxy and the
surface line of sight magnetic field are taken as observa-
tions. During the 40 years of assimilation, the absolute
difference between the truth and estimate increases with
the magnitude of the fluctuation of the flow from which
the synthetic data is produced. This is because the ap-
proximation of the true flow with step functions become
less accurate as the fluctuation level (effectively the slope
of the profile with respect to time) increases. As a re-
sult, the difference from the true magnetic configuration
is higher. For the hindcast and forecast process discussed
above, i.e., the corresponding results shown in Fig. 15 to
Fig. 17, the error in estimate of the field and the predic-
tive capability are of the same order, but better for lower
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Figure 18. Top: Absolute difference between estimate of the
toroidal magnetic field and the true magnetic field versus time, and
where the true magnetic field is driven by meridional flow with 10%
fluctuation. Blue: free run of the dynamo model (unconstrained
by data). Black: data assimilation estimate, with data consist-
ing of magnetic fields in line of sight and pseudo sunspot number.
Middle and bottom: Same for 20% and (resp.) 30% fluctuations
in meridional flow.

fluctuation level Ai’s as could be expected (Fig. 18).
Note that in this study, the fluctuation level added to

the meridional flow imposes little effect on spin-up time.
The time for the integrated difference to decrease and
get flattened about unity is ∼ 6 years for the 10% case,
and ∼ 10 years for the 20 and 30% case. Therefore, the
spin-up time for the assimilation procedures to adapt to
the truth depends mostly on the initial guess of magnetic
configuration at the first year of the assimilation pipeline.
Only a guess closer to the reality can shorten the spin-up
time of the procedure.

We conclude from this study that the assimilation pro-
cedure is robust with respect to the fluctuation level of
the time varying flow to be estimated. This is impor-
tant as the latter affects the time variability of the cycle
length (see Fig. 3).

4. DISCUSSION AND SUMMARY

Our numerical experiment shows the capability of data
assimilation in estimating the deep meridional circula-
tion of the Sun using magnetic proxies. As a prepa-
ration for analyzing real magnetic observations and for
predicting the solar activity in the future, (in partic-
ular cycle 25), we adjust the flux transport model to
have solar-like properties such as an 11-yr cycle period
but modulated both in amplitude and frequency, and a
time-varying meridional flow which may be asymmetric
with respect to the equator. A stochastic time vary-
ing meridional circulation produces fluctuations in cycle
period and amplitude, which make the simulation more
solar-like compared with a dynamo model with a con-
stant meridional flow, in terms of the irregularities. We
construct synthetic magnetic proxies, like surface line of

sight magnetic field and the sunspot number, by relating
them to the surface poloidal field and the toroidal field
in the tachocline computed with the flux transport dy-
namo model. We also add noise to the data and the level
of noise is consistent with the observations from the real
Sun (∼ 10%) (recall Sec. 2.1).

For the data assimilation method, we now include the
initial conditions of the dynamo model as extra con-
trol parameters. The representation of the initial condi-
tions is based on the statistical covariance of the dynamo
model. We implement this extension within the corre-
sponding adjoint model, such that the resulting frame-
work is capable of estimating the meridional flow as well
as the magnetic field within the convection zone through-
out the assimilation window. We find that the spectrum
of the covariance matrix peaks sharply; this enables a
good approximation of the magnetic configuration on the
meridional plane by projecting it on a truncated eigen-
basis (in our test, 20 eigenmodes are taken) with the
dominant eigenvalues, which facilitates the calculations.

We then show that, by ingesting the synthetic
(monthly) observations on a yearly basis, and within each
year applying the 4D-Var assimilation method, we are
able to reconstruct the time varying flow over 40 years
of the test period very well. The normalized misfit of
data, close to unity, indicates an optimal fit in statisti-
cal sense. We also show that the method is robust for
synthetic observations based on stochastic variations of
the flow up to at least 30%, in terms of reconstruction of
the flow and normalized misfit of data. By studying the
time evolution of differences between the true magnetic
field from the data and the forecast magnetic field, and
by further comparing it with a free dynamo run where no
data assimilation is done, we conclude that in this exper-
iment, the predictive capability of the method is about
15 to 20 years, for the 30% fluctuation in the flow akin to
the Sun (exceeding 2 sunspot cycles for lower fluctuation
levels). Starting from a simple equatorial symmetric dy-
namo field and unicellular meridional flow, the method
can give an asymmetric forecast field as well as asymmet-
ric meridional flow, hence it is not impaired by symmetry
of any sort. This is a strength as solar poles are known
to reverse with a lag of up to 2 years (Shiota et al. 2012;
DeRosa et al. 2012). Although there is a spin-up last-
ing the first 5 − 10 years of the assimilation, it is short
compared to the period over which data are available;
its duration is barely affected by the level of stochastic
variation.

Though we prove the performance of the assimilation
procedure with synthetic observations produced by the
same flux transport dynamo model, this is not exactly a
twin experiment, since we use step functions to approxi-
mate the flow in our assimilation model, instead of trying
to reconstruct the exact time dependent flow that gen-
erates the data in Fig. 2. In generating the synthetic
observations, the choice of the fluctuation level of the
anti-symmetric component (A2 = 0.3) may seem exces-
sive, given the resulting phase difference between both
hemispheres (up to 4 years as opposed to 1-2 years for
the Sun). Regardless, we show that our pipeline is capa-
ble of reconstructing such an asymmetric configuration,
while disentangling the contribution of both symmetric
and antisymmetric flow components to the simulated so-
lar activity. In summary, we are confident that our data
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assimilation pipeline is robust and a promising tool for
studying past and future solar activity.

There are, however, several limitations regarding the
model and method used in our study. As the flow is
perturbed in a stochastic manner, the predictability is
limited by the time scale of the stochasticity, in our case,
3 years. An alternative is to introduce fluctuations in the
flow in a non-stochastic manner. For example, including
the flow as a dynamical variable of the model which is
coupled with the magnetic field nonlinearly, which re-
quires a different formulation and closed equation set.
This more deterministic behavior could actually be more
easily captured than a purely random variability. The
long term amplitude modulation, such as the Gleissberg
cycle, is also absent in the present model, and both can
be implemented in future work. Regarding the assimila-
tion, we approximate the time varying profile of flow with
a linear combination of step functions. However, we can
see that with higher fluctuation on the flow, the effect
of the slope of the profile becomes important. The ap-
proximation with piecewise constant values will probably
give a slightly higher misfit. Therefore, a better approx-
imation of the flow in the assimilation routine is nec-
essary. Thus, one next important step of improvement
is to add the slope of the flow, i.e., the acceleration, to
the control vector of the assimilation framework. This
will double the number of parameters to represent the
stream function. We show that the method is robust in
this relatively hard version of non-constrained numerical
experiment. On the other hand, it is possible to extend
the applicability of the pipeline by introducing physical
constraints to the framework. For example, in the case
where we made attempt to hindcast with W̃ o

N and W̃ o
S

alone, including more physical information in the form
of background term is a possible improvement.

At this stage, it may be worthwhile to compare our ap-
proach and results with those obtained recently by Dik-
pati and colleagues (Dikpati et al. 2014; Dikpati et al.
2016, D16 henceforth for the latter). D16 carried out a
set of numerical experiments using a sequential assimi-
lation method (the EnKF) applied to a mean-field dy-
namo model which resembles closely the one we use in
this study. The purpose of their proof-of-concept ex-
periments (which rest on synthetic data) is to assess the
capability of their method to capture the time-dependent
behavior of the meridional circulation. To that end, they
generate a set of synthetic observations based on a refer-
ence trajectory obtained by prescribing a time-dependent
meridional circulation. Their meridional circulation has
a fixed, one cell per hemisphere configuration, and its
time-dependency is restricted to its amplitude. The am-
plitude has a steady and time-varying part. The time-
varying part is deterministic, and controlled by a few
modes of oscillations with periods of a few years to a
decade (see their Figure 1). These deterministic oscil-
lations yield fluctuations of about 40% about the mean
(a figure similar to the 30% fluctuations that we gener-
ate, in a stochastic fashion though, in this study). Their
synthetic observations consist of values of the poloidal
(at the top of the convection zone) or toroidal fields (at
the bottom of the convection zone). They vary the lo-
cation and density of observations in their experiments.
The true, reference values, are affected by an uncertainty

corresponding to a noise level of 4%. This has to be
contrasted with observations of the pseudo-number of
sunspots, and radial induction in the line of sight used
here (affected by relative errors of 10% throughout our
study). Dikpati et al convincingly show that by carry-
ing out an analysis every 2 weeks (over the course of
their 35-yr long experiments) using the EnKF, they can
recover the time-dependent amplitude of the meridional
flow using an ensemble size of 192 members, each anal-
ysis being applied to 10 observations consisting of near-
surface poloidal fields from low latitudes and tachocline
toroidal fields from mid-latitudes. Success in retrieving
accurately the time-dependent amplitude depends on the
locations of the available observations (those at high lat-
itude being less valuable). They also find that a much
shorter or longer interval between each update is detri-
mental to the success of the assimilation. A too short
an interval (e.g. 5 days) does not allow the system to
respond dynamically to a change in the flow amplitude,
whereas a too large interval between two updates causes
the trajectory of the assimilated system to depart exces-
sively from the ‘true’ trajectory. They do not discuss the
predictive capability of their system in the study (recall
that we find in our synthetic setup a practical horizon of
predictability of about 15 years). Our findings are overall
in line with those of D16, in the sense that partial and
noised observations of a kinematic dynamo with time-
dependent flow features can be used to rather accurately
estimate the time-dependent flow in the bulk of the sys-
tem (not only where observations are available), by using
an interpolation based on a physical model (this is essen-
tially what data assimilation is about). The differences
between their study and ours stand in the assimilation
method (sequential vs variational), and in our estimation
of the amplitude and shape of the meridional circulation
(as opposed to the amplitude alone in D16), in addition
to the estimate of the magnetic field. In our framework
of variation assimilation, we use windows of width 1 year
(40 of them for the hindcasting part), each of which con-
taining 12 monthly sets of observations. Because we use
a similar dynamo model as that used by D16, we also
find that observations should be separated by a month or
so, for the same reasons as those discussed above. With
regard to the density of observations, we use more ob-
servations at a given time (129 versus 10 for D16). Our
observations are indeed noisier, and, more importantly,
the estimation problem that we are looking at is not the
same. Our initial set-up for a given window consists of
the flow properties (2 coefficients) and the initial mag-
netic field (20 coefficients). In assimilation parlance, our
control vector has a size of 22 (recall Sec. 2.2) whereas, in
the case of D16, a single parameter (the amplitude) has
to be estimated. So it should come as no surprise that
more observations are needed. In summary, the approach
followed by D16 and ours prove capable of estimating the
time-dependent properties of the meridional circulation
in a controlled environment (that of a synthetic exper-
iment). We have used synthetic data which we think
closely resemble the data that we are going to use when
dealing with the real (less controlled) problem.

To conclude, we presented here an assimilation method
to estimate a time varying meridional circulation with
synthetic magnetic proxies. The method is robust with
an optimized data fit, and gives a predictive capability
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of 1 ∼ 2 sunspot cycles, depending on the amplitude of
the fluctuating part of the sought flow. Future develop-
ments include (i) analyzing magnetic proxies of the real
Sun with the data assimilation method, (ii) improving
the representation of the meridional circulation in the

assimilation framework (e.g., by taking into account the
acceleration of the fluid), and (iii) including physical con-
straints in the objective function.

APPENDIX

THE BABCOCK-LEIGHTON FLUX TRANSPORT MEAN FIELD DYNAMO MODEL

This section gives a brief description of the flux transport mean field dynamo model, i.e., the Babcock-Leighton model,
with axisymmetry. This is the model used for the assimilation procedure, and to generate synthetic observations for
our numerical experiment to verify the data assimilation technique. The model equations are (Dikpati & Charbonneau
1999; Jouve & Brun 2007; Jouve et al. 2008; Hung et al. 2015):

∂tAφ =
η

ηt

(
∇2 − 1

$2

)
Aφ −Re

vp
$
· ∇($Aφ) + CsS(r, θ, Bφ), (A1)
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−ReBφ∇ · vp + CΩ$ [∇× (Aφeφ)] · ∇Ω,

(A2)

where Aφ(~r, t) and Bφ(~r, t) are the poloidal potential field and the toroidal field respectively. $ = r sin θ, and vp is
the poloidal velocity, i.e., the meridional circulation, Ω is the profile of the differential rotation, and S is the source of
the poloidal field at the solar surface. The domain is (r, θ) ∈ [0.6, 1]× [0, π]. The toroidal field Bφ = 0 at the boundary
of the domain, and for Aφ, we impose the pure radial field approximation at the surface, i.e., ∂r(rAφ) = 0 at r = 1,
and Aφ = 0 on all the other boundaries. The length is normalized with solar radius R�, time is normalized with the
diffusive time scale R2

�/ηt where ηt is the envelope diffusivity. We introduce 3 dimensionless parameters, namely the
Reynolds number based on the meridional flow speed Re = R�vo/ηt, the strength of the Babcock-Leighton source
Cs = R�so/ηt and the strength of the Ω-effect CΩ = ΩoR

2
�/ηt, and Ωo = 2π × 456nHz.

We use the same dynamo model as we did in Paper I here except that we have some modifications. First, we use a
slightly more complex resistivity profile, a 2-step profile in radial direction,

η

ηt
=
ηc
ηt

+
ηm
2ηt

[
1 + tanh

(
r − rbm
d1

)]
+

1

2

[
1 + tanh

(
r − r2

d1

)]
, (A3)

where ηc = 109 cm2 s−1, ηm = 1011 cm2 s−1, ηt = 5 × 1011 cm2 s−1, rbm = 0.72, r2 = 0.95, d1 = 0.016. In this
resistivity profile, the high diffusion at the surface brings a lower ratio of radial magnetic field at the pole to that near
the equator (Hotta & Yokoyama 2010). Second, the meridional circulation is also modified. The meridional flow is
crucial in this model, it advects the magnetic field poleward at the surface, and equatorward deeper in the convection
zone when it is unicellular per hemisphere.

To obtain dynamo generated magnetic field with fluctuations in period and amplitude instead of a constant 22 years
and peak amplitude, we use a time varying meridional circulation for the model. We express the flow in the convection
zone as the curl of a stream function:

vp = ∇× (ψeφ), (A4)

and we expand the stream function as

ψ(r, θ, t) = − 2

π

(
r − rmc
1− rmc

)2.5

(1− rmc)

×





m∑
k=1

n∑
l=1

dk,l(t) sin
[
kπ(r−rmc)

1−rmc

]
P 1
` (− cos θ) if rmc ≤ r ≤ 1

0 if rbot ≤ r < rmc,

(A5)

where P 1
` are the associated Legendre polynomials of order 1. The meridional flow is allowed to penetrate to a radius

rmc = 0.65, i.e. slightly below the base of the convection zone located at rc = 0.7. Notice that the radial dependence
of the stream function is raised to (r − rmc)2.5, compared with (r − rmc)2 in Jouve et al. (2008) and Paper I. This
can give a higher ratio of maximum flow vθ at the surface with respect to that of the base of the convection zone,
which in turn results in a 22-year magnetic cycle dynamo model with a surface flow ∼ 20 ms−1 (Yeates et al. 2008),
consistent with the observed solar surface flow (Ulrich 2010; Basu & Antia 2010; Komm et al. 2015). The expansion
coefficients dk,l(t) are modulated in time so that the flow is time dependent. Other parameters used in the model
include the Reynolds number Re = 310, Cs = 20, CΩ = 2.78 × 104, i.e., vo = 22.3ms−1, so = 1.44ms−1. The grid
size is nr × nth = 129 × 129, and the time step is 10−6, equivalent to 0.112 day. In the illustrative example of the
numerical experiment starting from Sec. 2.1, we chose a model flow (Equation (3)) characterized by d1,2(t) = 1/3c1(t),
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and d2,1(t) = 0.0865c2(t), d2,3(t) = 0.130c2(t) [dk,l = 0 for other (k, l)’s]. Of course, model based on stream functions
defined by different combination of dk,l’s can be investigated.

ASSIMILATION PROCEDURE AND REPRESENTATION OF INITIAL CONDITIONS IN THE PARAMETER SPACE

We present here the technical details of incorporating the initial magnetic field of the dynamo model to the control
parameter space as a reference.

The initial conditions for the assimilation model are the magnetic potential of the poloidal field and the toroidal
magnetic field on the meridional plane at the beginning of an assimilation window, i.e., Aφ(r, θ, ts) and Bφ(r, θ, ts),
respectively. To extend the parameter space in the present 4D-Var framework, the initial conditions become part of
the implicit dependences of the objective function.

As mentioned in Sec. 2.2, we need a representation of Aφ(r, θ, ts) and Bφ(r, θ, ts) in the parameter space such that
the associated dimension is small compared with No ∼ 1500. To address this problem, we represent the magnetic field
on the meridional plane with a truncated set of eigenbasis of the covariance matrix of a dynamo field trajectory. We
find that for a magnetic trajectory from the flux transport dynamo model Aφ(r, θ, t) and Bφ(r, θ, t), if we calculate
the covariance matrix over a long time (which covers the 22-years period of the magnetic cycle), the magnetic field at
any time in the trajectory Aφ(r, θ, to), Bφ(r, θ, to) can be approximated effectively with a linear combination of only
the first few eigenvectors of the covariance matrix with leading eigenvalues. We define the field column vector

y(t) =[A1,1(t), .., Anr,1(t), A1,2(t), .., Ai,j(t), .., Anr,nθ (t),

B1,1(t), .., Bnr,1(t), B1,2(t), .., Bi,j(t), .., Bnr,nθ (t)]
T ,

(B1)

where Xi,j(t) = X(ri, θj , t) with X be Aφ or Bφ. ri, θj are the spatial grid points of the magnetic field, so the size of
the vector is 2nrnθ, with nr, nθ being the grid size in radial and polar direction in the coordinate space respectively.
The covariance matrix P about a particular time to is defined as

Pk,l(to) = [y − y(to)]k[y − y(to)]Tl , (B2)

where the over-bar denotes averaging over time, in our case, two magnetic cycles. Notice that the indices k, l are the
indices of the field vector and the covariance matrix, with 1 ≤ k, l ≤ 2nrnθ. The diagonal entries of P are the variances
of Aφ and Bφ at each grid point respectively. The off diagonal entries, depending on the indices, are the covariances of
Aφ (Bφ) between any 2 different grid points, or the covariances between Aφ and Bφ at any 2 grid points. It measures
the auto-correlations of Aφ and Bφ, and also the correlation between Aφ and Bφ. We diagonalize the matrix, project
y(to) on the eigenbasis and approximate y(to) in a truncated linear combination of the eigenvectors:

y(to) ∼
m∑

i=1

[wT
i y(to)]wi, (B3)

where {wi} is the eigenbasis of P, with the corresponding eigenvalues λ1 ≥ λ2 ≥ ... ≥ λm, m is the number of basis
vector used in the approximation. Notice that the covariance matrix is positive definite and symmetric by definition,
thus the corresponding eigenbasis is orthonormal.

PA(i = 1) PB(i = 1) PA(i = 2) PB(i = 2) PA(i = 3) PB(i = 3)

−100 −10−1 −10−2 10−2 10−1 100

Figure 19. First 3 eigenfunctions (with leading eigenvalues) of the covariance matrix of a dynamo model based on a unicellular flow,
expressed on the meridional plane. PA (resp. PB) is the poloidal (resp. toroidal) component of the eigenvector. The higher modes with
lower eigenvalues display more structures on the meridional plane.

To reduce the size of computation, we only include every other grid point in r and θ in the construction of the field
vector and covariance matrix, and interpolate in the coordinate space to approximate the magnetic field. This reduces
the size of P by a factor of 16. As shown in Fig. 20, this has little impact on the scheme, whose accuracy is mostly
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controlled by the level of noise impacting the data. In addition to the spectrum and eigenbasis of the covariance matrix
we showed in Fig. 7 of Sec. 2.2, we also show the physical structure of the first 3 eigenfunctions in Fig. 19: Higher
modes with lower eigenvalues display more complex structures in the meridional plane.

The spectrum of the covariance matrix (Fig. 7 (a)), and the error in the approximation of a dynamo field by a
truncated basis of eigenvectors (Fig. 7 (b)) drop rapidly with the level of truncation. The error in Fig. 7 (b) flattens
to a few percents, a consequence of the every other point approximation discussed above; again, this approximation
does not impact the overall accuracy of the scheme, which is controlled by the observational noise.

The forward model is initialized with such a representation, and the corresponding adjoint operator is developed
similarly. (Recall that the derivative of the objective function with respect to the initial field is the corresponding
adjoint field at the beginning of the assimilation window Paper I.) The covariance matrix in the nth step is evaluated
from the dynamo model forecast in the (n− 1)th assimilation window. For n = 1, the dynamo model is a simple one
based on unicellular flow. Updating of the covariance matrix after each year can ensure we can capture the change
in the dynamics and statistics of the dynamo action, and in consequence the initial conditions can be reasonably
approximated.
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Figure 20. Normalized misfit versus time over the course of the assimilation for different parameterizations of the magnetic component
of the control vector. Black (resp. red, resp. blue): 5 (resp. 10, resp. 20) eigenmodes are retained after the diagonalization of the
covariance matrix constructed from the knowledge of the magnetic field at every other grid point. Green: 20 eigenmodes are retained after
the diagonalization of the magnetic covariance matrix constructed from the knowledge of the magnetic field at every grid point.

In Sec. 2.2 we truncate the expansion of the initial condition to m = 20 leading eigenvectors, as the spectrum of
P and the of error in expanding a simple dynamo field drop rapidly when the mode number increases (Fig. 7). To
justify this approximation, we perform the assimilation experiment of our reference case, at various m, and using a
simple unicellular flow as the prior for the first year of assimilation. We show the misfit in Fig. 20. We can see that
at m = 20, we have an optimal misfit of ∼ 1, and for more aggressive truncation of the eigenbasis representation,
there will be underfitting. The size of the truncated basis required is related to the spectrum of the covariance matrix.
In Fig. 21 (a), we can see that the covariance matrices for the models forecast during the 40 years of assimilation
give broader spectra compared with a unicellular prior. This means higher eigenmodes are more important for more
complicated magnetic configuration as the assimilation procedure proceeds. To illustrate that, we show the error in
expanding the forecast magnetic field at the end of the assimilation of 40 years with the eigenbasis of the final forecast
model in Fig. 21 (b). Compared with Fig. 7 (b), the error converges at higher m, but still soundly contained in our
chosen size m = 20. Therefore, we justify the truncation of the eigenbasis in representation of the initial condition at
m = 20 in our tests.

To summarize, the procedures of the data assimilation for our course of 40 years analysis of synthetic observations
are listed as follow:

1. For n = 1, calculate the covariance matrix P1(ts,1) of the initial guess of the initial conditions. (Here ts,n and
te,n are respectively the starting time and the ending time of the assimilation window at the nth step and we
have ts,n = te,n−1.) Usually the guess is the dynamo model based on unicellular flow with magnetic cycle of
22-years. Diagonalize the covariance matrix and project the guess of initial magnetic field on the eigenbasis to
obtain xg1,IC , the superscript g stands for guess. Combined with the guess of the meridional flow xg1,MC , we have

xg1 for assimilation of the observations of the first year.
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Figure 21. (a) Red: Eigenvalue spectra of the covariance matrices of the hind-cast dynamo models for the estimated flow in each of the
40 years assimilation. The corresponding spectrum of the dynamo model for a unicellular steady flow is shown again in a black curve for
comparison. (b) Error in the approximation of the hind-cast magnetic field at the end of the assimilation at the 40th year, as a function
of the size of a truncated eigenbasis. Black: error in the poloidal field. Red: error in the toroidal field.

2. Based on the synthetic observations of the first year, with an appropriate guess xg1, the data assimilation procedure

gives a forecast of magnetic field, and an analyzed meridional flow xf1 , the superscript f stands for forecast.

3. For n > 1, construct the covariance matrix Pn(te,n−1) of the dynamo model based on the analyzed flow at the

n− 1 assimilation xfn−1,MC . Evaluate the eigenbasis of Pn(te,n−1), and project the analyzed magnetic field from

the assimilation window n − 1 at te,n−1 and obtain xgn,IC . The initial guess of the flow in step n will be the

analyzed flow in step n− 1, i.e., xgn,MC = xfn−1,MC . So we obtain xgn.

4. Based on the synthetic observations at the nth year, with the guess xgn, the data assimilation procedure gives
the analysis xfn. The analyzed magnetic field and the estimated flow will give the initial guess xgn+1 and so on
and so forth until te,40 is reached.

BRIEF ANALYSIS OF TEMPORAL VARIABILITY OF MERIDIONAL FLOW

In this section we present an analysis of the surface flow of the Sun which shows the temporal variability, using data
from Ulrich (2010).

In Sec. 2.1, we mentioned that the correlation time of the spectrum of the surface meridional flow is of order 1 year.
The observed flow on the solar surface can be found, for example, in Ulrich & Boyden (2005); Ulrich (2010). The flow
is dominantly poleward at the surface. We project the flow on the associated Legendre polynomials of order 1 (P 1

` ),
and plot the mean square (in time) of the spectrum in Fig. 22. The modes which are odd about the equator, i.e. with
even `, are dominant over their even parity counterparts, and the spectrum in general decreases with increasing `.

To study the temporal variability of the flow, we evaluate the auto-correlation of the expansion coefficients on P 1
` s,
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Figure 22. The mean square (in time) of the expansion coefficients of the surface flow as a function of the degree ` of associate Legendre
polynomials of order 1, P 1
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Figure 23. The autocorrelation functions of the time series of the expansion coefficients of the surface flow (on P 1
` ). Only the 4 coefficients

with highest mean square in time average are shown (` = 1 (black), 2 (red), 4 (blue), 6 (green)).

for ` = 1, 2, 4, 6 and show it in Fig. 23. The first 3 equatorially odd modes display correlation times of at least 5 years,
and the first equatorially even counterpart ` = 1, is of correlation times ∼ 1 year. We have thus decided to use a
modulation for the flow of 3 years as illustrated in Fig. 2 and 4, which results in time dependent modulation of the
flow in good agreement with observations.
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