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Abstract7

Linear theory is used to analyze trapping of infrasound within the lower tropospheric8

waveguide during propagation above a mountain range. Atmospheric flow produced by the9

mountains is predicted by a nonlinear mountain gravity wave model. For the infrasound10

component, we solve the wave equation under the effective sound speed approximation using11

both a finite difference method and a WKB approach. It is shown that in realistic con-12

figurations, the mountain waves can deeply perturb the low level waveguide, which leads13

to significant acoustic dispersion. To interpret these results each acoustic mode is tracked14

separately as the horizontal distance increases. It is shown that during statically stable sit-15

uations, situations that are common during night over land in winter, the mountain waves16

induce a strong Foehn effect downstream, which shrinks the waveguide significantly. This17

yields a new form of infrasound absorption, that can largely outweigh the direct effect the18

mountain induces on the low level waveguide. For the opposite case, when the low level flow19

is less statically stable (situations that are more common during day in summer), moun-20

tain wave dynamics do not produce dramatic responses downstream. It may even favor the21

passage of infrasound and mitigate the direct effect of the obstacle.22
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I. Introduction23

Infrasound, which is defined as sound waves that are lower in frequency than 20 Hz, is24

characterized by an ability to travel over long horizontal distances in the atmosphere. This25

is related to the fact that the wind and temperature strongly vary with altitude, providing26

multiple ducts in which infrasound can propagate efficiently20. Although an important duct27

is potentially in the lower thermosphere, as a result of the steep increase in temperature28

(e.g. above 90 km), the decrease in mean density produces substantial absorption coefficients29

there42. For this reason, the most efficient ducts are often within the middle atmosphere,30

e.g. above the tropopause at around 20 km and below the mesopause at 90 km. At lower31

altitudes, infrasound can also be trapped within tropospheric waveguides over distances that32

may reach several hundred of kilometers, at least when the weather conditions permit43;31.33

However in this case, the wave interacts with the ground surface much more than wave34

refracting higher in the atmosphere and topographic features produce quantifiable effects on35

the recorded data30. Furthermore, at these altitudes the absorption coefficient is small and36

thus, it is neglected in most practical applications.37

Although much less studied, the propagation of infrasound over distances of a few tens38

of kilometers can be controlled by a planetary boundary layer duct11;45, which is a region39

of approximately 1 km depth in which the boundary effects are reflected in the flow16. For40

these relatively short propagation ranges, the upward refraction at higher altitudes (around41
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and above the tropopause) can be ignored45 and the acoustic field can be described by a42

modal expansion involving a few modes. For completeness, it is important to note that43

the absorption properties of ground play a significant role4, in the sense that vegetation-44

covered land absorbs more energy than bare-ground for instance. We know that some modes45

are sensitive to such absorptions44;47 but we will not include these effects here, essentially46

because a comprehensive theory of acoustic propagation which accounts for both absorption47

by vegetation and turbulence is lacking.48

The common approach to calculate infrasound propagation in the atmosphere consists49

in solving the acoustic equation in a given background atmospheric state that varies with50

altitude and horizontal distance. This approach captures the most significant ducts, but51

sometimes it fails in predicting important arrivals17;3;34. The reason is that the atmospheric52

specifications, that are issued from operational numerical weather forecasts (e.g., provided53

by the ECMWF Integrated Forecast System or the NOAA Global Forecast System) or atmo-54

spheric climate reanalysis (e.g., ERA-Interim or NASA Modern Era Retrospective Reanalysis55

for Research and Applications), are associated with spatial resolutions that are much larger56

than the typical infrasound wavelength. These products therefore fail in representing im-57

portant small-scale atmospheric fluctuations that can substantially modify the larger-scale58

ducts6, especially for borderline ducts that barely return sound to the ground. The statistics59

of these fluctuations, however, are poorly understood, whereas their knowledge is required60
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for infrasound propagation modeling. For instance, Chunchuzov et al.12 have shown the need61

to introduce random atmospheric perturbations to adequately represent the acoustic prop-62

erties of the boundary layer, but in their work the sources of perturbations are not specified.63

As in the troposphere the (unresolved) fluctuations are mainly produced by mountains18,64

the contribution of these mountains to infrasound propagation remains an important open65

question.66

In a first attempt to incorporate topography effects in acoustic propagation, high-67

resolution terrain models have been used to represent the lower boundary by a sequence68

of up and down stair steps2;30. In this approach, mountains directly modify the altitude69

of the lower boundary of the troposphere, which affects the acoustic cut-off frequencies of70

the corresponding ducts. This can be viewed as applying a “mask” onto the atmospheric71

specifications, and ignoring the direct influence of the mountain ridges on the local wind72

and temperature fields. This is an extremely serious limitation, given that mountains can73

dynamically produce very intense phenomena, like downslope winds, Foehn, or trapped74

lee waves40;15. As an illustration, it is worth mentioning that even small “mountains”,75

with elevations of a several hundred meters, can develop substantial winds and temperature76

disturbances, depending on the incoming flow structure15.77

There are two primary objectives in the present investigation. The first is to compare78

the results of the “mask” approximation to that obtained with a wind model that captures79



Damiens, Millet and Lott, J. Acoust. Soc. Am., p. 6

the interaction between the topography and the boundary layer. The second objective is80

to examine the physical mechanisms that cause a low-level acoustic duct to be affected81

and eventually destroyed by mountain-induced disturbances. Here we use the mountain82

flow model described by Lott29. With respect to our first objective, this model involves a83

nonlinear boundary condition, i.e. it includes an obstacle that penetrates inside the low level84

waveguide and reduces its depth, an effect that potentially recovers the classical “mask”85

technique. It is worth while to point out that the model also predicts a mountain wave86

field, which compares in amplitude to the background winds and temperature variations87

responsible for the waveguide. This inherently affects the trapped acoustic modes, yielding88

highly dispersed signals as well as irreversible absorption of the acoustic wave passing over89

the ridge.90

The paper is organized as follows. In section II, the mountain wave model is described91

and the dominant features of the mountain wave field are discussed in terms of dimensionless92

Richardson and Froude numbers. The effect of mountain wave disturbances on the acoustic93

field p(x, z) is then considered in section III, using a classical range-dependent normal mode94

approach24 to account for flow changes along the source-receiver distance x. To make the95

absorptive properties more transparent, the acoustic modes are also obtained using a WKB96

approximation. In section IV, it is found that the interaction between the mountain flow97

and the acoustic field gives rise to attenuation or amplification of ground-based signals,98
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depending on the statical stability of the boundary layer flow. The characteristics of the99

perturbed acoustic modes such as phase velocities, attenuations, and wave structures in100

the (x, z)-plane are provided and discussed. In section V, the downstream attenuation is101

systematically evaluated in terms of dimensionless numbers that control the mountain flow102

dynamics. Importantly, it is found that in near-neutral conditions, the mountain wave103

dynamics can favor infrasound propagation above the mountain, mitigating the direct effect104

of the obstacle.105

II. Atmospheric mountain flow model106

A. Formalism107

Mountain waves, that occur when a stably stratified flow is forced by an obstacle, are108

often standing or nearly so, at least to the extent that the upstream environmental conditions109

are stationary. They can accompany Foehn wind conditions that are characterized by warm110

and dry downslope winds on the lee side of mountains37. In the present study, we use111

the mountain wave model developed by Lott29, which is adapted from Long27’s model to112

incoming shear flows that varies with altitude. Comparisons with nonlinear simulations13113

demonstrated that this model is well-suited for capturing realistic features of mountain flow114

dynamics.115

In the present study, the mean state consists of an isothermal atmosphere, at temper-116
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ature T0, in the presence of a background wind U(z) which is assumed to be in the shape of117

an hyperbolic tangent function. This representation is appropriate to describe the planetary118

boundary layers8;10 and can even be used to initialize mesoscale models35. Although such119

a profile can occur during strong stratification or above the lowest maximum of the wind120

speed32, there are many other semi-empirical models that adequately describe the wind121

shear. Here, the profile is used to mimic the incoming boundary layer, so that stationary122

gravity waves can be generated through interaction with the mountain, as observational123

evidence9;41 suggest. Specifically, the mean flow is given by124

T (z) = T0, U(z) = U0 tanh(z/δ), (1)

where δ is the boundary layer thickness, U0 denotes the maximum wind speed over the125

mountain, and z is the height, which is here typically smaller than 5 km. The thermodynamic126

sound speed c0 is given by c20 = γRT0, where γ is the ratio of specific heats and R is the127

specific gas constant for dry air. Hence, in an isothermal atmospheric boundary layer, the128

sound speed is constant. Using the ideal gas law and hydrostatic balance we know that in an129

isothermal atmosphere the background pressure and density vary as exp(−gz/RT0), and the130

background potential temperature θ is related to the Brunt-Väisälä frequency20 N through131

N2 =
g

θ

dθ

dz
=

γ − 1

γ

g2

RT0
, (2)

where g is the gravitational constant. Solving (2), we observe that θ varies as exp(N2z/g),132
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which provides the stratification needed for internal gravity waves to develop.133

Now, given this stratification (through N), it is conventional to neglect the vertical134

changes of background density for relatively small δ (typically less than 1 km). This is the135

classical Boussinesq approximation, that we can adopt here because our focus lies on the136

low level waveguide. Within the framework of the above hypothesis, and following previous137

works29, the vertical perturbation in the velocity is given by the (inverse) Fourier transform138

w′(x, z) =

∫

R

f(k)ŵc(k, z)e
ikx dk, (3)

where f(k) is an amplitude function that depends on the wavenumber k, and ŵc(k, z) is a139

canonical solution satisfying the Taylor-Goldstein equation140

d2ŵc

dz2
+

[

N2

U2
− Uzz

U
− k2

]

ŵc = 0, (4)

with the condition ŵc(k, z) ∼ e−λ(k)z, as z → ∞, and where the square-root function λ is141

defined by142

λ(k) =

[

k2 − N2

U2
0

]
1

2

. (5)

In order that the boundedness or outgoing-wave condition be satisfied as z → ∞, the branch143

cuts of λ are inserted such that we have ŵc(k, z) ∼ eiǫλ(k)z where ǫ = sign(k) is to ensure144

upward propagation for |k| < N/U0.145

The boundary condition at z → ∞ and the choice of branch cuts allow the solution of (4)146

to be expressed in terms of hypergeometric functions. A dynamically consistent horizontal147
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velocity field u′ can be obtained in spectral space using a polarization relation18. The148

amplitude f(k) is then determined through inversion of the “free-slip” nonlinear boundary149

condition150

w′(x, h(x)) = [U(h) + u′(x, h(x))]
dh

dx
, (6)

with the witch of Agnesi profile151

h(x) =
H

1 + x2

2L2

, (7)

where H is the ridge top height and L is a characteristic length scale. Application of the152

Fourier transform to (7) leads to ĥ(k) = HLe−k
√
2L/

√
2, which implies that the dominant153

horizontal wavelength is given by k = 1/
√
2L. In the following, this profile will be centred154

at x0 = 25 km and we will use h(x) instead of h(x− x0) for notational conciseness.155

To describe the flow response, it is also worthwhile to use the three dimensionless156

parameters157

J =
N2δ2

U2
0

, HN =
NH

U0

, and F =
NL

U0

. (8)

While the Richardson number J measures the background flow stability33;23, the other pa-158

rameters are related to the shape of the mountain. The parameter HN is a dimensionless159

mountain height that measures the degree of nonlinearity in the flow response39. The classi-160

cal Froude number F compares the advective time-scale to cross the ridge and the buoyancy161

oscillation time-scale. This last parameter measures the significance of non-hydrostatic ef-162

fects36. In the following we will fix N, U0 and L such that F = 10 ≫ 1, a value that163
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guarantees that no substantial trapped lee waves are forced. We will vary the boundary164

layer depth δ and/or the mountain height H .165

B. Effective sound speed disturbances166

Following Waxler44 we next use the effective sound speed approximation19, in which167

the component of the horizontal wind speed in the direction of propagation is added to the168

thermodynamic sound speed. For an isothermal atmosphere, with a varying background169

wind U , this approximation yields c(z) = c0 + U(z) and thus, ducting is only due to the170

change in altitude of U . Hence, in presence of temperature and wind fluctuations, the171

perturbed effective sound speed is given by172

c0

√

1 +
T ′

T0
+ U + u′. (9)

where the temperature and the horizontal wind perturbations, which are denoted by T ′ and173

u′, respectively, are obtained from the vertical velocity w′ using polarization relations18.174

In order to illustrate how mountain waves can perturb the background state, the moun-175

tain wave model described in section II.A is used with parameters that are representative176

of the lower troposphere. Here, and in the following, we consider a boundary layer flow at177

U0 = 10 m.s−1 in a stratified medium characterized by N =
√
2.10−2 s−1, and take L = 10 km178

to enforce F = 10. For illustrative purposes, the height of the mountain and the boundary179

layer thickness are fixed to H = 350 m and δ = 860 m, respectively. For these parameters,180
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Figure 1: (a) Temperature fluctuations T ′ and (b) horizontal wind fluctuations u′ resulting

from interaction between a mountain and an incoming boundary layer. The streamlines are

given by black lines superimposed to the wind fluctuations. The dimensionless parameters

used are HN = 0.5 and J = 1.5. The mountain is represented in gray.

we obtain J = 1.5, which corresponds to a moderately stable situation. Finally, the dimen-181

sionless value HN = 0.5 is sufficiently small to guarantee that the near-linear mountain flow182

theory applies and produces realistic downslope winds and Foehn.183

Figure 1a and 1b show the temperature and wind fluctuations produced by the mountain184

flow model, respectively. In figure 1a we observe that the strongest temperature anomaly is185

reached on the lee side, which is the “Foehn” effect. Figure 1b shows that the wind intensity186

on the lee side is larger than that on the windward side, which is characteristic of downslope187
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Figure 2: Effective sound speed field without (a,c) and with (b,d) interaction between a

mountain and an incoming boundary layer. The dimensionless parameters used areHN = 0.5

(a,b,c,d) and J = 1.5 (a,b) or J = 0.5 (c,d).

windstorms. The streamlines are represented in figure 1b to illustrate the so-called isentropic188

drawdown mechanism often used to explain Foehn. In this dry mechanism the Foehn results189

from warm air masses that slightly ascend on the windward side before descending abruptly190

on the leeward side. From Lott29 we know that this effect and the intensity of the downslope191

winds are not that strong for significantly smaller values of J .192

Figure 2 shows various effective sound speed fields that will be used in sections IV193
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and V. In figure 2a,c we just keep the incident waveguide unaltered and chopped it by the194

mountain height for J = 1.5 (figure 2a) and J = 0.5 (figure 2c). This is representative of the195

“mask” technique used in the literature2, and to which we will systematically compare our196

results to in the following. From figure 2a we can expect its effect to be substantial since197

this mask potentially excludes from trapping all the waves with phase speed between around198

336 m.s−1 and 339 m.s−1. This exclusion is not as strong when the mountain wave field is199

included as figure 2b shows, and indeed the effective sound speed “follows” the ground as200

the air passes over the mountain (see, for instance, isoline c = 336 m.s−1). Nevertheless,201

it is clear that even in this case, the depth of the lower atmospheric duct substantially202

decreases as we move from the upstream side of the mountain to its top. This shrinking also203

manifests on the lee side, before that the flow reaches an abrupt expansion at around mid-204

slope to return to its upstream depth. Hence, for lower altitudes, these two effects produce205

a waveguide contraction as the flow passes over the mountain. Far above the mountain, the206

disturbances take the form of gravity waves that propagate upward. In the effective sound207

speed approximation framework, these gravity waves may be regarded as several acoustic208

waveguides in which relatively low-frequency acoustic waves can potentially propagate.209

It is worthwhile noting that both the distorsion of the low level waveguide and the210

mountain wave field are not as intense for less stable situations (e.g. J = 0.5, figure 2d).211

This is consistent with the fact that large values of J favor downslope winds and Foehn.212
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Comparison with the “mask” technique (figures 2c,d) demonstrates that for J = 0.5 the213

lowest effective sound speed isoline follows the global curvature of the terrain, instead of214

being chopped by the mountain. As discussed in section IV, this effect helps infrasound215

signals to travel across the hill.216

III. Acoustic propagation in range-dependent media217

A. Normal mode approach218

The approach follows the formulation of the initial-value problem adopted by Bertin et219

al.6, among others, for range-dependent environments. Assuming that the modes couple220

adiabatically24, the solution for the Fourier transform p̃(z; x, ω) of the infrasound pressure221

fluctuations can be written as222

p̃(z; x, ω) ∼
∑

j

aj(ω)φj(z; x, ω)
√

kj(x, ω)
eiθj(x,ω), (10)

where φj, kj, aj and θj are respectively the jth mode function, the corresponding modal223

wave number, amplitude and phase function. For a localized point-source at x = z = 0 that224

emits a signal s(t) we simply have aj(ω) = φj(0; 0, ω), and the pressure fluctuation reads as225

p(z; x, t) =
1

2π

∫ ∞

−∞
s̃(ω)p̃(z; x, ω)e−iωt dω, (11)

where s̃(ω) is the Fourier transform of s(t). For convenience, we denote the derivative of226

θj(x, ω) by kj(x, ω) and the frequency dependence is dropped for conciseness. Physically kj227

is the local (acoustic) wavenumber and the local phase speed is given by cj = ω/kj.228
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It is worth noting that the pressure fluctuation can generally be decomposed into prop-229

agating modes (along the x-axis direction) and evanescent modes, for which the imaginary230

part of θj is positive. Far downstream of the acoustic point-source, at a distance large231

compared to the wavelength, the evanescent modes are negligible and (10) is the correct232

expression to consider.233

Substitution of (10) into the classical Helmholtz equation gives, to order unity,234

∂2φj

∂z2
+

[

ω2

c2
− k2

j

]

φj = 0, (12)

with the Neumann boundary condition expressing that the derivative of φj at z = h(x) van-235

ishes. For unbounded boundary layers, (12) must be supplemented by requiring a bounded-236

ness or outgoing-wave condition as z → ∞. The solution of (12) then becomes p ∼ e−µ∞z as237

z → ∞, with the square-root function238

µ∞(k) =

[

k2 − ω2

c2∞

]
1

2

, (13)

and c∞ denotes the effective sound speed in the limit z → ∞. The function (13) depends239

on the variable k. Thus in the complex k-plane the branch cuts are to be inserted such that240

−π/2 < arg(µ∞) ≤ π/2. This choice of the branch cuts assures that as z → ∞ the solution241

of (12) either goes to zero or represents an outgoing wave for all values of k in the complex242

plane.243

The branch cuts extend from the branch points k = ω/c∞ and k = −ω/c∞ to infinity in244
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the complex k-plane. Over the initial region, far upstream of the mountain, the gravity wave245

field vanishes and we have c∞ = c0 + U0, whereas at ground-level the effective sound speed246

reaches its minimum c(0, 0) = c0. For a right-propagating wave the condition of trapping247

therefore imposes that the initial eigenvalues kj lie initially along the interval c0 < ω/k <248

c0+U0. As each mode propagates downstream both the vertical sound speed profile and the249

branch points ω/c∞(x) vary, and the local eigenvalues kj(x) slowly adapts to these changes.250

In this process, the phase velocity of some acoustic modes eventually becomes larger than251

c∞ and the associated trajectories terminate at a branch cut. Since it is not allowed to cross252

the branch cut it is therefore not possible to continue the eigensolution downstream of this253

point (and still satisfy the boundedness condition as z → ∞). Therefore the corresponding254

modes are simply suppressed from the expansion (10).255

In this work, the eigenfunctions and eigenvalues of (12) are calculated at a discrete set256

of ranges x = xn using the finite difference scheme used by Waxler et al.48, among others.257

The eigenvalues are obtained using a QR decomposition for x = 0 and, for other ranges, the258

eigenvalues are tracked by using an iterative approach.259

Since eigenfunctions are determined only up to a multiplicative constant, for definiteness260

we impose the normalization condition24
261

∫ ∞

hn

φ2
j(xn, z) dz = 1, (14)
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Figure 3: Eigenfunctions |φj| as functions of x and z for the first three modes (from left

to right), and for a fixed frequency of 2.8125 Hz. The background state is computed for

HN = 0.5 and J = 1.5 (cf. figure 2b). (a) j = 1, (b) j = 2 and (c) j = 3.

where hn = h(xn), together with the orthogonality condition262

∫ ∞

hn

φj(xn, z)φl(xn+1, z) dz = δjl. (15)

Anticipating the presence of upper level waveguides, the upper bound of integrals (14)263

and (15) was set to a sufficiently large value ztop and the effective sound speed profile264

c(xn, z) was smoothly continued to higher altitudes when necessary. To assess the validity of265

the numerical results, it has been checked that the eigenvalues were not sensitive to changes266

in ztop, or to the choice of the continuation of c(xn, z) above ztop.267

For illustrative purposes, figure 3 shows the eigenfunctions of the first three modes as x268

increases along the source-receiver path, for a fixed frequency ω0 = 2π× 2.8125 rad.s−1. For269
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this frequency, these modes carry the dominant part of sound intensity over long distances270

and the expansion (10) can be truncated to j ≤ 3, as discussed by Bertin et al.6. The first271

mode (figure 3a) is weakly sensitive to changes of the atmospheric flow as x varies. The272

other two modes in figures 3b,c are clearly affected by the presence of gravity waves and273

indeed, ground-based attenuation is clearly visible in the vicinity of the ridge top elevation.274

Furthermore, figure 3c shows that the presence of mountain waves aloft allows the modes to275

be trapped in an upper duct. This result is discussed further in section IV.276

B. WKB treatment of the low-level waveguide277

To distinguish the effect due to the boundary layer shrinking from that due to the278

mountain wave at upper levels, and to gain insight onto the behavior of the trapped modes,279

we have obtained solutions to (12) using the following profile of effective sound speed280

c(z) = c0 + c1 tanh
[

z/δ
]

, (16)

and the WKB approximation of (12). In (16) the parameters c0, c1 and δ̄ are chosen to281

minimize the integrated squared error between c and c̄ over the domain h < z < zmax,282

where zmax is the depth of the low level waveguide, e.g. the lowest altitude such that283

dc

dz
(zmax) = 0. (17)

This definition ensures that the mountain wave is filtered out from the sound speed field and284

that the resulting waveguide width zmax varies slowly in the flow direction, as required by285
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the classical asymptotic methods for modeling infrasound propagation24.286

For fixed x, the filtered effective sound speed c̄ in (16) is a strictly decreasing function287

of height and thus, ω2/c̄2−k2 is a continuous function which involves a single turning point5288

at z = z0(k). This choice allows us to use the Langer’s formula26 to build the uniformly289

valid WKB approximation290

φ̄(z) = 2
√
πC

[

3

2

S0(z)

µ3(z)

]
1

6

Ai

{

[

3

2
S0(z)

]
2

3

}

, (18)

where Ai is the Airy function, and where the phase is given by291

S0(z) =

∫ z

z0

µ(s) ds, (19)

and the turning point z0 is the unique root of µ(z0) = 0, where292

µ(z) =

[

k2 − ω2

c̄2(z)

]
1

2

. (20)

To ensure that the boundary condition at z → ∞ is satisfied, the branch cuts are defined293

as for the function (13). Hence, using the leading asymptotic behavior of the Airy function294

for large z, (18) may be approximated by φ̄ ∼ C
√
µe−S0, which is the leading order of295

the classical WKB approximation and the constant C is determined by the normalization296

condition (14). It is important to point out at this time that this normalization condition297

plays a central role, especially when estimating the ground-based pressure φ̄j/
√

kj as x298

varies. In many cases, it can easily be verified that the closer to the ground the turning299

point is located, the greater the amplitude of the pressure field at ground level.300
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Below the turning point, the path of integration must be deformed such that the square-301

root function is continued into µ2 = −µ2eiπ for z < z0. On substituting this into (19), we302

note that S
2/3
0 is large and negative, and (18) can be simplified for z ≪ z0 by using the303

asymptotic behavior of the Airy function for negative argument1. To leading order, (18)304

may then be written as305

φ̄(z) ∼ 2C
[

−µ2(z)
]− 1

4 cos

{
∫ z0

z

[

−µ2(s)
]

1

2 ds− π

4

}

. (21)

Now for z = h, on account of the (Neumann) boundary condition φ̄z(h) = 0, we obtain the306

constraint307

∫ z0(k)

h

√

−µ2(s) ds =
π

4
+ jπ, (22)

where j is a nonnegative integer. Since µ2 depends on k, it appears that (22) determines the308

approximate value of kj. In other words (22) defines the local dispersion relation where the309

streamwise station x only appears as a parameter (which is not specified here for conciseness).310

As an additional bonus, equation (22) may be used to evaluate the effect of either311

downslope winds or mountain height on the local wavenumber. Upon totally differentiating312

the implicit function (22) for fixed ω, and equating to zero, we obtain313

dk

dx
= −

∫ z0

h

ω2c̄x

c̄3
√

−µ2
ds+

dh

dx

√

−µ2(h)

∫ z0

h

k
√

−µ2
ds

, (23)

Where the terms of this ratio are the derivatives of (22) with respect to k and x and c̄x is the314
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derivative of c̄ with respect to x. Similarly, we use the notations kx and hx for the derivatives315

of k and h with respect to x, respectively. Application of (23) for c̄x > 0 and hx > 0 leads316

to kx < 0. This means that the phase speed ω/k increases as the flow speeds up or when h317

increases.318

IV. Impact of mountain waves on the normal modes319

In order to obtain the pressure signal from (10), the modal wave numbers kj, or equiva-320

lently the phase velocities cj = ω/kj are required. For range-dependent environments, these321

quantities are obtained as functions of ω and x either by solving (12) numerically or by using322

the WKB approximation, as described in section III.B. Figure 4 show contours of the phase323

velocity in the (ω, x)-plane for the first three modes [j ≤ 3 in (10)] and the two effective324

sound speed fields considered in figures 2a and 2b. In figures 4a,b,c the numerically obtained325

results are represented in colors, when the mountain “mask” is applied, and the black curves326

give the corresponding WKB values. Figures 4d,e,f show the results obtained when the327

mountain flow dynamics is considered. Two important curves are also plotted as red and328

blue curves. These curves are obtained for each eigenvalue by decreasing ω, the location x329

being fixed. Starting from an initial value, the phase velocity cj increases up to the maxi-330

mum sound speed cmax as ω decreases. This behavior allows to identify the so-called cut-off331

frequency of the low-level waveguide, for which we have cj(x, ω) = c(x, zmax), and which332

is referred to as ω+
j (x) in the following (blue curve). For ω = ω+ the eigenvalue obtained333



Damiens, Millet and Lott, J. Acoust. Soc. Am., p. 23

(a)

0 2 4 6
f (Hz)

10

20

30

40

50

x
(k
m
)

(b)

0 2 4 6
f (Hz)

10

20

30

40

50

x
(k
m
)

(c)

0 2 4 6
f (Hz)

10

20

30

40

50

x
(k
m
)

(d)

0 2 4 6
f (Hz)

10

20

30

40

50

x
(k
m
)

(e)

0 2 4 6
f (Hz)

10

20

30

40

50

x
(k
m
)

(f)

0 2 4 6
f (Hz)

10

20

30

40

50

x
(k
m
)

340 341 342 343 344 345
Phase velocity (m.s−1)

Figure 4: Phase velocity cj for the first three modes (from top to bottom) as a function of

streamwise location and frequency, for HN = 0.5 and J = 1.5. (a,d) j = 1; (b,e) j = 2; (c,f)

j = 3. The results obtained by applying a “mask” onto the effective sound speed field are

given on the left (a-c). The figures on the right (d-f) show the impact of mountain wave

dynamics. Black, red and blue curves give the WKB prediction and the cut-off frequencies

ω− and ω+ as defined in section IV.
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from (22) crosses a branch cut of (13) and thus, the WKB approximation fails to give a334

result for ω < ω+(x). Physically this condition may be interpreted as the requirement that335

the mode is not to be trapped in the low level duct. On the other hand the eigenvalue can be336

computed directly from (12) for lower frequencies, so that the eigenvalue reaches a terminal337

value for which we have cj(x, ω) = cmax(x). This value is referred to as ω−
j (x) (red curve).338

It turns out that ω− is not defined when considering the “mask” effect alone (figures 4a,b,c),339

essentially because in this case we have a single waveguide. Therefore, when mountain waves340

are present (figures 4d,e,f), the region ω−
j < ω < ω+

j corresponds to frequencies for which341

the eigenfunction φj penetrates up to the moutain wave field and can be confined within342

an upper level waveguide, as depicted in figure 3c for x lying in the range 25-35 km. This343

is an indication that at sufficiently low frequencies strong interaction between modes and344

mountain waves may occur.345

As detailed in section III.A, a mode is not allowed to cross the branch cut, a situation346

that occurs for ω < ω−(x). The basic problem here is that as soon as the phase velocity of347

the locally wave solution becomes larger than the maximum effective sound speed, it is not348

possible to find a solution that remains bounded in the limit z → ∞. Within the framework349

of slowly varying media, this condition translates into aj(ω) = 0 for ω < ω−(0). Physically350

this condition may be interpreted as the requirement that the mode does not propagate351

along the source-receiver path, for x > 0. The corresponding regions in the (ω, x) plane are352
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represented by blank areas in figures 4d,e.353

For fixed but quite high frequencies (greater than 1 Hz typically), the phase velocity354

of the first mode, which is also the slowest mode (figure 4a,d), increases as we approach355

the ridge before decreasing in the lee side. Although this effect is less strong in presence of356

moutain flow, this behavior can be captured qualitatively using the “mask” technique and the357

WKB approximation. In fact this mode, which is confined in the vicinity of the ground, find358

its way through the ridge, even when the waveguide is substantially shrinked by mountain359

wave dynamics (figure 4d) or chopped by the ridge (figure 4a). The excellent agreement360

with the WKB approximation suggests that the mode essentially adjusts to the vertical361

shrinking of the waveguide, the increasing in its phase velocity being correctly predicted by362

equation (23) with c̄x = 0. For lower frequencies (less than 1 Hz), the discrepancies between363

the results obtained with the “mask” technique and the mountain flow are more pronounced,364

and essentially occur in the region where the low level duct fails to trap the modes, e.g. when365

lines of constant phase velocity intersect the blue curve. This is detailed in the following366

for the next two modes. For j = 1, we observe an overall agreement between the results367

obtained by solving (12) numerically or by using the WKB approximation. From a practical368

standpoint, this demonstrates that the interaction between infrasound and mountain flows369

can adequately be predicted at a low numerical cost, through finding the first maximum370

in the local effective sound celerity and using the WKB approximation. This approach,371
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however, is justified only if we can neglect the contribution of other modes (j > 1).372

In computing the phase velocity for the other modes (j > 1), we observe that the373

mask technique fails in predicting important changes. Primarily, figures 4b,c show that the374

cut-off frequency ω+ substantially increases as we approach the ridge top, and reaches its375

maximum at x0 = 25km. As discussed in section III.A, when the condition ω < ω+(x0)376

is satisfied downstream x0, the mode is simply suppressed. In presence of mountain waves377

(figures 4e,f) the low level waveguide is extremely shrinked, and the penetration of ω+(x)378

into the (ω, x)-plane is very pronounced. This effect is essentially due to Foehn, which379

shifts the maximum cutt-off frequency ω+(x) on the leeward side of the ridge, at a distance380

of approximately 30 km (figure 4e,f). Hence, immediately downstream this location, the381

mode obtained with the one-turning-point WKB approximation (i.e. when mountain waves382

are filtered out) must be suppressed, as shown in figures 4e,f. This is not the case when383

mountain waves are considered and indeed, the fact that the mode remains propagating in384

the horizontal direction for x > x0 is essentially due to the emergence of multiple possible385

upper ducts above the mountain. For j = 2, we even see that the cut-off frequency of the386

upper duct ω− decreases as we pass over the ridge and thus, the contribution of the mode387

has to be maintained in (10). This finding is in strong contrast with that obtained using the388

“mask” technique. On the other hand, and for j = 3, figure 4f shows that ω− increases as we389

move closer to the ridge. This means that the mountain wave pattern failed in ducting the390
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mode that escapes from the low-level duct. Finally it is important to notice that for smaller391

values of J (HN being constant), the boundary layer tends to follows the global curvature392

of the terrain, thereby yielding a significant number of modes to travel over the mountain,393

whereas the upper bound ω+ obtained with the “mask” technique penetrates much more394

into the (ω, x)-plane.395

Figure 5 shows the sound intensity |φj/
√

kj | at ground level z = h(x), as a function of x396

and ω, for the first three modes. The magnitude of the contours are labelled in decibel, with397

a reference sound intensity computed at x = 0. Results are given for the two effective sound398

speed profiles defined above and depicted in figures 2a,b. The contours in color are for the399

results obtained by solving numerically (12), and the black curves give the one-turning-point400

WKB approximation. Red curves and blue curves represent the cut-off frequencies ω−
j and401

ω+
j , as in figure 4. Figures 5d,e,f, essentially show strong attenuation in the region ω−

j < ω <402

ω+
j . These attenuations are due to strong interactions between the acoustic waves and the403

mountain waves, the latter creating new acoustic waveguides at higher altitudes, as discussed404

previously. The energy leaks that follow the tunneling effect for sound waves (cf. figure 3b,c)405

and the standard requirement that the integral of φ2
j is fixed to one [condition (14)], lead406

to strong attenuations at ground level. These attenuations are more pronounced for higher407

indices, simply because the corresponding turning points, at x = 0, are closer to zmax.408

Since the phase velocity adapts to the local environment encountered by the sound wave,409
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Figure 5: Ground-based sound intensity |φj/
√

kj| for the first three modes as a function of

streamwise location and frequency, for HN = 0.5 and J = 1.5. (a,d) j = 1; (b,e) j = 2;

(c,f) j = 3. The WKB prediction is superimposed in black contours. Red and blue curves

correspond of those of figure 4.

the highest modes are more likely to leave the low-level waveguide.410

While the ground-based attenuation of sound intensity can be qualitatively understood411

when the mode shifts to upper-level waveguides (for ω−
j < ω < ω+

j ), it is less clear why412
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it occurs when the waveguide shrinks, as figures 5a,b,c show for ω > ω+. This behavior413

appears to contradict the normalization requirement, which a priori results in surface am-414

plifications rather than surface attenuations. However, using the WKB approximation, the415

apparent contradiction is resolved by the recognition that the proper measure of the size of416

the dispersive region, z0 − h is always smaller than its value at x = 0. Based on the above417

discussions, clearly the surface attenuation is a combination of the emergence of upper-level418

waveguides as well as depth reduction of the low-level waveguide.419

V. Impact of mountain waves on signals420

In the previous section we have seen how the normal modes, in which the structure421

over the whole (ω, x)-plane can be delineated, are attenuated by mountain waves, and we422

have given a general condition by which this interaction can be characterized, in terms of the423

cut-off frequencies ω− and ω+. To measure the extent to which these effects are significant424

when the sources of infrasound are localized in both space and time, we next calculate425

ground-based waveforms, using the FFT algorithm7. A source function is introduced in the426

form427

s(t) = Ke−
t−T0
σ2 cos(2πfct), (24)

where T0 = 10 s, fc = 3 Hz and σ = 1/5. The parameters are adjusted such that the428

maximum frequency is 6 Hz, with a leading frequency of 3 Hz. K is a suitable coefficient429

that yields a normalized pulse. This source transfers most of its energy onto the first three430
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modes [j ≤ 3 in (10)] which are the modes of greatest contribution when the frequency431

is relatively low. For this reason, the modal expansion is truncated to these modes in the432

following.433

The normalization of signals obtained for different locations downstream the mountain434

is fixed so that the amplitudes can be compared to each other. The global effect of the435

mountain can be summarized by means of the attenuation436

1− I(x)

I0(x)
, (25)

where the sound intensity at ground level (z = h) is defined as437

I(x) =

∫ ∞

0

[p(h; x, t)]2 dt, (26)

where the waveform p(h; x; t) is obtained from (11) and (10), with j ≤ 3, and by solving438

the Helmholtz equation (12) numerically. Here I0 is a reference sound intensity obtained439

by taking x = 0 in (26). This choice allows the results to be compared with the classical440

mountain-free range-independent case (i.e. when the effective sound speed is given by c0 +441

U(z)), which is used in the infrasound research community.442

In this section, we proceed systematically and vary the Richardson number between443

0.25 and 2 and the non-dimensional mountain height HN between 0.2 and 0.8. As discussed444

in section IV, the sound speed modifications are intimately linked to the mountain flow445

situations. To measure the downslope wind amplitude and Foehn, and following Lott29, we446



Damiens, Millet and Lott, J. Acoust. Soc. Am., p. 31

use447

A = max
2z<HN

0<x<2F

[

u′(x, z)

U(H)

]

, (27)

which is the maximum of the ratio between the horizontal wind disturbance along the foothill448

and the background wind at the top of the hill. Typically, when A approaches and exceeds 1,449

the dynamics induces wind amplitudes that are either equal to or exceed the amplitude of450

the winds at the summit of the ridge. In other words, the flow speeds up along the ridge,451

and this occurs easily for J > 1.452

Before proceeding systematically we present here three cases that illustrate the general453

results that will conclude the paper. Case I is defined by δ = 600 m and H = 250 m,454

which corresponds to a relatively small mountain and a pronounced shear. In terms of455

dimensionless parameters, we have J = 0.75 and HN = 0.3 so that the downslope wind456

amplitude is A = 0.75. Case II is associated with a larger depth δ = 1 km and a higher457

mountain H = 600 m. The corresponding dimensionless parameters are given by J = 2 and458

HN = 0.8 so that A = 3, which reflects intense downslope winds. In order to estimate the459

role of stability, we keep HN = 0.8 and consider a much less stable flow with a Richardson460

number J = 0.3, as a third Case III. This last case corresponds to a situation for which we461

have H/δ = HN/
√
J ≃ 1.5 and thus, we can expect that most of the modes are obstructed462

by the mountain when the “mask” technique is used.463

The resulting acoustic signals associated with cases I, II and III are shown in figure 6464



Damiens, Millet and Lott, J. Acoust. Soc. Am., p. 32

3 4 5 6
t− x/c0 (s)

25

30

35

40

45

x
(k
m
)

(a)

3 4 5 6
t− x/c0 (s)

25

30

35

40

45

x
(k
m
)

(b)

3 4 5 6
t− x/c0 (s)

25

30

35

40

45

x
(k
m
)

(c)

Figure 6: Waveforms obtained for cases I (a), II (b) and III (c) as functions of the retarded

time t − x/c0 without (blue) and with (red) interaction between the mountain and the

boundary layer. The signals obtained for an unperturbed range-independent case (without

mountain and mask) are plotted in gray, for reference. Case I: J = 0.75 and HN = 0.3; case

II: J = 2 and HN = 0.8; case III: J = 0.3 and HN = 0.8. The source is defined by (24).

for different locations downstream the mountain. The blue and red colors correspond to465

waveforms computed by applying the “mask” technique and by solving mountain flow dy-466

namics, respectively. Waveforms obtained for the unperturbed range-independent profile467

c0 + U(z) are plotted in gray. The envelope of signals is plotted in thinner line, using the468

Hilbert transform. Figure 6 shows evidence that the interaction between the mountain flow469
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and the acoustic wave may give rise to attenuation or amplification of ground-based signals,470

depending on the Richardson number. While the impact of the mountain on the ground-471

based signals is moderate for Case I (figure 6a), for which the attenuation does not exceed472

13%, Case II (figure 6b) gives rise to attenuations as large as 48% at x = 40 km. This473

attenuation is mainly due to the fact that the first mode is no longer trapped in the low level474

waveguide and thus, a large part of the energy is lost at higher altitudes through interac-475

tions with mountain waves. On the other hand, case III (figure 6c) shows that the mountain476

wave dynamics may favor the passage of acoustic waves, mitigating the “mask” effect. The477

essential constrast with Case II is that, despite a strong reduction of its height, the incoming478

waveguide slips over the mountain rather than being destroyed over the winward side. The479

acoustic path then follows the global curvature of the terrain and the sound intensity is 80%480

larger than that obtained with the “mask” technique.481

As discussed above, the signals obtained for the three cases considered in figure 6 do482

not cover all situations. In order to estimate how the mountain wave dynamics impacts the483

infrasound measurement, the ground-based attenuations (25) are first computed as functions484

of x, and then averaged over two intervals x0 < x < x1 and x1 < x < x2, with x0 = 25 km,485

x1 = 40 km and x2 = 50 km. The process is repeated for different values of J and HN486

so as to obtain a complete portrait of averaged attenuations in time domain. Figures 7487

and 8 show typical results for the first and second intervals, respectively. The first interval488
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Figure 7: Far-field averaged attenuation downstream the mountain, in the range 25− 40 km

as a function of J and HN with mountain wave disturbances (a) and the “mask” effect alone

(b). The downslope wind amplitude A is given by black and white contours.

x0 < x < x1 is adopted here to quantify the infrasound attenuation on the leeward flank489

of the ridge. Firstly, figure 7a shows that the mountain flow produces larger attenuations490

than that obtained with the “mask” technique (in figure 7b). Furthermore, even though491

the shrinking of the waveguide by the Foehn produces strong attenuations (A is almost492

everywhere larger than 1), a significant fraction of the attenuation is indeed associated493
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with sound propagation within upper level waveguides, through local adjustments of few494

normal modes, as discussed in length in section IV. This is typically the case for relatively495

large J (J > 1.5) and small HN , in the range 0.2 < HN < 0.4. In this region the sound496

intensity on the lee-side flanck of the ridge is attenuated by a factor of 30% (figure 7a)497

and decreases down to about 20% far downstream (figure 8a). Secondly, comparisons of498

figures 7a and 7b show that at low Richardson numbers (J < 0.5) and for high mountains499

(0.6 < HN < 0.7) attenuation is mainly due to the “mask” effect, which produces a strong500

reduction of the waveguide height. The second interval is used to capture the far-field501

sound attenuation downstream the mountain without including the constructive/destructive502

interference effects associated with local changes of phases. In fact, at about two or three503

mountain half-widths downstream of the maximum height location, the modes recover their504

initial characteristics for x → ∞, unless they reach a branch cut as discussed in section II.A.505

Owing to these changes in the resulting modal expansion (10), a residual attenuation is506

expected far downstream the mountain. This attenuation is irreversible in the sense that the507

full set of eigenvalues at x = 0 is not recovered downstream the mountain. Comparison of508

figures 7a and 8a shows that this effect is apparent at relatively high Richardson numbers, in509

the top right corner of figure 7a. Finally, it is important to point out that another striking510

result here is that for large values of HN and narrow waveguides (small J), the mountain511

flow dynamics favor infrasound propagation, as discussed in section IV.512
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Figure 8: Far-field averaged attenuation, in the range 40− 50 km as a function of J and HN

with mountain wave disturbances (a) and the “mask” effect alone (b). The downslope wind

amplitude A is given by black and white contours.

VI. Conclusions513

In this paper, we have examined the propagation of sound within mountain flows.514

The mountain flow model is based on the integration of the linear inviscid Taylor-Goldstein515

equation, forced by a nonlinear surface boundary condition. To calculate infrasound signals,516
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we also used a range-dependent normal mode approach, which allows the decomposition of517

the acoustic pressure field into distinct normal modes. The basic assumption introduced in518

the present work is that the acoustic modes couple adiabatically, i. e. without any transfer519

of energy to higher or lower modes. Ground-based signals were computed using Fourier520

synthesis of frequency-domain solutions, for a given ground-based broadband acoustic source.521

The central result of this paper is that mountain wave dynamics may lead to strong522

attenuation or amplification of upcoming acoustic waves, regarding to the direct “mask”523

effect the mountain has on acoustic propagation. For a stable flow (J ≥ 1) the mountain524

wave dynamics produces large horizontal winds and buoyancy disturbances at low level that525

result in intense downslope winds and Foehn. When the downslope wind is less intense526

(J < 1), the flows can reinforce the acoustic waveguide over the mountain and lead to a527

signal of greater amplitude compared to that obtained by the “mask” effect. The acoustic528

waveguide is then strongly impacted which leads to a new kind of acoustic (reversible)529

absorption that can be related to local adjustments of few normal modes. It is worthwhile to530

point out here that acoustic absorption is mainly governed by the Richardson number, and531

more precisely by the critical value J ≃ 1, which is also a transition regime for mountain532

wave dynamics.533

In striking contrast to this local behavior of acoustic modes is the sound attenuation534

far downstream from the mountain. This second type of absorption is due to irreversible535
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processes that are intimately connected to leaking modes along the source-receiver path.536

While leaking modes are known to play a role in the transient waveform, the classical practice537

is to neglect the contributions from these modes at large horizontal distances from explosions538

in the atmosphere. This approach, however, ignores range-dependence of the environment.539

These modes may be “activated” by a point-source in the form of classical waveguide modes540

and then decay exponentially with increasing distances far downstream from the mountain,541

as a result of the atmospheric state evolution. In this way, the corresponding component542

involving these modes vanishes far downstream from the mountain. This results in absorption543

farther downstream from the mountain, even though the background state recovers its initial544

state (e.g. upstream from the mountain).545

The present work presents our current understanding of acoustic absorption due to546

mountain wave dynamics with emphasis upon a modal description of the acoustic field, in-547

cluding static stability effects. Though the present analysis does not answer all the questions548

regarding the complex phenomenon of absorption, it has shown how a range-dependent anal-549

ysis can provide some insight into the interaction of acoustic waves and mountain wave fields.550

Other aspects that may give rise to additional dissipation have not been fully explored, such551

as, interaction of infrasound waves with ground and turbulence. However, the mountain552

wave model used in this study cannot predict the turbulence associated with GW breaking,553

a process that occurs for small J . While a rough estimate of the complex impedance effect554
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gives an absorption of 1 % for the cases considered in this study, the role of turbulence is555

more complex to quantify. The main difficulty is that the adiabatic approximation ceases to556

apply when the turbulence correlation length and acoustic wavelength are of the same order557

of magnitude. Some preliminary calculations have been made by the authors for estimating558

far-field absorption, using the techniques described in this paper, but with mode couplings559

and complex imaginary part of the grounding impedance. The results show good agree-560

ment with that obtained in the present work, except for cases where fine-grained turbulence561

dominates.562

The present work is also related to the more general issue of incorporating unresolved563

GW variability in infrasound propagation calculations. Recent works25;21;14 suggest that the564

mismatch between simulated and observed signals is related to the fact that the atmospheric565

specifications used in most studies do not adequately represent internal gravity waves. In566

the Atmospheric General Circulation Models which are used to produce the atmospheric567

specifications, these GWs are represented by parameterizations and in return, these param-568

eterizations can be used to predict the GWs field used in infrasound studies. This is the569

approach followed by Drob et al.14, in which the global spectral scheme of Hines22 is used to570

estimate the effect of GWs on infrasound time arrivals. The interesting aspect of using the571

model proposed by Hines22 is that it allows obtaining GW fields that give rise to the right572

climate28.573
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