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Abstract5

This paper considers a class of low-order, range-dependent propagation models obtained6

from the normal mode decomposition of infrasounds in complex atmospheres. The classical7

normal mode method requires calculating eigenvalues for large matrices making the compu-8

tation expensive, even though some modes have little influence on the numerically obtained9

results. By decomposing atmospheric perturbations into a wavelet basis, it is shown that10

the most sensitive eigenvalues provide the best reduced model for infrasound propagation.11

These eigenvalues lie on specific curves in the complex plane that can be directly deduced12

from atmospheric data through a WKB approach. The computation cost can be reduced13

by computing the invariant subspace associated with the most sensitive eigenvalues. The14

reduction method is illustrated in the case of the Fukushima explosion (12 March 2011).15

The implicitly-restarted Arnoldi algorithm is used to compute the 3 most sensitive modes16

and the correct tropospheric arrival is found with a cost of 2 % of the total run time. The17

cost can be further reduced by using a stationary phase technique. Finally, it is shown that18

adding uncertainties triggers a stratospheric arrival even though the classical criteria, based19

on the ratio of stratospheric sound speed to that at ground level, is not satisfied.20
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I. Introduction21

The usual approach in studying infrasound propagation involves computing the acous-22

tic component superimposed to a given atmospheric state, which is classically obtained from23

global empirical models (Drob et al. 16 , Hedin et al. 20) as well as operational numerical24

weather prediction centers (e.g., NOAA global forecast system or ECMWF integrated fore-25

cast system). The justification of such an approach is questionable given that unresolved26

large-scale gravity waves, turbulence and matching conditions of the various available data27

may affect the waveforms in such a way that some arrivals may literally appear/disappear.28

While a significant amount of data has become available on the temperature and wind struc-29

ture of the atmosphere, it is not clear whether classical propagation techniques (ray tracing,30

PE method) are able to statistically capture the effects of small-scale uncertainties (Kulichkov31

et al. 25 , Chunchuzov et al. 13 , Hedlin et al. 21).32

The lack of knowledge concerning the atmosphere leads to consider the atmospheric33

structures as being generated by random gravity wave sources, an approach that was re-34

cently popularized by Drob et al. 17 . As far as statistics are concerned, the question of the35

computational cost is critical. According to the law of large numbers, the more runs we36

make, the closer the sample mean of the results should be to the true mean. This law, how-37

ever, does not describe how the convergence takes place. Indeed, the number of simulation38

runs necessary to attain a given confidence level depends on random atmospheric structures39
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and thus, a statistical analysis may be computationally expensive.40

This paper considers a class of low order propagation models obtained from the normal41

mode decomposition of infrasounds in complex atmospheres. While the ray theory cannot42

predict some important refracted paths (Waxler, Gilbert and Talmadge 41), the normal mode43

technique can be used to simulate signals within environments that cover a wide range of44

vertical scales. The complete acoustic field is constructed by summing up contributions45

of modes, which can be obtained by seeking the roots of the so-called dispersion relation.46

In most cases the poles are complex, and thereby requires the use of a two-dimensional47

search algorithm. In addition to the difficulties inherent in searching in two dimensions, it48

is important to point out that the wave equation in a finite domain has an infinite set of49

discrete eigenvalues and thus, the number of numerically obtained modes is proportional to50

the number of grid points used. Then, for a fixed number of grid points per wavelength,51

the numerical cost increases with the frequency. Subsequently, Waxler 39 has emphasized52

that the imaginary parts (the attenuation rates) can be obtained through a perturbative53

approach, by solving a fixed point equation with a Newton-like method. Such an approach,54

however, is restricted to poles that are close to the real axis. In this paper we are interested55

in the manner in which the modes provide the best reduced model (finding the dominant56

modes) and more generally we are interested in the behavior of the selected poles in the57

complex plane as the background atmospheric state is varied.58
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This work is an outgrowth of the authors’ effort to find the simplest mathematical59

model in order to estimate signal statistics. It is often the case that first-principles model-60

ing or system identification result in unnecessarily high-dimensional mathematical models.61

Model (order) reduction is about systematic approximation of such models. There are many62

advantages in working with models with low-dimensional state space since low-dimensional63

models are often easier to analyze and much faster to simulate. As pointed out by Antoulas 3
64

in his survey on reduction methods, we can identify two sets of methods which are currently65

in use, namely the SVD (Singular Value Decomposition) based methods and the moment66

matching methods.67

In fluid dynamics applications, SVD based methods are widely used, the most common68

approach being the Proper Orthogonal Decomposition (POD) method and its variants such69

as the BPOD (Balanced Proper Orthogonal Decomposition) (Rowley 34). POD methods70

are based on the Galerkin projection of the dynamical model on a subspace obtained with71

a SVD analysis of experimental or numerical datasets. It is known that only a few POD72

modes can summarize the flow organization in many cases (Delville et al. 15 , Galletti 18). It73

also appears that reduced-order models generally lose accuracy for flow parameters different74

from those used to generate the POD basis, even if a local improvement can be made with75

a sensitivity analysis of the modes (Hay 19). For control optimization problems, instead of76

using a POD basis, some authors directly use the global eigenmodes as a projection basis,77
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even if it appears that it does not show sufficient robustness (Barbagallo 5). For instance,78

the optimal growth in a separated boundary-layer flow can be studied with the sum of the79

non-normal global modes (that are the most sensitive to any flow perturbation) (Akervik 2).80

The other set of methods, the moment matching approach, is not commonly used for81

fluid dynamics model reduction and is mostly found in structural dynamics or circuit simu-82

lations. It consists in using Krylov subspace methods to get a low-order model that shows83

a good approximation of the transfer function, and more precisely of the first coefficients84

of its Laurent expansion (Bai 4 , Srinivasan Puri 36). Arnoldi and Lanczos algorithms that85

perform iterative projections on Krylov subspaces (Watkins 38) are modified in order to guide86

the reduction to the best approximation of the transfer function. Progress in other Krylov87

subspace techniques allow the reduction of a large variety of dynamical systems, including88

second-order systems (Salimbahrami 35) and nonlinear systems (Bai 4). With regards to the89

wave equation, it is easy to apply the Krylov-Arnoldi algorithm to compute a few of the90

smallest or largest modes of a large matrix obtained from the discretized problem. But there91

is no universal way in which the modes may be sorted, and indeed much of the emphasis92

in the present work is to show that the modes lie in the vicinity of regions in the complex93

plane, for each of which there are different features in the vertical sound speed profile.94

The paper is organized as follows: the derivation of the range-dependent normal-mode95

method is described in section 2. A sensitivity analysis is discussed in section 3 and it is shown96
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that, to a first approximation, the most sensitive modes to waveguide perturbations provide97

the best low-order reduced model for long-range infrasound propagation. In section 4, we use98

a WKB approach to find the most sensitive regions in the complex plane and an implicitly99

restarted Arnoldi procedure is used to obtain the most sensitive modes. We show that the100

contribution of each mode is confined to a narrow range of frequencies so that when the101

stationary phase method is limited to the first most sensitive mode, it gives a very good102

approximation of the waveform. We illustrate this in the case of the Fukushima explosion103

that was detected at the Japanese infrasound station I30JP (12 March 2011), located 243 km104

away from the source. Finally, in section 5, we show that adding stratospheric uncertainties105

may trigger a stratospheric arrival even though the classical criteria, based on the ratio of106

stratospheric sound speed to that at ground level, is not satisfied.107

II. Normal mode decomposition of the pressure field108

A. The mean atmosphere109

There is no consensus on how mean atmospheric specifications can be obtained from110

operational numerical weather predictions or atmospheric climate reanalysis. In this work,111

the wind and temperature profiles are extracted from the atmospheric database provided by112

the European Centre for Medium-Range Weather Forecasts (ECMWF). Following Millet et113

al. 30 , the profiles are obtained from the ERA-Interim and 91-level datasets for altitudes less114
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than 50 km and 80 km, respectively, and matched to statistical data for higher altitudes. The115

statistical data is obtained using empirical reference models, known as HWM-93 (Horizontal116

Wind Model) and MSIS-90 (Mass Spectrometer and Incoherent Radar Model). Although117

these models represent a compromise between the original data sources, they are known to118

present systematic differences, particularly near the mesopause (Hedin et al. 20).119

In this study, we consider the explosion of the Fukushima Daiichi nuclear power plant120

(suspected to be caused by hydrogen gas) that occurred on 12 March 2011. The recorded121

infrasound signal at the Japanese station I30JP is shown in figure 1 as well as the effective122

sound speed profiles. The profiles obtained from the 91-level dataset and the ERA-interim123

dataset are shown in figure 1, above the source and above the infrasound station I30JP.124

Recent simulations by Bertin et al. 9 have shown that the signal is composed of two arrivals:125

a strong tropospheric arrival, 12-13 minutes after the explosion, followed by a weaker strato-126

spheric ‘tail’. As part of their study, Bertin et al. 9 have suggested on numerical grounds127

that, due to the vertical profile between the source and the infrasound station, the amplitude128

of the first arrival can change by several orders of magnitude. It is therefore reasonable to129

conclude that the range-independent assumption breaks down for this tropospheric arrival,130

even though the waveform shape does not seem to be affected. In the present work, due to131

its strong dependence to the sound speed profile, we will first focus on the first arrival using132

a range-dependent approach.133
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It is not clear how small changes in the profile along the source-to-receiver path affect134

the infrasound propagation. The atmosphere is usually described as a thin layer of fluid in135

which any vertical structure has its counterpart in the horizontal direction. Following the136

method of multiple scales, the effective sound speed may be represented analytically in the137

form of the function c(z, ǫr), where r and z are the distance from the source and altitude,138

respectively. Numerically, ǫ is a small parameter that can be interpreted either as a measure139

of a ‘slow’ coordinate ǫr (Bender and Orszag 8) or a perturbation of a given profile. The first140

order Taylor series expansion of c about ǫ = 0 can be written as141

c(z, ǫr) ≃ c0(z) + ǫc1(z), (1)

where c0(z) = c(z, 0) is the profile above the source. Hence, the degree of horizontal inho-142

mogeneity of the atmosphere can be considered as a perturbation. Here, ǫ will be deemed a143

small parameter and will be used as such later.144

B. The vertical structure equation145

As our starting point, we use the wave equation in cylindrical coordinates (r, θ, z).146

The acoustic wave is assumed to be initiated by a ground-based localized excitation of147

frequency ω.148

The most elementary approach consists in entirely neglecting the horizontal variability149

of the medium: if the atmosphere is considered as uniform in the horizontal direction, the150
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vertical structure φ(z) of the pressure field satisfies the Helmholtz equation151

d2φ

dz2
+

[

ω2

c2(z)
− k2

]

φ = −δ(z)

2π
, (2)

which, for unbounded atmospheres, requires a boundedness condition as z → ∞. In the152

above equation c(z) is the effective sound speed, k is the horizontal wavenumber and δ is153

the Dirac delta function which mimics a point source at z = 0.154

In the present work, we use the effective sound speed approximation and substitute the155

moving fluid by a motionless fluid with the effective sound speed, as proposed by Rayleigh 33 .156

The density effect can easily be considered by defining φ = p/
√
ρ̄, where p and ρ̄ are the157

pressure and the mean density, respectively. This transformation allows to reduce the original158

Helmholtz equation to the normal mode equation (2), provided the acoustic wavelength is159

not too large. Indeed, upon substituting φ into the original Helmholtz equation when the160

density depends on altitude, we obtain an aditional term 1
4
φH−2, where H is the atmospheric161

height scale. This term, however, can be neglected for frequencies larger than 0.1 Hz and162

the pressure field can readily be obtained from p = φ
√
ρ̄.163

The solution of (2) is, within a constant of proportionality, the Green’s function of the164

wave equation. Following the classical approach (e.g. Jensen et al. 23), the spatial part p of165

the wave field can be obtained from the discrete-spectrum contribution, which is composed166



Bertin, Millet and Bouche, J. of the Acoustical Society of America, p. 11

of the sum of the residues evaluated at the (simple) roots of the dispersion relation D(k, ω)167

p(r, z;ω) =
i

2

N
∑

j=0

φj(z;ω)φj(0;ω)

∂kD(kj(ω), ω)
kj(ω)H

(1)
0 (kj(ω)r), (3)

where H
(1)
0 is the Hankel function of the first kind (Abramowitz and Stegun 1) and φj is the168

eigenfunction associated with the spatial eigenvalue kj(ω). Equation (3) can be simplified169

by properly scaling φj. Taking170

∫

∞

0

φ2
j(z;ω) dz = 1, (4)

a straightforward calculation (Jensen et al. 23) gives ∂kD(kj, ω) = 2kj(ω) so that the pressure171

field at ground level (z = 0) reads172

p(r, 0;ω) =
i

4

N
∑

j=0

φ2
j(0;ω)H

(1)
0 (kj(ω)r), (5)

whereN is the number of modes involved in waveguide propagation. Here we followWaxler 39
173

and use the approximation
√

ρ̄(0) = 1 in the calculation of ground-based signals. Note that,174

for unbounded atmospheres, φj is in general non-analytic in k and the spatial part p(r, z;ω)175

involves a continuous-spectrum contribution that arises from the integral along the branch176

cuts. In practice, however, this contribution can be neglected, provided we are sufficiently177

far from the source (Waxler 40,39).178

The poles are readily identified as the zeroes of D(k, ω), i.e. the spatial eigenvalues179

kj(ω). Zeroes of D(k, ω) may also be sought in terms of temporal eigenvalues ωj(k) when180

the wavenumber is assumed to be real. In this work, we use a boundary value (or implicit)181
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method for solving the eigenvalue problem. The wave equation (2) is reduced to a linear182

algebraic equation using a pseudo-spectral technique (Candelier et al. 12,11). The global183

eigenvalues are obtained by applying a QR algorithm to the generalized eigenvalue problem.184

While care must be taken to preclude spurious eigenvalues, it is worth mentioning that185

such an approach can be applied to problems in which the eigenvalue appears nonlinearly186

(Bridges and Morris 10) so that the absorption can be considered within the same numerical187

framework.188

The leading behaviour of the temporal response is then obtained by applying the inverse189

Fourier transform to (5) to obtain190

p(r, 0; t) ∼ i

8π

N
∑

j=0

∫

F

φ2
j(0;ω)H

(1)
0 (kj(ω)r)e

−iωt dω, (6)

where the integration is performed along the path F in the complex ω-plane. One recognizes191

in expression (6) a wave packet composed of freely evolving spatial modes generated by a192

localized pulsed disturbance, at r = 0. The contour cannot be chosen arbitrarily since both193

the convergence of (6) and the causality condition, p(r, z; t) = 0 for t < 0, should be ensured.194

As pointed out by Batchelor et al. 22 , the contour F has to be chosen to lie above all temporal195

eigenvalues ωj(k) as k travels along the real axis. Thus, to avoid confusion, the frequency196

parameter ω is treated as a Fourier-Laplace transform variable, ω = ωr + iωi, with a small197

positive imaginary part ωi ≪ 1. For this reason, the eigenvalues kj(ω) lie in the upper half198

of the complex k-plane, as shown in figure 2. Note that in figure 2, we introduce the phase199
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velocity cr = ωr/kr, where kr is the real part of k.200

Further insight into the nature of the modes can be gained by examining the manner201

in which they evolve along some path in the complex ω-plane. For a fixed, real ω, the202

problem (2) on a finite domain is self-adjoint and thus, it has a discrete spectrum of the203

form k1 < k2 < . . . < kN and every eigenspace is one-dimensional. These eigenvalues are204

real-valued wavenumbers of the guided-wave modes of the medium. For a complex frequency,205

the eigenvalues kj(ω) are continued in the complex k-plane: the larger the imaginary part206

of ω the stronger the attenuation (given by the imaginary part of k) of the guided-wave207

modes. The reason that these modes are decaying along the r-direction is directly tied208

to the causality requirement which forces the F -contour to be placed above the real axis.209

Thus, even though a medium would support growing (i.e. unstable) responses, its localized210

excitation by a source that grows sufficiently fast in time produce only decaying responses211

in space. In addition, the decaying rate depends on vertical inhomogeneities covered by212

the corresponding eigenfunction. A very interesting aspect of using a complex frequency is213

that the imaginary parts of eigenvalues kj(ω) may be arranged so that the modes can be214

associated with specific regions in the atmosphere and thus, the problem can be projected215

onto the invariant subspace corresponding to a subset of these modes.216

C. Normal modes for range-dependent atmospheres217

Most environments of interest are spatially non uniform in the horizontal direction r.218
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The previous notions can then be taken to apply locally as long as the non-uniformities of219

the medium are small over a typical acoustic wavelength. Thus, the horizontal variation of220

the medium is characterized by a slow space variable R = ǫr, where ǫ is a small parameter of221

the same order of magnitude as the scaled nonuniformities. Decomposition into local normal222

modes leads to a dispersion relation of the form D(k, ω;R) = 0. The eigenvalue problem is223

therefore solved for a discrete set of ranges R1, R2, . . . , RN .224

In going from one range to another, we assume that the modes couple adiabatically, i.e.225

without any transfer of energy into other modes. This approximation, that was introduced in226

the study of underwater acoustics by Pierce 32 , is a reasonable compromise between accuracy227

and run time. The WKB approximation then reads228

p(z;ω,R) ≃ ie−iπ/4

2
√
2πr

N
∑

j=0

φj(0;ω,R)φj(z;ω,R)
√

kj(ω,R)
exp

{

i

ǫ

∫ R

0

kj(ω, s) ds

}

, (7)

where φj(z;ω,R), which is the eigenfunction associated with the local wavenumber kj(ω,R)229

(for a given ω), satisfies the condition230

∫

∞

0

φj(z;ω,R)
∂φj

∂R
(z;ω,R) dz = 0, (8)

where the derivative can be approximated through a finite difference.231

Figure 2 shows the trajectories of the local eigenvalues kj as R increases from the source232

R = 0 to the infrasound station I30JP. While most eigenvalues are not significantly affected233

by horizontal variations of the vertical profile, the eigenvalues which are close to a cusp at234
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cr ≃ 335 m.s−1 trace the longest trajectories in the k-plane (essentially along the imaginary235

axis). Such eigenvalues are strongly sensitive to horizontal variations and correspond to236

waves travelling with exactly the phase velocity at a local maximum of c(z) (which is also237

a double turning point in the limit ω → ∞). This maximum is associated with a low238

altitude tropospherical waveguide (see figure 1), below 5 km altitude. Hence, waves of this239

kind strongly depend on large-scales, as a result of the weak coupling between horizontal240

and vertical low-altitude atmospheric structures, through the small parameter ǫ. A closer241

examination of the trajectories in the complex k-plane shows that the path lengths of the242

most sensitive modes are smaller for the 91-level dataset (figures 2c,d). In spite of this,243

the phase velocity change (along the real axis) is larger and thus, the arrival time of the244

corresponding waveform is more affected.245

The cusp may be exploited to track the most sensitive eigenvalues: the appearance of246

a cusp in the spectrum at a particular cr is an indication that the eigenvalues are on the247

verge of being critically dependent on small variations in the vertical profile. This criterion,248

which is completely general, may be used to reduce the complexity (and computation time)249

of any range-dependent infrasound propagation problem.250

III. Sensitivity of modes to the mean atmosphere251

This work focuses on the underlying assumption that the mean atmospheric state is fixed252

and is given by operational numerical weather predictions or atmospheric climate reanalysis.253
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In these data, the major setback is that important subgrid-scale phenomena are filtered out254

during the data assimilation, thereby implying a degree of uncertainty associated with the255

mean atmospheric state.256

Assuming that deviations of a given amplitude from the reference state may occur, we257

seek to determine the resultant effect on the computed signal at I30JP without computing258

the whole eigensystem. The sensitivity of the eigenvalues to modifications of the medium can259

be assessed through a perturbative approach of the normal modes (Kato 24, Trefethen 37).260

In order to carry out a comprehensive study of the influence in which every atmospheric261

structure has on the propagation, we decompose the perturbation in (1) into a wavelet basis262

c1(z) = c0(z)
∑

m

∑

n

cmnΨmn(z), (9)

where each wavelet Ψmn is generated by translation and dilatation of a function Ψmn(z) =263

a−m/2Ψ(a−mz−nb), with a > 1 and b > 0, so that the basis depicts every position and every264

scale.265

The sensitivity of the eigenvalue kj is obtained by substituting (1) into (2) and then266

differentiating with respect to ǫ. Taking an inner product with the eigenfunction φj leads to267

∂kj
∂ǫ

= −ω2

kj

∫

∞

0

φ2
j(z)c1(z)

c30(z)
dz. (10)

Upon substitution of (9) into (10), we obtain268

∂kj
∂ǫ

=
∑

m

∑

n

cmnKjmn, (11)
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where Kjmn is given by269

Kjmn = −ω2

kj

∫

∞

0

φ2
j(z)

c20(z)
Ψmn(z) dz. (12)

It is clear from (12) that the components Kjmn are nothing but the (complex) sensitivities270

of kj to each wavelet Ψmn. In practice, these components are easily computed through271

the multiresolution discrete wavelet transform of φ2
j/c

2
0 with the Mallat algorithm that only272

involves recursive filterings (Mallat 28).273

Now, to obtain a relation between the sensitivity of a given mode and its relative274

contribution to the sum of the residues (5), we use the completeness and the orthonormality275

of the wavelet basis to deduce from (12) that276

φ2
j(z) = −kj c

2
0(z)

ω2

∑

m

∑

n

KjmnΨmn(z). (13)

Upon substituting (13) into (5), the ground-based pressure field becomes277

p(r, 0;ω) ∼ −ic0(0)
2

4π

∑

j

kj(ω)

ω2

∑

(m,n)

Kjmn(ω)H
(1)
0 (kj(ω)r)Ψmn(0). (14)

For a given mode, the above formula presents the advantage of determining which wavelets278

are relevant to the ground-based pressure field. We conclude, as expected intuitively, that279

only the wavelets that connect the perturbation at a given altitude to the source (Ψmn(0) 6= 0)280

play a role in the sum (14). For these wavelets, the larger the sensitivity Kjmn, the larger281

the contribution of the wavelet to the signal.282
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Figure 3 gives the sensitivities Kjmn of the three most sensitive modes to D10 wavelets283

(Daubechies 14) as functions of the frequency ωr. The results are shown for the wavelet that284

maximizes the sensitivity, among 2046 wavelets that cover the altitudes in the range 0-120 km285

and the wavelengths from 117 m to 60 km. As ωr is increased, a subset of normal modes286

becomes highly sensitive to low altitude wavelets (figure 3c) and correspondingly their con-287

tribution to the ground-based pressure field increases, as shown in figure 4. Indeed, for each288

mode, the sensitivity can be described by a few of the wavelets (m,n) whose contributions289

are maximum over a narrow range of frequencies. These wavelets provide the vertical struc-290

tures that are responsible for the transition from the cusp to a region of constant imaginary291

part, as shown in figure 3b. Note that the region where the most sensitive modes converge292

(as ωr → ∞) can be obtained through a WKB analysis of (2). The WKB modes are given293

by dashed lines in figure 3. This holds despite the fact that such an approximation fails to294

describe the transition.295

It is important to point out that the family of (most sensitive) modes issuing from the296

cusp gives the leading-order contribution of (5) over frequencies as large as 1 Hz (ωr = 2π).297

Since the integration in k is performed first, we observe that the integral can be replaced298

by the sum of contribution of three poles. Figure 4 shows the truncation of (5) to the third299

most sensitive modes as a function of ωr and z, for r = 243 km. The first of these modes300

gives the leading order behavior up to 0.5 Hz (figure 4a), whereas the third mode is required301
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as it describes the high frequency content close to the ground (figure 4c). Given that ω is302

a continuous variable, there are an infinite number of such contributions, which have to be303

included by the integration over ω. However, if the Fourier transform of the source is zero304

outside a finite-length interval, usually taken to be 0 ≤ ω ≤ ω0, the contribution of high305

frequencies ω > ω0 turns out to be zero, as a result of the convolution theorem.306

The previous results can be interpreted within the setting of the range-dependent for-307

mulation presented in section II.C. Provided the sound speed profile is slowly varying in the308

horizontal direction, the expansion (1) is the first order Taylor series of c(z) about R = 0309

and ǫ plays the same role as in the section II.C. When considering the acoustic propagation310

downstream, kj(R;ω) traces out a trajectory issuing from the cusp. The associated contri-311

bution as given by (5) becomes dominant over a frequency range that depends on vertical312

structures of c1(z) and thus, a lower bound for the frequency range can be obtained from313

the sensitivities. For each R, this lower bound plays the role of a cut-off frequency ω0(R).314

On the other hand, it can be shown that the Hankel function in (6) vanishes as ωr → ∞.315

IV. A low-order reduced model316

The basic principle in the reduction methods consists in computing a small number of317

relevant modes (a part of the spectrum) through specific methods. If a matrix is really large,318

the computation of its complete spectrum is out of reach. However, as noted in the previous319

section, we only require the computation of the few of the eigenvalues that are closest to320
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some specified target value. Eigenvalue methods for large problems are designed to perform321

tasks like these by computing the invariant subspace associated with the desired eigenvalues.322

A. A WKB analysis of the spectrum323

A close examination of figure 2 shows that the eigenvalues lie on interconnected curves324

that are related to specific regions in the effective sound speed profile. The global structure of325

these curves can be obtained using an analysis which is similar to that of Bender and Orszag 8 ,326

except that the eigenvalues are complex. The main assumption, besides the exclusion of327

range-dependence, is that the frequency is sufficiently large, so that we have K = ǫk = O(1)328

and Ω = ǫω = O(1), where ǫ is a small parameter. Using this approximation in (2) gives329

ǫ2
d2p

dz2
= Q(z)p, (15)

where Q is given by330

Q(z) = K2 − Ω2

c2(z)
. (16)

For a real frequency, the WKB analysis performed in the limit ǫ → 0 for a vertical profile331

c(z) with the typical shape displayed in figure 5 shows that the modes of the “bounded states”332

(i.e. with K1 < K < K2) are given by the well-known Bohr-Sommerfeld quantization rule333

(Bender and Orszag 8)334

1

ǫ

∫ z2

z1

[−Q(z)]
1
2 dz = 2π (n+ 1/2) , (17)
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where z1 and z2 > z1 are first-order turning points and Re[Q(z)] < 0 for z1 < z < z2. For335

the general case in which Ω is a complex frequency, we note that z1 and z2 are not zeros336

of the complex function Q and thus, equation (17) no longer holds. New conditions can be337

derived from matching conditions of the approximations to p(z). These matching conditions338

translate into constraints on both the real and imaginary parts of Q. The details of the339

algebra are given in the appendix for an arbitrary profile c(z). For the sake of simplicity,340

we restrict the discussion here to the profile displayed in figure 5. Denoting z1 and z2 two341

consecutive zeros of Re(Q), the constraint on the real part of Q is given by equation (17) in342

which Q must be replaced by Re(Q). The constraint on the imaginary part of Q is343

1

ǫ

∫ z2

z1

Im [−Q(z)]1/2 dz =
2

3ǫ
Re

[

Q3/2(z2)

Q′(z2)
− Q3/2(z1)

Q′(z1)

]

+O(ǫ), (18)

which reduces to344

1

ǫ

∫ z0

0

Im (−Q(z))1/2 dz =
2

3ǫ
Re

[

Q3/2(z0)

Q′(z0)

]

+O(ǫ), (19)

when the oscillating region extends to the ground; i.e. Re[Q(z)] < 0 for 0 ≤ z < z0. Through345

algebraic manipulations, we can generalize the condition (18) to an arbitrary number of zeros346

of Re(Q). It is worth mentioning that equation (18) is based on the fact that each zero is347

simple and thus, this approach fails for altitudes z at which two oscillating regions merge.348

This is a familiar restriction which excludes a small neighborhood of cusp regions in the349

complex K-plane.350
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Following the above reasoning, the real turning points z(K) and the oscillating regions351

are first obtained by solving Q(z;K,Ω) = 0, for a fixed frequency Ω. As the mapping of a352

given K into the complex z-plane is generally multivalued, we denote the various images of353

K that lie along the real axis by zm(K). The mapping of a contour in the complex K-plane354

into the z-axis may be rendered single-valued by constructing a multisheeted K-plane with355

n sheets, each corresponding to a single oscillating region zm < z < zm+1. In some sense, the356

profile c(z) can be seen as a potential, each of its oscillating regions being associated with one357

curve γn (lying on a single sheet) in the complexK-plane on which eigenvalues are distributed358

according to the real part of the Bohr-Sommerfeld condition (17). The appearance of a cusp359

in the spectrum structure (which is a branch point of the square root in (17)) at a particular360

phase velocity serves as a warning signal that the partition into two disconnected sheets is361

not possible. Such a cusp corresponds to a local maximum (a double turning point) of c(z)362

at which two oscillating regions merge and, thus, two sheets are connected in the complex363

plane, as illustrated in figure 5.364

Equation (18), while hardly trivial, is readily solved (for a fixed Ω) by standard methods365

for complex root determination. Here we use a Newton-Raphson method for finding K,366

subject to the constraint zm < z < zm+1. Figure 5 shows that typical curves γn (n = 1, 2, 3)367

merge at kr = ωr/c, where c = 320 m.s−1. Similar results are shown in figures 6 and 7368

for both the ERA-Interim and the 91-level profiles. As can be seen from figures 6 and 7,369
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the most sensitive modes issuing from the cusp at cr ≃ 335 m.s−1 converge to the path370

in which the imaginary part ki (orange curve) is minimal, so that, in view of the results in371

section III, the eigenvalue computation can be restricted to the invariant subspace associated372

with the neighborhood of this curve, which will be called γ1. Specifically, an implicitly373

restarted Krylov-Arnoldi algorithm (Watkins 38) is used with a shift-and-invert method, or374

a Cayley transform (Lehoucq 26 , Meerbergen et al. 29), centered in the middle of γ1. Each375

restart gives a better approximation to the desired invariant subspace. Repeated restarts376

lead to convergence. Since Krylov subspace methods have good convergence properties when377

combined with Tchebychev collocation points (Beattie 6), we find a good agreement between378

both the QR algorithm (LAPACK Fortran library) and the Arnoldi algorithm (ARPACK379

Fortran library); the relative error of the eigenvalues being below 10−6. Figure 8 shows380

results for the profile c1a(z). In terms of computational cost, there is a huge benefit in doing381

so, especially when the frequency is high (figure 8b). While the QR algorithm needs more382

than 7 h to compute a signal up to 1 Hz (with 512 frequency samples) the application of the383

Arnoldi algorithm in the vicinity of γ1 leads to a total computation time as short as several384

minutes (2 %) on a single processor.385

It should be stressed that the main difficulties in applying the Krylov-Arnoldi algorithm386

are to determine (1) the dimension m that warrants the accuracy of the required eigenvalues387

and (2) the number n of desired eigenvalues (n < m). Given a vector x and a matrix388
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A, the Krylov space of A is the m-dimensional subspace spanned by x,Ax, . . . , Am−1x.389

The basic idea in Krylov subspace or projection methods is to construct eigenpairs (the390

Ritz pairs) in the Krylov subspace Km so that the component orthogonal to that space391

is sufficiently small for the Ritz pairs to be good approximations to eigenpairs of A. A392

convenient way to do this is given by the Arnoldi factorization (Watkins 38) which provides393

the eigenpairs of A from the eigenpairs of smaller matrices. Such a method, however, is394

entirely dependent on the choice of the starting vector x. Here, we require x to be rich in395

the subspace spanned by the eigenvectors corresponding to eigenvalues that are nearest the396

curve γ1 with very small components in the direction of the other eigenvectors. We follow397

the implicitly restarted Arnoldi method (Watkins 38) and adaptively refine x to be a linear398

combination of the n eigenvalues without explicitly computing a new Arnoldi factorization.399

The larger m is, the better is our chance that the space Km contains good approximations to400

desired eigenvectors. However, the convergence of the implicitly restarted Arnoldi method401

is not uniform (Lehoucq 27) and there is no known a priori value of m leading to optimal402

convergence. Even though convergence techniques can considerably decrease the numerical403

cost of the Krylov approach, in the present study, however, the dimension of the Krylov space404

is fixed to m = 0.01N , where N is the matrix size (typically m = 20). The number n of405

eigenvalues plays an essential role since the conditioning of the m− n unwanted eigenvalues406

strongly affects the convergence of the implicitly restarted algorithm (Beattie 7.) In this407
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study, we used a QR computation at the frequency of 1 Hz to estimate the number of408

eigenvalues lying on the curve γ1 as ωr → 2π. Based on the numerical results, we have 3 to409

5 eigenvalues, depending on the profile (figure 11a). Then, for each frequency ω, the Arnoldi410

algorithm was applied to find the n = 10 closest eigenvalues to γ1.411

Recall that for the range-dependent approach, the sensitivity of eigenvalues strongly412

depends on the local vertical profile c(z;R) so that, modes may become dominant over a413

fairly narrow range of distances or new modes (issuing from a single or several new paths) may414

litterally appear/disappear. The higher the horizontal variation, the larger the probability415

is to have a significant contribution from these modes to the ground-based signal. That is416

the main reason for which the sound speed profile evolution c(z;R) has to be studied before417

proceeding with our reduction method. Once the relevant curves γn(ω,R) (and plausible418

cusps) have been computed over the frequency-range domain, a Krylov-Arnoldi algorithm419

can be used to compute the invariant subspace associated with the most sensitive eigenvalues.420

The eigenvalues can finally be analyzed as R varies with a Newton-Raphson algorithm or a421

step-by-step Krylov-Arnoldi algorithm.422

B. Reduced models for range-dependent media423

The above reduction technique is based on the eigenvalue sensitivities which means424

that the reduced model preserves the overall structure under sufficiently small perturbations425

of the vertical profile. The duality between range-dependence and perturbation (revealed426
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by equation (1)) can be used to extend the validity domain of the reduced model to range-427

dependent media. From a numerical standpoint, this task reduces in following the selected428

eigenvalues as the vertical profile slowly varies along the source-receiver path.429

Recall that the spatial eigenvalues kj(ω) have been introduced as solutions of the disper-430

sion relation when the contour F in the complex ω-plane differs from the real axis. Although431

a straightforward interpretation is missing, the temporal branches kj(ω) are objects that are432

naturally involved whenever the initial contour is gradually displaced upward from the real433

axis. According to the frequency shifting property of the Fourier-Laplace transform, the434

ground-based signal can be obtained from the classical FFT algorithm (for ω = ωr) together435

with the mapping p(t) 7→ p(t)eωit. A trapezoidal rule was used to compute the phase in436

(7), using 12 intermediate ranges R between the source and the station. While the complete437

computation involves 580 modes, the implicitly restarted Krylov-Arnoldi method is used to438

find the 3 most sensitive modes that correspond to the tropospheric waveguide, with a cost439

of 2 % of the total run time, as previously indicated (figure 8). Here, we use a simplified440

source model defined by441

s(t) =

[

1− cos
πt

2

]

sin
(

πt+
π

2

)

, (20)

together with s(t) = 0 for t < 0 s and t > 4 s. Hence, the power spectra at the station I30JP442

(R=243 km) is simply the product of the Fourier Transform of (20) and (7).443

It is important to emphasize that the tropospheric sheet in the complex k-plane (fig-444
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ure 5) contains all the necessary information for waveform synthesis. This sheet is an at-445

tracting sector for the mode trajectories (as the frequency increases) that are most sensitive446

to low altitude perturbations thereby leading to a physical interpretation in terms of atmo-447

spheric structures. Futhermore, the modes emerge from a cusp at a specific cutoff frequency448

ω0 (0.09 s−1, 0.39 s−1 and 0.71 s−1 for the first, second and third mode, respectively). On449

the other hand, since ωi > 0 these modes lie in the upper half of the complex k-plane and450

thus, the contribution of the various poles vanishes as ωr → +∞, as shown in figure 4. We451

can therefore take advantage of these results to obtain an approximation of the temporal452

Fourier transform.453

To develop the leading-order term of the inverse Fourier transform, we first rewrite (7)454

along an arbitrary fixed spatio-temporal ray r/(t − τ) = v, where τω is the phase shift of455

the source term (20). Then, we take its Fourier transform so as to obtain456

p(r, 0; r/v) =
ie−iπ

4

4π
√
2πr

∑

j∈J

eωi( r
v
+τ)

∫ +∞

−∞

pj(ωr, r) exp

{

i

ǫ
Φj(ωr, R)

}

dωr, (21)

where J is the subset of most sensitive modes and457

pj(ωr, r) =
φ2
j(0;ω,R)

√

kj(ω,R)
|ŝ(ωr)|, (22)

where ŝ is the Fourier transform of (20). In the limit ǫ → 0 with R fixed, the integral may be458

evaluated asymptotically by the well-known stationary phase method. The phase function459
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of (21) is460

Φj(ωr) =

∫ R

0

kj(s, ωr)ds−
ωrR

v
. (23)

The points of stationary phase are given by the roots of Φ′

j(ωr) = 0 or, from (23),461

∫ R

0

∂kj
∂ω

ds− R

v
= 0, (24)

subject to the constraint ω0 < ω < 2π, where ω0 is the cut-off frequency (ω0=0.09 s−1 for462

the first most sensitive mode).463

Two distinct behaviors are possible. Whenever v1 < v < v2 , (24) has a unique464

real solution that we denote by ωr = ω(R, v), as shown in figure 9. Thus, among all the465

frequencies contained in the source, the atmosphere filters out, along each ray x/t = v one466

particular frequency ω given by (24). In the opposite case, where the velocity v is greater467

than v2 or less than v1, there is no solution to (24) and thus, the integral vanishes (Bender468

and Orszag 8). Indeed, once the velocity front v1 has reached the infrasound station, the469

atmosphere returns to the rest state.470

The leading-order contribution arising from the first dominant mode (j = 1) in expres-471

sion (21) can be evaluated according to the general formulas given in Bender and Orszag 8 .472

As ǫ → 0, the impulse response associated with this mode reduces to473

p(r, v) ∼ iφ1
2
(R, v)ei

Φ1(R,v)

ǫ
+ωi(

r
v
+τ)

4π
√
r

[

k1(R, v))

ǫ

∫ R

0

∂2k1
∂ω2

(s, v) ds

]

1
2

[

1 +
α(R, v)

ǫ
+ . . .

]

(25)
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where474

α =
5ip1[Φ

(3)
1 ]2 + 12ip

(2)
1 Φ

(2)
1

2 − 12ip
(1)
1 Φ

(3)
1 Φ

(2)
1 − 3ip1Φ

(4)
1 Φ

(2)
1

12p1

[

Φ
(2)
1

]3 , (26)

evaluated at ω, with the notation

Φ
(l)
1 =

∂(l)Φ1

∂ω(l)
(R, ω), p

(l)
1 =

∂(l)p1
∂ω(l)

(R, ω) and φ1 = φ1(0;R, ω).

The response takes the form of a wavepacket in the (r, t) plane, as shown in figure 9. The475

wave packet is confined within a wedge bounded by the two rays r/t = 328 m.s−1 and476

r/t = 335 m.s−1. Inside the packet, the contribution is dominated by the stationary phase.477

For α = 0, the wave packet (25) is compared to the FFT with 580 modes in figure 10.478

We find a very good overall approximation of the waveform with a single mode (the first479

most sensitive mode issuing from the cusp at cr ≃ 335 m.s−1) evaluated at the frequency480

ω. In practice, we apply the Krylov-Arnoldi algorithm to find the eigenvalues that are481

nearest the curve γ1 in the complex k-plane. Once the eigenvalues kj are obtained for a482

fixed frequency, a Newton-Raphson method is used to solve Φ′

1 = 0 for a given v, without483

significant supplementary CPU time. In striking contrast to other numerical methods, the484

complex waveform can be computed from a single mode evaluated at the frequency ω, with485

a CPU time of typically 1-10 seconds.486

The question of how relevant the stationary phase approximation is to practical applica-487

tions is intimately related to confidence intervals. Through algebraic manipulations, we can488
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find a higher-order asymptotic expansion to (21). However, the expansion requires higher-489

order derivatives k
(3)
j , k

(4)
j , . . . (see (26)) and thus, accurate means of solving the dispersion490

relation in the complex k-plane. Such an approach would require higher computer time. It491

led us to believe that our approach, which gives an approximate waveform at a considerably492

lower CPU time, promises to be more fruitful than seeking the maximum precision for a493

fixed atmospheric state. In other words, we hypothesize that, the higher the sampling size,494

the better the obtained statistics, which is the ultimate goal of many infrasound studies.495

In the meantime, the present paper has shown how the CPU time can be considerably re-496

duced, through the analytic continuation of the range-dependent normal mode method in497

the complex k-plane, which provides relevant statistics for applications.498

V. On the role of atmospheric uncertainties499

According to the discussion of section IV, the propagation mechanisms that occur just500

after the Fukushima explosion are dominated by three modes that evolve on a slow length501

scale ǫ−1, where ǫ is defined by equation (1). These modes trigger a tropospheric arrival502

which is in good qualitative agreement with the first arrival of the recorded signal (see figure503

1). However, the direct computation predicts also a stratospheric ‘tail’ which is several orders504

of magnitude weaker than the tropospheric arrival (blue signal, figure 12). This is clearly505

not what was recorded at the Japanese station.506

An interesting aspect of using a complex frequency is that the imaginary parts of eigen-507
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values may be arranged so that the tropospherically-ducted modes lie along the path γ1 in508

the complex k-plane as ωr → ∞. Since this path can be obtained at very low numerical cost509

through a WKB analysis, the propagation problem can be projected onto an invariant sub-510

space corresponding to these modes. Hence, we obtain a reduced model for the tropospheric511

arrival by seeking eigenvalues that are close to γ1 with a Krylov-Arnoldi algorithm. One512

value of the reduced model lies in the reduction of the order (the number of modes) which is513

based on the sensitivites of the eigenvalues over a given frequency range. By rearranging the514

modes by decreasing sensitivities (and decreasing contribution to the ground-based signal),515

the reduced model preserves the overall structure of waveforms under perturbations of the516

troposphere. In a sense, the requirement for the reduced model to be reasonably robust517

to variations of the profile c(z) is similar to the so-called structural stability property in518

mathematics.519

Figure 11e-g shows the ground based signals at I30JP obtained from three synthetic520

atmospheric conditions, with an effective sound speed at the local tropospheric maximum521

significantly smaller, equal or significantly larger than that at ground level. These profiles522

are obtained from c1a pertubed by a Gaussian envelope centered at the altitude of maxi-523

mum effective sound speed, as shown in figure 11a. The relevant eigenvalues (close to γ1)524

are computed with a Krylov-Arnoldi algorithm. We obtain 2, 3 or 4 eigenvalues at 1 Hz525

(figure 11b-d), depending on the profile c(z). The associated ground-based signals obtained526
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with the reduced model (truncated to 2, 3 and 4 modes) are in excellent agreement with527

that obtained with the full model (i.e. with 580 modes). Being able to represent the signals528

with a small number of modes offers an argument that the reduced model may be used to529

derive statistical results for a wide range of tropospheric conditions.530

In the above reduced model, it was explicitly assumed that the vertical sound speed pro-531

files are fixed and obtained from the European Centre for Medium-Range Weather Forecasts532

(ECMWF). This assumption, although providing a good approximation of the tropospheric533

wavepacket, cannot be used to compute the stratospheric arrival. Indeed, it is now generally534

recognized that small-scale gravity waves are filtered out of the ECMWF fields. At leading535

order, the amplitude of the upward propagating waves grows in altitude as 1/
√
ρ, where ρ536

is the density of the atmosphere. Above 60 km, the amplitude of the unresolved waves can537

reach 10% of the sound speed (Drob et al. 17). Even though in the lower atmosphere the538

amplitude of these waves represents a small fraction of the overall variations of the average539

background state, a quantitative theory of waveform changes due to gravity waves is not540

available.541

Figure 12 provides further calculations, using as the input profile a slightly perturbed542

version of c1a (figure 1). For simplicity, the perturbation is modelled by a single upward543

gravity wave modulated by a Gaussian envelope that mimics the gravity wave breaking.544

The main effect of the localized perturbation is to slightly redistribute the sensitivities so545
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that a second subset of sensitive eigenvalues arises from another cusp region, as shown in546

figure 12b. The associated modes trigger a stratospheric arrival (green signal) that appears547

to be dominant for specific vertical wavelengths, even though the perturbed sound speed548

remains smaller than the value at ground level. The effect is, however, non-uniform being549

largest for a vertical wavelength of about 1 km.550

Following the method described in section IV, the two arrivals can be obtained by551

applying the Krylov-Arnoldi algorithm (figure 12c) twice and adding the new eigenvalues552

to the reduced model. While the perturbation amplitude is limited to less than 1% of553

the effective sound speed, it is evident from figures 12 and 1 that there is a considerably554

improved overall agreement between calculated and recorded signals. Finally, note that the555

main difficulty is to determine which phase dominates in the computed signal. A priori this556

requires the detailed analysis of the subsets containing the most sensitive eigenvalues in the557

complex k-plane.558

VI. Conclusion559

We have examined the pressure field generated by a point source explosion within560

a background atmospheric state given by a combination of ECMWF data and empirical561

reference models. The impact on long-range infrasound propagation of small departures562

from a given profile was studied through perturbation theory. In practice, these imperfections563

may stem from atmospheric structures that are not considered (e.g. gravity waves) or they564
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may simply be the result of horizontal variation. While a consensus seems to have emerged565

that gravity waves with length scales of less than about 100 km are filtered out in available566

atmospheric specifications, it is not clear whether classical high frequency techniques are567

able to capture the effects of these scales.568

In this paper, we used a range-dependent normal mode approach with no constraint569

on the frequency. The analysis of the vertical structure of the wave equation in the com-570

plex wavenumber plane (the so-called k-plane) indicates that only a few eigenvalues are571

involved in long-range propagation of infrasounds. These modes, which are sensitive to key572

atmospheric features, can be computed with a high degree of accuracy through a Krylov573

subspace process that uses a shift-and-invert strategy. Sensitivity arguments indicate that574

these modes are close to curves in the complex k-plane that may be obtained through the575

analytic continuation of the classical WKB analysis. The process time of our reduced model576

is two orders of magnitude less than the computation of the complete spectrum with a QR577

algorithm. It therefore appears that a low order reduced model based on a few suitable578

eigenvalues can provide the impulse response over large ranges of frequencies. This reduced579

model maintains full generality and can be applied to range-dependent media so that wave-580

forms can be recovered by using a stationary phase method. In this case the process time is581

no longer than several seconds on a single processor.582

Our reduced model gives insights into the role of atmospheric structures in the wave-583
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form features. By means of a wavelet-based decomposition of the profile perturbation, we584

have shown that the components leading to the most sensitive eigenvalues give regions and585

wavelengths of atmospheric structures involved in the propagation. Other regions of the586

background atmosphere are not relevant to the computed waveform. Indeed, our reduced587

model allows sensitivity analysis and statistical studies at minimum CPU time.588
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I. WKB approximation589

We consider here the wave equation590

ǫ2
d2p

dz2
= Q(z;K,Ω)p, (27)

where ǫ is a small parameter, with

Q(z;K,Ω) = K2 − Ω2/c2(z),

where K and Ω are complex. Furthermore, we make the assumption that Im [Q] ≪ Re [Q] so591

that (27) refers to the complex perturbation of the real problem fully treated by Bender and592

Orszag 8 . By limiting the asymptotic expansion of the phase to order 1, the classical approach593

leads us to express the solution as a linear combination of two independant solutions:594

p(z) = Q−1/4(z)
[

A e
1
ǫ
φ(z) + B e−

1
ǫ
φ(z)

]

, (28)

where φ′ = Q1/2 and A and B are scalar constants depending on boundary conditions. Since595

Q(z) is close to the real axis, the solution clearly has two distinct behaviors along the z-axis:596

the solution is dominated by a real exponential for Re [Q(z)] > 0 and is mostly oscillating597

in regions where Re [Q(z)] < 0.598

In the vicinity of points z∗ such that Re [Q(z∗)] = 0, the asympotic expansion is no599

longer valid. Nevertheless, a first order Taylor series expansion can be obtained through600

a change of variable z → Z(z; ǫ), thereby leading to the Airy equation d2/dZ2p = Zp.601
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The solution in this critical layer can be expressed as a linear combination of Airy functions.602

Matching arguments provide a direct linear relation between the coefficients of (28), (Au, Bu)603

and (Al, Bl) above and below the critical layer respectively;604









Au

Bu









= P









Al

Bl









. (29)

Let the zeros of Re(Q) be sorted so that 0 < z1 < z2 < · · · < zN , and P1, P2, · · · , PN605

be the corresponding passing matrices. From an iterative process, we can deduce from (29)606

the relation607








AN

BN









= M









A1

B1









. (30)

where M = PN · · ·P2P1.608

Finally, we take into account the boundary conditions at z → ∞ and z = 0 to obtain609

conditions on Q. The boundary conditions can be written as linear relations involving the610

coefficients α1A1 + β1B1 = 0 for z = 0, and αNAN + βNBN = 0 for z → ∞. Adding these611

conditions to the system (30) provides a unique relation that is a necessary and sufficient612

condition for the existence of a solution for the problem (27)613

β1 (αNM11 + βNM21) = α1 (αNM12 + βNM22) . (31)

Real and imaginary parts of the above relation lead to two expressions. First, we find614

the Bohr-Sommerfeld quantization rule (17) where z1 and z2 correspond to ordered pairs615
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surrounding an oscillating area (Re [Q] < 0). Then, since Im [Q] 6= 0, there is also the616

necessary condition (18) or (19) in the case Re [Q] < 0 near the ground (0 < z < z1). Note617

that (18) and (19) are given for homogeneous boundary conditions. In other words, the618

solution vanishes as z → ∞ and there is a perfect reflection at z = 0 (p′1(0) = 0).619
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Figure 1: Data. (a): recorded signal at the Japanese infrasound station I30JP; effective

sound speed profiles obtained from the ECMWF ERA-Interim dataset (b) and the ECMWF

91-level dataset (c) for locations that correspond to the Fukushima nuclear power plant (c1a,

c2a) and I30JP (c1b, c2b).
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Figure 2: The complex k-plane showing the trajectories of the local eigenvalues as R varies

for the ERA dataset (top) and the 91-level dataset (bottom). Blue: r = 0 km; green:

r = 243 km (I30JP).
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Figure 3: Phase velocity ωr/kr (a) and imaginary part ki (b) of the 3 most sensitive eigen-

values, as functions of the frequency ωr. Dashed lines represent the WKB approximations.

Real (c) and imaginary (d) parts of sensitivities Kjmn associated with the most sensitive

eigenvalues for D10 wavelets a = 2, b = 1, m = 10 and n = 1 (see equation 9). Eigenvalues

are computed for frequencies with a constant imaginary part of ωi=0.03 .s−1.
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Figure 4: Pressure field contours in the ωr-z plane at r = 243 km, for the three most sensitive

modes of figure 3. (a) first mode; (b) two modes and (c) three modes. Black levels give the

pressure field |p̂/p̂max| computed with 580 modes. Eigenvalues are computed for frequencies

with an imaginary part ωi=0.03 .s−1.
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Figure 5: Typical effective sound speed profile (a) and various solutions of (17) (b) for

ω = 2π+0.03i. The black circles (c) show the corresponding discrete spectrum (eigenvalues),

as obtained with a QR algorithm.



Bertin, Millet and Bouche, J. of the Acoustical Society of America, p. 51

250 300 350
0

20

40

60

80

100

120

Sound speed (m.s−1)

A
lti

tu
de

 (
km

)

(a)

k i (
m

−
1 )

(b) − f = 0.25 Hz

260 280 300 320 340 360 380

1

1.1

1.2

x 10
−4

k i (
m

−
1 )

(c) − f = 0.50 Hz

260 280 300 320 340 360 380

1

1.1

1.2

x 10
−4

k i (
m

−
1 )

(d) − f = 0.75 Hz

c
r
 (m.s−1)

260 280 300 320 340 360 380

1

1.1

1.2

x 10
−4

1

Figure 6: Various curves γn in the complex k-plane for ωi = 0.03 and the associated regions

of the vertical profile c(z). ERA-Interim data.
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Figure 8: (a) Size N of the matrix discretization for the profile c1a(z) (figure 1) as a function

of the frequency. (b) Computation time for both the QR algorithm (LAPACK) and the

implicitly restarted Krylov-Arnoldi algorithm (ARPACK). (c),(d),(e) Eigenvalues computed

with both the QR algorithm (whole spectrum) and the Krylov-Arnoldi algorithm (10 Ritz

pairs) for frequencies 0.3 Hz, 0.6 Hz and 0.9 Hz, respectively.
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Figure 9: Phase Φ associated with the first dominant mode as a function of the real frequency

ωr for distinct values of the velocity v (v1=335 m.s−1 and v2=328 m.s−1). Circles show

the point of stationary phase ω. Ground-based signals obtained with the stationary phase

method for the first most sensitive mode. Signals are shown with a shifted time: t′ = t−r/c0

(c0 = 350 m.s−1).
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Figure 10: Ground-based signals computed at the station I30JP with the range-dependent

normal mode approach. The reference signal (gray), obtained with 580 modes using the FFT

algorithm (with 512 frequency samples), is compared to that obtained with the three most

sensitive modes (top) and the stationary phase approximation for the first mode (bottom).

The source function is given by (20) with a multiplicative constant of 2.65× 105.
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Figure 11: Ground-based signals (e-g) computed at the station I30JP for three vertical profiles

(a). The profile c2a (blue) is perturbed by a Gaussian envelope centered at the altitude of

maximum effective sound speed. (b-d) Most sensitive eigenvalues lying on γ1 as ωr → 2π

(1 Hz). The eigenvalues obtained with the Krylov-Arnoldi algorithm for ωr = 2π are given

by red crosses.
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Figure 12: Ground-based signals (d) computed at the station I30JP for two vertical profiles

(a). The profile c2a (blue) is perturbed by a localized upward propagating gravity wave (green

profile). The most sensitive eigenvalues (b) are obtained both with a QR algorithm and a

Krylov-Arnoldi algorithm (c). The source function is given by (20) with a multiplicative

constant of 2.65× 105.


