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Abstract: In this paper, we present a numerical modal study of a simple slab, made of an
uniaxial anisotropic material having an "epsilon-near-zero" (ENZ) dielectric function, surrounded
by vacuum. We use two Drude models with a different plasma frequency for the direction parallel
and perpendicular to the slab surface as toy models to study the effect of uniaxial anisotropy of
type I (ε‖ > 0, ε⊥ < 0) and type II (ε‖ < 0, ε⊥ > 0) on the different electromagnetic modes of
the system. In addition to the so-called ENZ mode, studied in detail by Campione et. al [Phys.
Rev. B 91, 121408(R) (2015)], the slab can support quasi-confined (QC) mode in the type I and
type II anisotropy frequency ranges. We show that those modes exhibit a strong electric field
enhancement, caused by the ENZ character of the dielectric function. In strong contrast with
the ENZ mode, QC modes can have a strong electric field enhancement for thick slabs, with a
Fabry-Perot-like electromagnetic field distribution spanning over the whole slab thickness. This
opens the way for large electric field enhancement in thick slabs with QC ENZ modes. Thick
slabs also allow metamaterial designs, giving the possibility to engineer the anisotropy of the
effective dielectric function, opening interesting perspectives for the control of field enhancement
of the ENZ QC modes and their integration in operating devices, such as detectors, sources, or
modulators.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

In their pioneering work [1], Engheta and co-workers predicted the tunneling of electromagnetic
energy through narrow channels with the use of material having a dielectric function close
to zero (epsilon-near-zero, or ENZ). Experimental demonstrations came shortly after, in the
microwave regime [2–4]. These works triggered investigations of the peculiar properties of
materials with ENZ behavior. Many different materials and many different effect have been
reported, either theoretically or experimentally, such as polarization control [5], control of the
radiation phase pattern of emitter close to ENZ structures [6], boosting of non-linearities [7, 8],
light modulators [9], perfect absorber [10–13], and thermal emitter [14] to name a few. We refer
the reader to a recent review for more informations on this topic [15]. ENZ materials can be
found naturally in polar materials close to optical phonon resonances, in transparent conductive
oxide close to their plasma frequency, but have also been engineered to reach visible wavelength
using metamaterials [16] or organic molecules [17]. Strategies to enhance the ENZ properties by
loss-compensation have also been proposed [18].

Another important topic is the electromagnetic modes supported by thin slabs of ENZmaterials.
The so-called ENZ mode was shown to be the evanescent counterpart of the Berreman mode [19]
and was used as a first application to build a THz reflectivity modulator [20]. The mode is
characterized by a strong enhancement and confinement of the electric field perpendicular
to the slab surfaces. Strong coupling with other type of resonances has been experimentally
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observed [21–24]. A detailed theoretical study of the ENZ mode was recently published [25]
where it was shown that this ENZ mode shows field enhancement only for a limited range of
slab thickness and wavevector. In particular a rule of thumb was given for the slab thickness
limit: d 6 λp/50, where λp is the wavelength corresponding to the plasma frequency for a
simple Drude model. This appears as a significant limitation when using the mode to enhance
the electrical field for absorption or non linear effect, as the volume of the active material is
significantly reduced.
Here, we extend this theoretical work by considering an uniaxial anisotropic slab with ENZ

properties. We focus on type I (ε‖ > 0, ε⊥ < 0) and type II (ε‖ < 0, ε⊥ > 0) anisotropy. Both types
give birth to quasi-confined (QC) modes whose dispersion and spatial structure strongly differs
from that of the ENZ mode. We show in this paper that they have a large field enhancement due
to the ENZ properties of the slab. In strong contrast with the ENZ mode, the field enhancement
can be maintained even at large slab thicknesses, and the electric field spatial distribution spans
over the whole slab thickness.

The paper is organized as follows: in section 2 we define the geometry and model describing
the system under study, in section 3 we discuss the QC mode and their field enhancement for
different slab thicknesses, in section 4, we discuss the coupling of these modes. Finally in section
5 we briefly discuss possible experimental realization of such anisotropic ENZ materials.

2. Theory

The system under study is a slab of thickness d made of an anisotropic uniaxial material. The
geometry is illustrated in Fig. 1. The surfaces are perpendicular to the z direction and lie in the
(x, y) plane. Both interfaces are respectively placed at z = 0 and z = d.

Fig. 1. Geometry of the system.

The anisotropic material is described by a uniaxial dielectric tensor: ε (ω).

ε (ω) =

©«
ε‖s(ω) 0 0

0 ε‖s(ω) 0

0 0 ε⊥s(ω)

ª®®®®¬
. (1)

The subscript ⊥ and ‖ are taken relatively to the (x, y) plane: ε⊥ describes the dielectric function
along the z direction (Fig. 1).
We introduce a simple Drude model as toy model for the slab permittivity in both directions
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and consider vacuum as the dielectric surrounding the slab:

ε‖s(ω) = 1 −
ω2

p ‖

ω2 + iωγ‖
, (2)

ε⊥s(ω) = 1 −
ω2

p⊥

ω2 + iωγ⊥
. (3)

We note that for this model, when ω = ωp

√
1 − γ2

ω2
p
≈ ωp , the real part of the dielectric function

is zero. As explained in [20] and [25] the electric field along the perpendicular direction (Ez)
is then strongly enhanced. This comes from the continuity of the electric displacement at the
interface between the slab and vacuum. By using constitutive equations we can express the
electric field along the z direction inside the slab (Ezs) as a function of the dielectric function of
the slab (ε⊥s) and the electric field outside the slab (Ezv):

|Ezs |
2 =

���� 1
ε⊥s

����2 |Ezv |
2 = KENZ |Ezv |

2. (4)

We introduced the KENZ factor that represents the intensity enhancement inside the slab due
to the ENZ behavior of the dielectric function. From Eq. (4) one can clearly check that if the
dielectric function of the slab ε⊥s goes to zero, Ezs is diverges. In reality, because of losses,
ε⊥s is never strictly zero, and the enhancement, given by |1/=(ε⊥,s)|2, is finite. The lower the
imaginary part is, the stronger the enhancement is. We will call the frequency range where
KENZ > 20 the ENZ range. This value corresponds to ωp ± 10% as discussed in [25]. The
dielectric function ε⊥s , KENZ factor and the corresponding ENZ range are represented in Fig. 2
for a Drude model with parameters following [25]: ωp⊥=10000 cm−1, γ⊥ = 100 cm−1.

Fig. 2. ENZ frequency range and enhancement associated with a Drude model describing the
dielectric properties of a slab in the direction perpendicular to the interfaces (ε⊥s). Left: real
and imaginary part for a dielectric function described by a Drude model with ωp⊥=10000
cm−1, γ⊥=100 cm−1. Right: corresponding KENZ factor, representing the enhancement of
the electric field intensity. In both figures, the green shaded area corresponds to the ENZ
range defined as KENZ > 20.

However, as pointed out in [25], the ENZ enhancement is limited to thin slabs. In order to
overcome this limitation, we now move to anisotropic materials. We study transverse plane waves
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propagating along the x direction and polarized with the electric field along the (x, z) plane (TM
polarization). Using Maxwell’s equations we derive the dispersion relation for the anisotropic
slab (see the Appendix for derivation, with the implicit exp (−iωt) dependence):

(k⊥vε‖s + k⊥s) ± (k⊥vε‖s − k⊥s) exp(ik⊥sd) = 0, (5)

where k⊥v and k⊥s are the wavevector component along the z axis respectively in vacuum and in
the slab, given by Eqs. (6) and (7):

k2
⊥v =

ω2

c2 − k2
‖
, (6)

k2
⊥s = ε‖s

ω2

c2 −
ε‖sk2

‖

ε⊥s
, (7)

with a square root determination given by<(k⊥v) + =(k⊥v) > 0.
The anisotropy is introduced by setting ωp ‖ to a different value than ωp⊥. Between roughly

ωp ‖ and ωp⊥, the real part of ε‖s and ε⊥s will have opposite signs. This is illustrated in the left
panel of Figs. 3 and 4. In this situation, with ε⊥s close to zero, we can see from Eq. (7) that k⊥s
will be real and will take large values. For any value of the slab thickness d, one can always find
an integer p such that 2k⊥sd = p2π, because k⊥s can take any large value as ε⊥s tends to zero.
Hence, the electromagnetic modes in this frequency range will have Fabry-Perot-like spatial field
distribution along the z-direction inside the slab. These modes are the QC modes that we will
study in the next section. We will show that using such modes, strong electric field enhancement
can be achieved even for large slab thicknesses.
Finally, throughout this paper and in the Appendix, we will refer to symmetric and anti-

symmetric modes considering the electric field perpendicular to the slab (Ez), as historically
used by Sarid [26] in his seminal paper on long-range (LR) and short range (SR) mode. With this
convention, the LR mode is symmetric, while the SR mode is anti-symmetric. The anisotropy
changes slightly their dispersion relation (see the Appendix for more details).

3. Quasi-confined ENZ mode

The QC modes were mostly discussed in the framework of electron-phonon interaction in
GaN/AlGaN quantum heterostructure (see [27] and citing articles) and more recently in the
context of hyperbolic materials [28,29] and quantum transport in graphene supported by h-BN [30]
where they are referred to as Hyperbolic Phonon Polaritons (HPP). In both cases, the anisotropy is
naturally present thanks to the optical phonons and wurzite structure of GaN and h-BN. However,
these modes are always calculated without taking losses into account. Furthermore, the electric
field enhancement due to the ENZ properties of the materials was not discussed so far.

We plot in the left panels of Figs. 3 and 4 the dielectric function used in our system respectively
for type I (ωp ‖ < ωp⊥) and type II (ωp ‖ > ωp⊥) anisotropy. The ENZ range (where KENZ > 20)
is represented by a green shaded area, while the frequency range where QC modes exist is
represented by a hatched area.
The solutions for the modal Eq. (5) are numerically found in the complex plane, using two

different algorithms (a home made Newton algorithm and Reticolo [31]), both yielding similar
results. We choose here a representation using complex frequency and real wavevector scheme,
as it is relevant to Local Density of Optical States (LDOS) and pulsed excitation experiments,
while real frequency and complex wavevector is more suited to propagation of fields. See [32]
for a detailed discussion

We plot in the right panels of Figs. 3 and 4 the corresponding dispersion relation of the modes
supported by a slab of 5 nm thickness. For clarity, only QC1 and QC2 are shown. In reality there
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Fig. 3. Dielectric function (left) and dispersion relations (right) for a slab with type I
anisotropy (ωp ‖ = 0.6ωp⊥). The green shaded area represent the ENZ range (see text).
The hatched area represent the frequency range where QC modes exist. In the dispersion
relations, solid lines indicate symmetric modes and dashed lines anti-symmetric modes.
ωp⊥ = 10000cm−1, γ‖ = γ⊥ = 100 cm−1, d = 5 nm.

Fig. 4. Dielectric function (left) and dispersion relations (right) for a slab with type II
anisotropy (ωp ‖ = 1.4ωp⊥). The green shaded area represent the ENZ range (see text). The
hatched shaded area represent the frequency range where QC modes exist. In the dispersion
relations, solid lines indicate symmetric modes and dashed lines anti-symmetric modes.
ωp⊥ = 10000cm−1, γ‖ = γ⊥ = 100 cm−1, d = 5 nm.

is theoretically an infinity of such modes of higher order (see the Appendix, Fig. 12 for the type I
case).
The symmetric LR (black continuous line) enters the ENZ range for a limited wave-vector

range, where the mode gets then a strong Ez enhancement, as in [25]. The QC modes have
ωp ‖ as their asymptotic frequency at large kx , and they tend interestingly towards ωp⊥ at small
wave-vector. The first order QC mode, symmetric and anti-symmetric are the most dispersive,
higher order disperse less and less as the mode number increases.

We can clearly see that for this level of anisotropy and this slab thickness the QC modes mostly
stay in the ENZ range. The spatial electromagnetic field distribution of the different modes are
shown in Fig. 5 for the case of type II anisotropy. Results for the type I are very similar and are
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not shown here. As we get complex frequency from our modal search, we can extract the quality
factor of the modes (see Fig. 16 in the Appendix). QC modes have a slightly higher quality factor
than the LR and SR modes, but are of the same order of magnitude. For the case described in
Fig. 4, a quality factor of the order of 100 is found for QC modes, corresponding to a lifetime of
roughly 100 fs.

Fig. 5. Magnetic and electric field spatial distribution at kx = 5×107m−1) for symmetric (top
row) and the anti-symmetric modes (bottom row). The gray shaded area represent the slab.
The modes are normalized so that |H|=1 at the slab surfaces. ωp⊥ = 10000 cm−1, ωp ‖ =

1.4ωp⊥, γ‖ = γ⊥ = 100 cm−1, d = 5 nm.

The field distribution of the QC modes strongly differs from the LR and SR modes. The spatial
structure of |Ez | for the QC1 shows two nodes, and 4 for QC2. QC modes of higher order will
show more nodes. Note however that the field of higher modes varies over distances so small that
the validity of the permittivity model may fail for real materials. The fields outside the slab have
an exponential decay, typical of surface mode, and very similar to the LR and SR modes. As
can be seen in the upper right panel of Fig. 5, both QC modes have a larger enhancement than
the SR mode: the maximum of |Ez | is 73 times larger for QC1 and 296 times larger for QC1
than for the LR ENZ mode. This is simply due to the fact that the QC modes are closer to the
frequency where KENZ is maximum (≈ ωp⊥=10000 cm−1) than the LR ENZ mode. Note that
both symmetric and anti-symmetric QC mode are in the ENZ range and benefit from the strong
Ez enhancement.
From [25], we know that if we increase the slab thickness further than λp/50 ( 20nm in our

case), the symmetric LR mode dispersion relation does not reach the ENZ range and thus loses
its Ez field enhancement. For the QC modes, things are different. The dispersion of the QC mode
is stronger as the thickness of the slab gets larger, but they still tend to ωp⊥ at small wavevector.
Furthermore, the QC range is located roughly between ωp⊥ and ωp ‖ , and the ENZ range is
centered around ωp⊥. If the anisotropy is weak (ωp ‖ close to ωp⊥), then the QC range can be
completely inside the ENZ range. This is a way to control the dispersion of the QC mode and to
keep them in the ENZ range. This can be seen in Fig. 6 where we show the dispersion relation of
the modes supported by a 100nm thick slab with ωp ‖ = 1.05ωp⊥. The LR and SR modes do not
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enter the ENZ range, while the QC mode are all located in the ENZ range.

Fig. 6. Dispersion relations for a slab of 100nm thickness. Solid lines indicate symmetric
modes and dashed lines anti-symmetric modes. The green shaded area correspond to the
ENZ range, and the hatched area correspond to the QC mode range. The LR mode is not
ENZ anymore. ωp⊥ = 10000cm−1, ωp ‖ = 1.05ωp⊥, γ‖ = γ⊥ = 100 cm−1, d = 100 nm.

The fields distribution of different modes are shown in Fig. 7, for kx = 5 × 107m−1.The LR
mode does not have any enhancement of |Ez | (top right in Fig. 7) as it is not in the ENZ range.
The electromagnetic field profile of the LR and SR are the "usual" distributions with exponential
decays inside and outside the slab. On the other hand, the QC mode are located entirely in the
ENZ range. They show a clear |Ez | enhancement and their spatial field distribution spans along
the whole thickness of the slab with the same structure as in the thinner slab. Note that in this
configuration, QC1 is the furthest away from the ENZ frequency (ωp⊥), meaning all higher order
QC modes have a larger enhancement. This is seen for QC2 in Fig. 7, but higher order QC modes
are not represented for clarity reasons (see Appendix, Fig. 13). Higher losses change only very
slightly the dispersion relations.
To summarize our findings, QC mode can show a strong Ez enhancement due to the ENZ

properties of the slab material when their dispersion relation enters the ENZ range. This happens
naturally at small wavevector and can be controlled by the level of anisotropy. Remarkably, a
small anisotropy (ωp⊥ close to ωp ‖ in our case) keeps the QC mode in the ENZ range. The
obtained enhancements are larger than the classical ENZ mode as the modes frequencies come
closer to the frequency where KENZ is maximum. The electromagnetic field distribution shows
complex structures spanning over the whole slab thickness, even for very large slabs. More
importantly, QC ENZ mode can still exist for thick slabs. This make them good candidates for
the design of absorbers, or efficient non linear materials, as the interaction volume can be large
while still benefiting of a strong field intensity.
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Fig. 7. Magnetic and electric field spatial distribution at kx = 5 × 107m−1 for symmetric
modes (top row) and the anti-symmetric modes (bottom row). The gray shaded area
represent the slab. The modes are normalized so that |H|=1 at the slab surfaces. ωp⊥ =

10000 cm−1, ωp ‖ = 1.05ωp⊥, γ = γ⊥ = 100 cm−1, d = 100 nm.

4. Quasi-confined mode excitation

In this section, we briefly discuss how to excite the QC mode. First, we consider a dipolar
point-like source located at 10 nm above a 200 nm slab of anisotropic materials (ωp⊥ =

10000cm−1, ωp ‖ = 1.4ωp⊥, γ‖ = γ⊥ = 100 cm−1), with different dipole orientations. Figure 8(a)
shows the Purcell factor (P/Pvac, where P is the power emitted by the dipole above the slab,
and Pvac the power emitted by the dipole in vacuum). We can see a strong enhancement around
8000 cm−1 corresponding to the LR mode of the slab. An enhancement of around one order of
magnitude can be seen between ωp⊥ and ωp ‖ , corresponding to the QC modes. This limited
enhancement, despite the large number of modes can be explained by the very strong confinement
of the QC modes inside the slab, leading to a poor overlap of the dipole and QC modes field.
Then, we turn to the classical Kretschmann configuration, using a silicon prism (nSi = 3.5).

Figure 8(b) shows the absorption as a function of frequency and wavevector. Between ωp⊥

and ωp ‖ ,we can clearly see the QC modes, that still exist in this non-symmetrical dielectric
environment. The coupling in this configuration is strong but the absorption clearly decreases as
the frequency goes to ωp⊥ = 10000cm−1. The vacuum light line is represented as a green line.
The QC modes still exist inside the light cone, which means that they could be directly excited by
vacuum propagating light. This can be seen in Fig. 15 in the Appendix.

We represent in Fig. 8(c) the spatial distribution of |Ez | as a function of z and frequency for
the Kretschmann configuration, for an incident angle of 50 degrees. This angle corresponds
to the dashed red line in Fig. 8(b). The structure of the QC modes in this configuration looks
like the one from Figs. 5 and 7. The mode at 13000 cm−1 is the QC 1 anti-symmetric mode,
having two maximums at the edge of the slab. The mode at 11500 cm−1 is the QC 1 symmetric
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mode, having two maximums at the edge of the slab and one in the middle, and so on. The
corresponding |Ex | field are illustrated in Fig. 14 in the Appendix.

Fig. 8. Coupling scheme to QC modes. a) Purcell factor for a dipole point-like source placed
at 10 nm above a 200 nm anisotropic slab in vacuum for a dipole orientation along x and
z direction (ωp⊥ = 10000cm−1, ωp ‖ = 1.4ωp⊥, γ‖ = γ⊥ = 100 cm−1). b) Absorption as
a function of wavenumber and wavevector, in Kretschmann configuration using a Silicon
prism with a 200 nm slab of anisotropic material on top of the prism, with same parameters
as in a). c) Absolute value of the electric field (|Ez |) along the z direction as a function of
z and frequency, in the Kretschmann configuration for an incident angle of θi= 50 degree
(dashed red line in b). The incident field has a unity amplitude.

We note that QC modes have been observed by other groups with other methods. Signature
of electrical excitation of QC modes have been reported for electrons travelling in a graphene
sheet supported a h-BN thin film [30]. Direct observation of QC modes have been reported by
apertureless scattering interferometric near-field optical microscopy on a 150 nm thick h-BN
film [33].

5. Materials with anisotropy

In this last section we discuss briefly the materials that exhibit uniaxial anisotropy and could
be used to design active devices like optical modulator, detectors or sources. In particular, the
enhanced electric field in the direction perpendicular to the slab interface is of great interest
for interactions with intersubband transitions in semiconductor quantum wells as they interact
only with this component of the electric field. To have QC mode with strong electric field
enhancement, we need a combination of anisotropy of type I or type II, and an ENZ dielectric
function in the z direction.

5.1. Natural materials

Both of these conditions are naturally found in crystalline wurzite systems (GaN, AlGaN, h-BN,
SiC-4H and SiC-6H, sapphire) close to their longitudinal optical phonon frequency. They usually
lie in the far infrared (wavelength > 7µm). At the LO phonon frequency in the z direction, the
dielectric function is ENZ with low losses (depending on the crystal quality). Because of the
anisotropy in the crystalline structure, the LO phonon in the (x,y) direction is shifted compared
to the z direction and can lead to type I or type II anisotropy.

As discussed in this paper, and experimentally shown in numerous publications, free electrons
in doped semiconductors can lead to ENZ dielectric function. Anisotropy in the crystalline
structure can lead to an anisotropy in the effective mass of the electrons, leading to different
plasma frequencies in different directions.
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5.2. Quantum materials

The dielectric function of a quantum well (QW) with intersubband transitions can be described
by an anisotropic tensor, where the electrons in the well are described by a Drude model in
the direction perpendicular to the QW growth direction, and by a resonant term in the growth
direction describing intersubband transitions. These transitions are well studied, in particular in
the GaAs/AlGaAs system. We also note that using strongly doped large QW, collective behavior
of electrons can lead to a redistribution of the energy levels and generate a strong transition [34].
The condition to have ENZ behavior is to have a transition strong enough so that it can overcome
the matrix static dielectric function to effectively obtain a negative real part of the dielectric
function, and a long lifetimes (low losses), to obtain good ENZ properties.

5.3. Artificial metamaterials

The important conclusion of this study is that the ENZ-enhanced QC modes exist for large slab
thicknesses, and have an electric field that spans along the whole slab. This implies that the
mode can "see" a metamaterial as an effective medium. Lamellar metamaterials, also known as
hyperbolic materials can be described with the help of an uniaxial anisotropic effective dielectric
function. An anisotropy of type I or type II, as well as a designed ENZ wavelength, can be
achieved by combination of metals and dielectrics, transparent conductive oxide and dielectrics,
or doped and un-doped semiconductors.

6. Conclusion

In this paper we used a simple toy model to study the electromagnetic modes supported by a slab
of anisotropic material showing type I or type II anisotropy and ENZ properties. Both types of
anisotropy lead to the appearance of QC modes. We showed that these modes can present strong
electric field enhancement due to the ENZ properties of the slab. Even for thick slabs, the spatial
electromagnetic field distributions of the QC modes spans over the whole thickness of the slab,
with strong electric field enhancement typical of ENZ modes. This features opens the way for
metamaterial designs, where the level of anisotropy can be tuned to keep the whole QC modes
dispersion relation in the ENZ range. An important remaining question is the coupling of the QC
modes to propagative light. Our calculation show that some modes stop at the light line, while
other cross it, with a small discontinuity in the imaginary part of the mode. Our understanding of
this behavior is limited to date and will be the subject of further study, as well as other coupling
schemes.

7. Appendix

7.1. Dispersion relation derivation

We recall the Maxwell equation without sources and external charges:

∇ · D = 0, (8)
∇ · B = 0, (9)

∇ × E = −
∂B
∂t
, (10)

∇ ×H =
∂D
∂t
. (11)

We study transverse plane waves propagating along the x direction and polarized with the
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electric field along the xz plane (TM polarization)

E =

©«
Ex

0

Ez

ª®®®®¬
, (12)

H =

©«
0

Hy

0

ª®®®®¬
. (13)

We look for exponentially decaying fields away from the slab interfaces. Using convention
from Fig. 1, we have:

Hy1 = Ae−ik⊥vzei(k‖v x−ωt), (14)

for the field in above the slab (z<0). Below the slab (z>d), we have:

Hy3 = Aeik⊥v (z−d)ei(k‖v x−ωt). (15)

Inside the slab, the fields are described by two exponentially decaying fields from both interfaces:

Hy2 =
(
Beik⊥s (z−d) + Ce−ik⊥sz

)
ei(k‖s x−ωt). (16)

Using Ampere’s law (Eq. (11)), we can express Ex :

Ex =
1

iωε0ε‖

∂Hy

∂z
. (17)

This gives explicitly, at time t=0 and position x=0:

Ex1 = −
k⊥v

ωε0ε‖v
Ae−ik⊥vz, (18)

Ex2 =
k⊥s

ωε0ε‖s

(
Beik⊥s (z−d) − Ce−ik⊥sz

)
, (19)

Ex3 =
k⊥v

ωε0ε‖v
Aeik⊥v (z−d). (20)

From the continuity of Hy and Ex at z=0 and z=d we get the following system of equations:

Be−ik⊥sd = C

k⊥s
ε‖s
−

k⊥v
ε‖v

k⊥s
ε‖s
+

k⊥v
ε‖v

, (21)

Beik⊥sd = C

k⊥s
ε‖s
+

k⊥v
ε‖v

k⊥s
ε‖s
−

k⊥v
ε‖v

. (22)

By inserting Eq. (21) into Eq. (22), we end up with the following relation:(
k⊥v
ε‖v
+

k⊥s
ε‖s

)2
=

(
k⊥s
ε‖s
−

k⊥v
ε‖v

)2
exp(2ik⊥sd), (23)

which can be written as the dispersion relation shown in Eq. (5), with ε‖v = 1.

                                                               Vol. 27, No. 9 | 29 Apr 2019 | OPTICS EXPRESS 12327 



Fig. 9. Dispersion relations for a slab of 2nm thickness. Solid lines indicate symmetric
modes and dashed lines anti-symmetric modes. The green shaded area correspond to the
ENZ range. ωp⊥ = 10000cm−1, γ‖ = γ⊥ = 100 cm−1, d = 2 nm.

7.2. Effect of anisotropy on LR and SR modes

The global behavior of the LR and SR mode is similar to the isotropic case, except for a change
of the asymptotic frequency. This is shown in Fig. 9.
Âń
In particular for a strong anisotropy, the asymptotic frequency of the LR and SR modes enters

the ENZ frequency range. The asymptotic frequency can be determined for the expression of k ‖
in the case of a single interface between air and the anisotropic material [35]:

k2
‖
=
ω2

c2
ε⊥(1 − ε‖)
1 − ε⊥ε‖

. (24)

The asymptotic frequency correspond to the frequency when k ‖ , i.e. when 1 − ε⊥ε‖ = 0. When
we inject our Drude model in this expression we find that the asymptotic frequency ωasympt is
given by:

ωasympt =
ω2

p ‖
ω2

p⊥

ω2
p ‖
+ ω2

p⊥

, (25)

where losses were neglected for simplicity. From Eq. (25), it appears that ωasympt will never
reach ωp⊥ (maximum ENZ). However,we can try to get ωasympt as close as possible to ωp⊥. For
this we can write ωasympt = aωp⊥ in Eq. (25), and we get and expression for ωp ‖ :

ωp ‖ =
a

√
1 − a2

ωp⊥. (26)
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Fig. 10. Dispersion relations for a slab of 2nm thickness. Solid lines indicate symmetric
modes and dashed lines anti-symmetric modes. The green shaded area correspond to the
ENZ range. ωp⊥ = 10000cm−1, γ‖ = γ⊥ = 100 cm−1, d = 2 nm.

The function clearly tends to infinity for a=1, but for a=0.9, one gets ωp ‖ = 2ωp⊥, and for a=0.99,
ωp ‖ = 7ωp⊥. These values are high but sufficient for the asymptotic frequency to be in the ENZ
range. This implies that the symmetric LR mode will be in the ENZ range, independently of its
wavevector. This is in strong contrast with the isotropic case where the mode enters the ENZ
range only for a limited wavevector range as described in [25]. If the slab thickness is increased,
the dispersion relation of the symmetric and anti-symmetric modes reach their asymptotic value
for smaller wavevector. It is then possible to bring even the anti-symmetric mode in the ENZ
frequency range, where Ez is strongly enhanced (see Fig. 10).

However this comes at the cost of strongly confined electric fields, with decay length so short
inside the slab that the Drude models used in our calculation might fail (see Fig. 11). The strong
anisotropy requirements, and the electromagnetic field distribution confined at the slab surfaces
with decays close to the limit of locality for the definition of the dielectric function makes the LR
anisotropic ENZ mode not so attractive for applications.
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Fig. 11. Electromagnetic field distribution for the LR symmetric mode (top row) and
SR asymmetric modes (bottom row) for different levels of type II anisotropy. ωp⊥ =

10000cm−1, γ‖ = γ⊥ = 100 cm−1, d = 2 nm.
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7.3. Dispersion relation in color plot for a thin slab

See the colormap plotted in Fig. 12. The quantity plotted is:

log
(

1
|DR|

)
, (27)

where DR is the left part of Eq. (5), with ± = + for symmetric modes (left) and ± = − for
anti-symmetric modes (rigth). Losses have been reduced to 10 cm−1 for clarity. Modes appear as
yellow lines.

Fig. 12. Color plot of the dispersion relation for symmetric (left) and anti-symmetric (right)
modes The plotted quantity is 1/|log(δ)| where δ is the left term of Eq. (5). Losses are
divided by 10 for clarity of the plot. ωp⊥ = 10000cm−1, ωp ‖ = 1.4ωp⊥, γ‖ = γ⊥ =

10 cm−1, d = 5 nm.

7.4. Dispersion relation in color plot for a thick slab

See Fig. 13. Same comments as the previous section.

7.5. Coupling to QC modes

In Fig. 14 we represent the spatial distribution along the z direction of both |Ex | and |Ez | as a
function of frequency, at an angle of 50 degree, for a 200nm anisotropic slab on a silicon prism,
with ωp⊥ = 10000cm−1, ωp ‖ = 1.4ωp⊥γ‖ = γ⊥ = 10 cm−1, d = 200 nm. This corresponds to
Figs. 8(b) and 8(c) in the article.

In Fig. 15 we present the absorption for an anisotropic slab surrounded by vacuum, as well as
the spatial distribution along the z direction of both |Ex | and |Ez | as a function of frequency, at
an angle of 50 degree, with ωp⊥ = 10000cm−1, ωp ‖ = 1.4ωp⊥γ‖ = γ⊥ = 10 cm−1, d = 200 nm.

7.6. Quality factor of the mode
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Fig. 13. Color plot of the dispersion relation for symmetric (left) and anti-symmetric
(right) modes The plotted quantity is 1/|log(δ)| where δ is the left term of Eq. (5). Losses
are divided by 10 for clarity of the plot. ωp⊥ = 10000cm−1, ωp ‖ = 1.1ωp⊥γ‖ = γ⊥ =

10 cm−1, d = 100 nm.

Fig. 14. Electric field spatial distribution ( right: |Ez |, left: |Ex |) along the z direction as a
function of wavenumber, in Kretschmann configuration, with a silicon prism, at an incident
angle of 50 degree. The slab is 200 nm thick, with ωp⊥ = 10000cm−1, ωp ‖ = 1.4ωp⊥γ‖ =

γ⊥ = 10 cm−1, d = 200 nm.
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Fig. 15. Left: absorption as a function of wavenumber and wavevector, for 200 nm slab
of anisotropic material in vacuum. (ωp⊥ = 10000cm−1, ωp ‖ = 1.4ωp⊥, γ‖ = γ⊥ =

200 cm−1).Middle: Absolute value of the electric field (|Ez |) along the z direction as a
function of space and frequency, in the Kretschmann configuration for an incident angle of
θi= 50 degree. Right: Corresponding |Ex | field distribution.

Fig. 16. Quality factor of the modes for a slab with type II anisotropy (ωp ‖ = 1.4ωp⊥),
corresponding to the dispersion relation of Fig. 4. Solid lines indicate symmetric modes and
dashed lines anti-symmetric modes. ωp⊥ = 10000cm−1, γ‖ = γ⊥ = 100 cm−1, d = 5 nm.
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