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Abstract:

In this paper we implement the stretched-coordifradectly Matched Layer (PML)
technique iTexeiral998blto emulate full power absorption outside the satiah domain
for time-harmonic electromagnetic wave propagationpresence of gyrotropic dielectric
tensor and curved geometry relevant for magnetm@adma devices. We recall the PML
formulation as an artificial inhomogeneous lossydmm, following the stretching into the
complex plane of a general system of three orthalgomrvilinear coordinates. We apply the
general method in cylindrical and toroidal geonestriwe then assess this technique in a
simple case combining gyrotropy and coordinate atume. Our test problem analytically
guantifies the reflection of Transverse Electri&)Tcylindrical eigenmodes in a gyrotropic
medium by a radial PML in cylindrical geometry. Toletained reflection coefficient involves
wave, PML and geometric parameters at the PML iocaiThe new coefficient generalizes
the one obtained earlier with Cartesian coordinaed becomes equivalent when the effects
of the local cylindrical curvature at the PML (s¢tiged) location can be neglected. These
curvature effects are outlined and the limitatitresy impose on the properties of the PML are
guantified as a function of the relevant parameteeculiarities related to the gyrotropy are
also highlighted. Finite element calculations ofe tikest problem in two-dimensional
cylindrical geometry are exploited to verify thegmperties numerically. Indications are
finally given on how to choose the PML parametersorder to obtain a minimal wave
reflection at given numerical cost, taking into @act errors associated with the numerical
scheme.
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. Introduction

This paper deals with the numerical simulation iofietharmonic electromagnetic
(EM) wave propagation. In such problems the timevumic Maxwell’'s equations in the
medium are complemented with suitable boundary itiong. In finite difference or finite
element calculations of EM wave propagation, Pdsfeblatched Layers (PMLs) aim at
emulating radiation at infinity inside a boundeghglation domain. For some applications, the
EM waves are fully absorbed at finite distance fribra wave launchers. But this distance is
still too large to include the damping region ire tBimulation domain with reasonable
computing resources, or the damping mechanism térgimulated easily. In these cases
PMLs also apply, but they can be introduced at uaukcationsge.g.the inner part of the
simulation domain instead of its outer boundaryisTUmusual setting will be met in the paper,
but the results obtained also apply to more stahBMLs after minor adaptation.

In complex media such as cold magnetized plasneasiiing a gyrotropic dielectric
tensor, gyrotropy introduces two different wavepagation eigenmodes, referred to as Fast
and Slow waves in the context of plasma phygeganson2003]in the literature PMLs were
already devised for the propagation of one eigeraraidyyrotropic media, generally in two
dimensions (2D) transverse to the direction of @nipy, and described by a scalar
Helmholtz equationVelasco2009] This result was recently extended in 3D for the t
eigenmodes, described by a vector time-harmonic ewaquation [Gondarenko2004]
[Jacquot2013] ReferenceBécache2017]explored the transient EM pulse propagation in
uniaxial media using the Finite Difference Time Dmm(FDTD) method and PMLs adapted
for each eigenmode. Referenddacquot2013]implemented PMLs adapted for cold
magnetized plasmas at the edge of (flattened)dalanagnetic fusion devices in the Radio-
Frequency (RF) module of the COMSOL finite elemsolver[COMSOL]. As first proposed
by [Texeiral998a]PMLs were defined as artificial inhomogeneous lossslectric and
magnetic media, where the standard equations ofret/namics could be applied. This was
achieved by stretching the conventional Cartes@ordinates of a flattened tokamak along
prescribed trajectories in the complex plane.

For many realistic applications however, using €adn coordinates appears to be a
limitation. Flattening a toroidal tokamak is an eppmation, historically intended to enable
using spectral methods of EM wave simulation. Tihet$ of this approximation have been
explored both by modelling.ouche2011] [Jacquot2015] [Milanesio201afjd experiments in
several frequency rangé¢Bilato2004], [Ekedahl2015]Cartesian PMLs can sometimes be
kept in a curved geometry if the plasma-PML bougpdamains flat. This is however not
always possible, and in practice it might be irgdint: in uniaxial media for example,
referencgBécache2017$howed it necessary to stretch space along direcedher parallel
or perpendicular to the anisotropy. Otherwise pgapiae forward and backward waves might
coexist, one of which cannot be damped by the PMLview of simulating cylindrical RF
plasma discharges.g. Capacitively coupled discharg¢saudot2015],helicon discharges
[Crombé2015], [Furno2017/Jion cyclotron-heated onegCrombé2015], [Gekelman201)]
toroidal devices (tokamaKdacquot2015]or even more complex geometries (stellarators) in
a more realistic way, it is therefore tempting teeteh the spatial coordinates along the
principal directions defined by the device geomaing/or the anisotropy of the medium.

Stretching curved coordinates reveals also usefulvave scattering problems. To
reduce the computational cost, it is convenieritniit the simulation domain to the vicinity
of the scattering object. The outer boundary of tdomain then adopts a potentially
complicated shape similar to that of the objectcltak such boundary, so called “conformal
PMLs” [Texeira2001], [Donderici2008%tretch space in a direction locally normal to the
scattering surface. The “locally conformal PM[Ozgun2007], [Smull2017xtends the
former technique to challenging geometries witlerifstces having curvature discontinuities.
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When moving from Cartesian to curved coordinaties,differential operatorsot(.)
and div(.) appearing in Maxwell's equations modtigir forms, due to the local curvature of
the new coordinate systeni8ngot1972] To deal with these modifications, several PML
reformulations have been proposed [ihexeiral998b]for a general system of three
orthogonal curvilinear coordinates: (a) one withtbb@omplex stretching with original
dielectric and magnetic tensors and (b) the seowitd real coordinates and modified
(anisotropic) tensors. The latter “stretched-camath PML” amounts to replacing the wave
propagation medium with an artificial anisotropithomogeneous one that can be easily
implemented in standard full-wave solvers for Makiweequations in the frequency-domain.
In the adapted dielectric tensors and in the PMiperties, not only the stretching functions
but also the stretched coordinates appear, accgufdr the local curvature of the coordinate
system. Several Finite Difference and Finite Eletmiemplementations and analyses of the
PML for isotropic media in orthogonal curvilineaoardinates can be found in references
[Texeira2001], [Ozgun2007], [Donderici2008], [SnadL7]}

One can anticipate that curvature effects mightifgdtie wave-reflection properties
of the PML, sometimes in an undesirable way. Fangxe, referencflexeira2001}showed
that a conformal PML defined over a convex termorasurface (as viewed from inside the
computational domain) leads to dynamically unstabtdutions when using the FDTD
scheme. In Cartesian geometry a standard assesshtbesse PML properties is to quantify
the reflection of propagative or evanescent plaaees in homogeneous media as a function
of the relevant simulation parameters. This wasedextensively ifJacquot2013for plane
waves in gyrotropic media. Criteria of low reflesticould be established for tuning the PML
parameters. Limitations were also outlined wherpagative forward and backward waves
coexist in the PMLs, a peculiarity of anisotropiedra. While plane waves are well suited for
PML benchmark in Cartesian geometry, they are @dliyanot adapted in curved coordinates,
and alternative test-problems should be looked for.

The present paper aims at implementing the PMLnigcie for time-harmonic EM
wave propagation in gyrotropic media and in cungabmetries relevant for magnetized
plasma devices. A second goal is to assess thiaitpe in a simple case exhibiting both non-
diagonal dielectric tensor and coordinate curvatknestly we recall the stretched coordinate
PML formulation proposed ifirexeiral998b] and apply it to cylindrical and various toroidal
coordinates. Secondly, in the particular case dhdsical geometry, we define analytical
criteria for low reflection of waves by radial PML\&/e use for this purpose cylindrical waves
that play in cylindrical geometry an equivalentera@ls plane waves in Cartesian coordinates.
Cylindrical eigenmodes of gyrotropic media are Hedawhen the direction of anisotropy is
along the axis of the cylinder. The PML reflectioniteria for the Transverse Electric
eigenmode involve wave, PML and geometric pararaetérthe PML location. The new
results generalize those obtained earlier, andrbeamuivalent when the effects of the local
cylindrical curvature at the PML (stretched) looatican be neglected. Curvature effects are
outlined and the limitations they impose on theperties of the PML are quantified as a
function of the relevant parameters. Peculiaritedated to the gyrotropy are also highlighted.
Finite Element calculations of the test problen2 cylindrical geometry are exploited to
guantify these properties numerically. Indicatians finally given on how to choose the PML
parameters in order to obtain a minimal wave réfhecat given computational cost, taking
into account errors associated with the numerida¢e.
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[1.PML formulation in curved coordinates as an artificial lossy dielectric
medium
Throughout this paper we consider time-harmonic #ts oscillating in time as
exp(+iapt) at pulsationwy. In the 3-dimensional (3D) Euclidian space, the #\tds E andH
evolve according to Maxwell’s equations in the freqcy domain
rotE = -iwB
rotH =+iwD +],,
divD = p,,
divB =0

(I1.1)

In equationgll.1) the oscillating currenty, imposed on the antenna structures, as well
as the oscillating antenna space chaage were isolated from the self-consistent respotiise o
the medium toK,H), incorporated in the linear local constitutivéatens

D=g(w)E ; B=p(a)H. (1.2)

Tensorsg(apy) and p(ap) can take very general forms. In referen¢®achs1995],
[Gedneyl1996],[Texeiral998],stretching the usual Cartesian coordinates intocthraplex
plane was found beneficial to emulate radiatingriolauy conditions in a PML for problem
(I1.1). This section recalls the PML extension obtainefiTexeiral998b] by stretching the
three principal directions defined by an orthogosydtem of three curved coordinates. We
focus on this method because it can be easily mmgited in standard frequency-domain
Maxwell's equations solvers. Besides, for isotropiedia and Cartesian coordinates,
referencgShin2012]showed that the stretched-coordinate PML resulsgnificantly faster
convergence than the alternative uniaxial PML frative Finite Difference Frequency
Domain solvers. The formulation is subsequently liedpto cylindrical and toroidal
geometries.

A. Recall of PML formulation in orthogonal curved coordinates

In the 3D Euclidian space, we consider an orthogae of three curvilinear
coordinates ,v,w) such that Ou.Ov=0Ov.Ow=0Ow.Ou=0 everywhere. The system is
characterized locally by the elementary distasedefined as:

ds? = h?(u,v,w)du? + h2(u,v, w)dv? + h(u,v, w)dw? (1.3)

In the PML the spatial coordinates,\(\w) are artificially stretched according to the
rules

u-t,(u)=u, +j S, (t)at

(Il.4a)
vt (v)=y, +f S, (t)at (I1.4b)
wot, (w)=w, +LVVV S, (t)at (I.4c)

The triplet (1o, Vo, Wo) as well as the stretching functionS,((1), S(v), Su(w)) are
arbitrary and can be chosen conveniently for thguired application. In particular, the
stretching can be extended to the complex plangoA€artesian frames it is essential that
Si(u) depends only oru, S(v) on v and Sy(w) on w. Each coordinate is stretched
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“perpendicular to the other ones”: the stretchedrdimate system remains orthogonal and a
relation similar tq(11.3) applies, with metric elements evaluated at stextdbcation, such as

hy(tu(u), t(V), tw(W)) =heu(u,v,w) (11.5)

If the stretching extends to the complex plamg,h, andhy, might become complex,
whereas they should be real positive before thetctting. Stretching functions are equal to 1
in the main simulation domain, where the propertiethe original medium are preserved. In
the PML, on the contrary, we request that the nesallEM fields Epvi, Hpm) at location
(u,v,w) be the solutionsH, H) of the original wave problenil.1) evaluated at stretched
location €,(u), t.(v), tu(w)). To this end, probleril.1) is replaced with a modified one

rOts(EPML (U!V1 W)) = —iapuH py, (U1V1 W)
I’OtS(H PML): [ ahgE oy + ] o

diVS[SEPML ] = Pant
diVs[l‘H PML ] =0

(11.6)

whererotg(.) and diy.) denote the differential operators with resgecthe stretched
curved coordinates.

Let us introduce matriceéu,v,w) andA(u,v,w) as

Sh,/h, O o 1, [, 0 0],
*(uv,w)=| 0  Sh,/h, o |,=/0 %, 0], (L7
0 0 Sh.hl, |0 0 =],
55, 0 07,
Aluvw)=| 0 =5, 0 [, (1..8)
0 0 % |,

Referencqd Texeiral998bjshowed that the modified EM problefi.6) is equivalent
to
rot (ZEPML ) =i, AuZ_l)(ZH PML (U’V’ W))
rot (ZH PML ) =+, Aaz_l)(ZEPML ) + A
(Aex 2B, )|= det®)o,,
APZ_l)(ZH PML ) =0

iy (11.9)

div[

Relations(l1.9) appear as the original electromagnetic problerh), with the original
differential operatorsot(.) and div(.). However the original EM field&u,v,w) andH (u,v,w)
were replaced respectively with the artificial EMIds EEpyv)(u,v,w) and EHpm)(U,v,W).
The original and artificial EM fields coincide i& the main simulation domain, whetel
(the identity tensorand (Epmi, Hew)=(E, H). Similarly the source termgan: andjan: were
replaced respectively with d&)o..« andAjane. The original tensors and 4 were replaced
respectively with the tensorspym =(AeZ™?) and pem =(ApZ™) adapted to the stretched
coordinates. Original and adapted tensors coinoidlee main simulation domain, wheiel
andA=1. Also if tensoru is diagonal then the three matriokspu and=™ commute. For the
general dielectric tens@rone obtains.
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EUUZVZW / Zu gquW EUV\ZV u
g SAEL = £,2, &2l Z, Ene |y (11.10)
gWuZV EWVZU EWWZ UZV / ZW w

and similarly forgpm.. Equation(ll-9) shows that the problem can be implemented in
any full-wave solver for Maxwell’s equations in thhequency-domain allowing full dielectric
tensors of the typ@l-10).

B. Implementation in cylindrical and toroidal geometries.

Implementation of the PML is formally similar in @asian and curved geometries.
However the number of sub-cases is more importamt.example in the case of isotropic
media, one type of PML needs to be defined in Gamte geometry, independent of the
direction where waves need to be attenuated. Iarge types of PMLs need to be defined in
each direction. For anisotropic media the propentiethe PML depend on both the type of
coordinates and on the orientation of the directibranisotropy. Some of these cases are
investigated below. Equatidifi.10) also shows that, in curved geometry, the impleatert
of a PML depends on its spatial locatianv(w) via the stretched coordinatggu), t,(v) and
tw(w) appearing explicitly igpy. This reflects curvature effects in the new geoyet

We now treat more explicitly four concrete exampésoordinate systems of interest
for magnetized plasma devices. For reference wallrbe standard Cartesian selyz). One
of the simplest systems exhibiting curvature isdjndrical geometry. It is therefore useful
for numerical tests, but also for simulating cylicdl plasma devices. The cylindrical
coordinatesR, ¢, Z) are defined as

X = Rcosp
y =Rsing (1.12)
z=Z7

For more realistic applications in tokamaks, weddtice a system of coordinates
(r,@,60) associated to nested toroidal magnetic flux sedawith concentric circular cross-
sections.

x:[F?O+rcosé?]cos¢
y:[F\’0 +rcos€]sin¢ (1.12)
z=rsin@d

As a final example in axisymmetric toroidal georgetsuppose that we know a
tokamak magnetic equilibrium under the form of edsthaped closed magnetic surfaces. In a
poloidal cross section (plaf®Z at constani) these surfaces are labeledy4R,Z)=constant,
whereyis a known smooth function, supposed to be monofoom the innermost surface to
the outermost one. Monotony ensures thgtis nowhere null in the definition domain.

In tokamak equilibria the innermost magnetic swfa reduced to a point. At this
magnetic axislyis ill-defined. Yet for PML implementation this gaetic axis is excluded.
In this poloidal cross section we would like toidefa second coordinat such that:

- (P1) @varies monotonically from O torPalong each closed flux surface.

- (P2) 08 exists everywhere (except perhaps at the mageetiter, excluded from

the discussion)

- (P3)iso-Alines are everywhere orthogonal to gaurves
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@ can be seen as the generalization of the usualdablangle defined for concentric
circular magnetic surfaces. The orthogonality cbadi(P3)writes

Vi).V6 = 0 (1I-13)

stating thatd is constant along the streamlines_ap. These streamlines, well-defined
everywhere, intersect all the flux surfaces andndd cross one-another, except at the
magnetic axis where they all converge. In equatibf3) only the direction of1¢ matters.
When ¢ is replaced with any monotonic function @fthis direction is preserved. The
streamlines therefore do not depend on the paatiowhy to label the magnetic surfaces.
Equation(11.13) therefore allows calculating on a given flux surface from its value on a
neighboring flux surface. The problem is therefooenpletely determined onagis defined
on one flux surface. Besides, if propef@i)is fulfilled by the “boundary condition” then & i
also verified on each flux surface. Several choieasst for defining this “boundary
condition”, each of which determines a valid “gealieed poloidal angle”. Some choices are
however more convenient for practical use, bec#usg lead to a more regular grid at some
locations of interest. The coordinateg ¢, 6) form a convenient system to locate the points
in the shaped tokamak, using the squared elemeditstance

2 _ |(9R z 2z 2 2 OR z 0z 2 2 23 2
ds? = [(aw) + (aw) ]dzp + [(69) +(%5) | do? + R?dp?  (11.14)
Table 1summarizes the metric elements of the four coatdisystems. In the non-
trivial cases, some of these elements can go tg lEading to well-known singularities in the

coordinate systems. Even when they lie outsid@hliysical simulation domain, these singular
points can be reached over the stretching procestharefore deserve special attention.

Name u v w h(u,v,w) h,(u,v,w) hy,(u,v,w)
Cartesian X y z 1 1 1
Cylindrical] R ¢ Z 1 R 1
Toroidal r ¢ (2 1 Rotrcosd r

Shaped 2 2 2 2

toroidal 7} ) e \/[(G_R) + <6_Z) l R(¢,6) \/[(O_R> + <6_2> l
surfaces Y Y a6 a6

Table 1 metric elements for four coordinate systems.

Test problem to assess PML behaviour in cylindrical geometry.

Artificially stretching the Cartesian coordinategto the complex plane transforms
propagative plane waves into evanescent ones inPMe [Sachs1995], [Gedneyl1996],
[Texeiral998] It therefore introduces artificial damping in ghregion, thus emulating
radiation at infinity inside a finite simulation oh@in. Inpart Il we stretched other sets of
coordinates, assuming that this property might tesgrved in curved geometries. However
this remains to be assessed. Cylindrical geomstaywell suited test case.

A standard assessment of the PML formulation inté€S&n geometry is to quantify
the reflection of propagative or evanescent plam@es in homogeneous media (seg.
[Jacquot2013] In cylindrical coordinates some equivalents obgagating or evanescent
plane waves exist in terms of Bessel functionsthi context of plasma-filled waveguides,
cylindrical eigenmodes of gyrotropic media wereivknt in details in[Bers1963] These
results are briefly summarized section Ill.A in the case of longitudinal anisotropy. Using
these tools we then propose a test problem to &eelly quantify the reflection of cylindrical
Transverse Electric (TE) waves by radial PMLs ihingrical geometry, in presence of a
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homogeneous gyrotropic medium. We investigate miquaar how the radial curvature of the
cylinder affects the PML properties compared toGlagtesian case.

A. Cylindrical eigenmodes of gyrotropic medium with longitudinal anisotropy.

From now on we seek particular solutions of theavaguationgll.1), without source
term in volume featuring a separable form in the cylindrical cooates R, ¢, Z). The EM
guantities are requested to oscillate ER)exp(+iwt-ik,Z-img@), with k, a longitudinal
wavevectorm (integer) an azimuthal mode number, &tR) a radial structure function to be
determined. For gyrotropic media these cylindriwaves can only be well defined when the
direction of anisotropy is alongor ¢ [Bers1963] For convenience we summarize here Bers’
treatment in the homogeneous medium with longitidiranisotropy (see also
[Swanson2003] This geometry is well suited for magnetized rghical plasma devices, in
conditions when longitudinal invariance can be as=ii In this configuratiop(ay)=Lol in
formula (1.2) while the dielectric tens@(w) takes the formiSwanson2003]

eilw) +ielw) 0 g
=|-ielw) eflw) 0 |, (11.2)

0 0 gla),

In this configuration all the EM field componeiiis(R) andH+(R) transverse td can
be expressed as a function of the longitudinal BNt fcomponent&;(R) andHz(R) using
Maxwell-Ampére and Maxwell-Faraday equatiof3efs1963] eq. 9.21)

[ET(R) kT
Hr(R)] (e, —n2)? — &2

&)

VriEz |
[—inz(& —nj) Zyex nzéex +iZy(e, —n2)|| VrHz |
—Zg'njex  —ing(eL —nf) —iZy'(ef — ek —nfey) NzEx o VTEZJ
ey X VTHZ

(11.2)

In the above expression we have introduce[(;uofo]'1’2 the speed of light in vacuum,

ko=ap/c the wave-vector in vacuumpnz=kik, the longitudinal refractive index and
Zo=(tol &)*? the impedance of vacuum. In our cylindrical geaméte relevant 2D transverse

equations, the two scalar fiel&#s(R) andHz(R) are then related to each other by two coupled
second-order partial differential equatidfBers1963] eq. 9.157 and 9.158)

EZ 2 EZ —
A{Hj+koK{Hj—O (I11.3)

, O |r im/R | L .
operator isl;.= so thate, x[;.= 3 . Substituting(111.2) into Maxwell's

In this expressiodyr. is the Laplace operator transverse to anisotvapie matrix K
takes the form

K = lc‘f//(1 —nz/e))  —iZongex/el (111.4)

: 2 2
ingege  [Zoe, € —éex/eL —ng
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Eigenmodes of the gyrotropic medium are the eigetove of matrixK, associated
with eigenvaluesi?, a squared refractive index transvers&tdhe dispersion relation for
cylindrical waves writes

det(K - nél): nt —tr(K)n? +detk =0 (111.5)

Two separate roots;” generally fulfil equatior{lil.5). Below we will investigate only
media without losses in volume, for which the thdesectric constants i(lll.1) are real, but

without restriction of sign. In these conditionse teigenvalues\? are also real. When

n,&/&=0 matrix K is diagonal and the EM fields can be explicitlyitspito transverse-
electric (TE) and transverse-magnetic (TM) eigenesodith respect to directich

2 — — 2
n° =K,=g (1— n; /ED)
2 =K,=¢g,—&le,-n

OoTE

(111.6)

In our numerical tests we will also investigate EMves for magneto-plasmas in the
lon Cyclotron Range of Frequencies (ICRE)vanson2003]Such waves satisfy the ordering
len|>>kl, ||, nZ. A scale separation generally applies, allowingegturbative resolution of
(I11.5). To leading order in the ordering the refractindices are

N2ry = det ) /tr(K ) = [(gD -n2f - (sf]/(eD -n?) (11.7)
New=tr(K)=¢,{L-nZ /&,

Scale separation fails close ng=&,. Within the above ordering, the polarization of
the first mode (Fast Wave or FW in ICRF) is quaBi-T

EZ,FW _ K12 . Nnze&x (I” 8)

Hzrw B Ki1-np = 120 g//(e1-n%)
The polarization of the alternative eigenmode (SWave or SW) is to leading order

~

— ~ 1
Ezrw Kyp—nig Zo(e1—n%)

Hzrw _ K21 . Mzéx (111.9)

For eigenmodes the two equatidfit3) simplify into two scalar Helmholtz equations
AH,(R)+k*H,(R)=0 ; k?=kn? (111.10)

and similarly for ExR). In our cylindrical coordinatesir.=R'9gRog.-m?/R? and
(11.10) is a Bessel equation. When? is real positive, solutions dfll.10) with radiation
conditions at infinity are found as Hankel functdt,\P(koR) andHy®(koR) [Abramowitz]
For kaR[>>1, HnP(koR)~[2/(TkoR)] Y 2exp(+koR-iTv4-immv2), i.e. taking ko real positive this
wave behaves asymptotically as a plane wave proipggaadially inwards. Similarly
HiP(koR)~[2/(TkoR)] Y2exp(-koR-iTv4-imm/2)  propagates in the outward direction.
Evanescent waves with real negativ@ can be treated similarly by replacingfll-] and H,?
with respectively the modified Bessel functiopsahd K, of argumenti;|R [Abramowitz].

OnceEz(R) andHz(R) are determined for each eigenmode, the transyenss of their
EM field polarizations are deduced frofil.2). Finally, the full solution of the initial EM
problem(ll.1) is a linear combination of the two eigenmodes mieiteed by the source terms
and boundary conditions. If a cylindrical Perfe&dEric Conductor (PEC) is presentRdR,
the two EM field component&z(R;) and E4(R;) tangent to this boundary should vanish
simultaneously. In the general case treate{Bers1963] a mix of the two eigenmodes is
needed to fulfil the PEC boundary conditions, legdio mode conversion upon wave
reflection. However in the case of pure TE or TMd®s, solutions exist involving only one
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of the two eigenmodes. This is also approximatedydase for the FW at leading order in the
above ordering. For our test problem we will stickhese simple cases.

B. Reflection of propagative cylindrical TE Wavesin a Radial PML.

To assess the behaviour of radial
T PMLs in cylindrical geometry, we study the
artificial damping of an incoming

~Gyrotropic medium propagative cylindrical TE wave in the

dielectric tensor & central part of a homogeneous gyrotropic
° PML medium with longitudinal anisotropy. This
7 AN > situation mimics the complete absorption of
g Rok | aTE wave launched from the periphery of a
" H Wk R) %/ﬁ/ cylindrical magnetized plasma device. The
ZU R 4%% geo_metry of our tfest probl_em'ls summarized
\ Epry (R) onfigure 1 An incident cylindrical TE wave

is launched fromR- +o towardsR=0. To
A - /) attenuate artificially this incoming wave
\ H, H “(kR) E/E near the centre of the cylinder, a radial PML
- Gl is placed in a cylindrical shell betweBrR;
~_prescribed  andR=R=R;+dR Inside the PML the radial
coordinate R is stretched into tr(R).

Figure 1: sketch of TE wave reflection problem to according to the rule
assess the radial PML.

t(R) = Ry + f; Se(R)dR, Ri<R<R, (I1.11)

Let us assume that II®{(R)) adopts a given sign throughout the PML region
Ri1<R<Ry. Due to its unusual location at the inner parthef cylinder for cloaking purposes,
Im(tr(R)) will have the opposite sign in the PML regiomra PML located in the outer part
of the simulation domairik>R, in the PML and the two quantities would have thms signs.
The other two cylindrical coordinate®,(Z) are not stretched. From the above calculations
and assuming herer>>0, the radial structure of the incoming longitwdiEM magnetic
field in the PML takes the form

Hzipm (R)=HzioHm M [Kreta(R)] (111.12)

where the (complex) stretched radial coordina{® was substituted to the (real)
radiusR. The coordinate stretch preserves the TE polasizdor the artificial EM electric
field EpmL. A PEC is placed ilR=R;<R,. Alternative boundary conditions are possible ¢her
and are briefly discussed below. For example Perfdagnetic Conductor could be
convenient for TM modes. At radil®&=R; the total tangential EM electric field should v&mi
In the case of the TE modé&spy =0 and one should cancel only the azimuthal compione
Egemi(Ry). This can be fulfilled with only incident and iefted TE waves sharing the same
(kz, m), so that the alternative eigenmode is absent tt@problem. The reflected TE wave
adopts a radial structure function of the form

Hzipmi(R)=HzroHm 2 [Keretr(R)] (111.13)
Egrme is obtained fromH pwe using equation(lll.2) with the modified operator

Otr(R)- ]

R -
—im /g (R) . Egemi(R1)=0 therefore means

stz[
Y
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Hzo — - WxHrgwl)[thR(Rl)]"' (ED _ n§ )thR(Ri)Hr'n(l)[thR(Rl)]
/7theo ) 2 12) (l . 14)
Hzio —mgHy [thR(Ri)]-l-(gD _nZ)thR(Ri)Hm [thR(Ri)]

In this expression the primes denote the derivativehe Hankel functions with
respect to their arguments, and subscript TE wappdd. Equation(lll.14) defines an
amplitude reflection coefficienweo for the TE modes, whose magnitude can be used as a
figure of merit for assessing the inner PML. FoPBIL located in the outer part of the
cylinder, the two kinds of Hankel functions wouldiap their roles andyne, should be
replaced with its inverse. In the absence of coad stretchingt¢(R)=R) the PML is
replaced with an equivalent layer of gyrotropic emal and fned=1. The coordinate
stretching in the PML aims at reducinghdd as much as possible.

Nieo depends on the wave characteristigsrg, m), the dielectric tensor elements, the
PML characteristicsSz(R) as well as the PEC radial locati®. The situation is therefore
more complex than in Cartesian geometry. Howevéy thmee independent non-dimensional
parameters appear in formyl#.14): the complex argumeimttg(R;) in the Hankel functions,
the azimuthal mode number and the ratice./(&-n7%). This latter parameter is specific of
gyrotropic media. Formul@ll.14) shows that this parameter introduces asymmetrigsen
reflection of waves with opposita. Coordinate stretching only influences the firatgmeter.
To shed light into the PML properties, we therefoneestigate below the quantities
ImI=Hn KatrR)VHn P lkatr(R)Il and  fol=Hm @ [katr(R)VHm P [kctr(R)]l.  They
correspond to rkned for respectively very large or very small values me/(&-n).
Reflection coefficientr7; should also replac@ineo if [Ezpmi(R1)=0] and Hzpmi(R1)=0] were
substituted to the PEC boundary conditionsR¥R;. Reflection coefficientr7, would be
obtained with the boundary conditiorsfu (R1)=0] and PrHzpmi(R1)=0]. For increasingn,
figures 2 plot }7;1| and k.| versus the two non-dimensional real paramet&sg( YemL)
appearing in the Hankel functions:

{XPML = Re(k, tg(R))
Your, = Im(k tg(R))

ParameterYpy is similar to the one characterizing the efficigraf the Cartesian
PML for propagating plane wavdg3dacquot2013]where in this context subscriptmeans
normal to the plasma/PML interface.

|Mthed=1 for Yom =0 andXem>0. Since B[ Xpmi-i Yeu]=Hm @[ XpwmitiYem]  (Where
" denotes complex conjugate),eo is transformed into meg whenYpu — -Ypue. Concretely
this means that the PML cannot be tuned to attensiatultaneously EM waves with real
positive and real negativie;.. As discussed ifJacquot2013]Bécache2017this might be
problematic in some anisotropic media where profpagdorward and backward waves can
coexist.Figures 2plot only the half-plan&py>0.

Taking Ypm >0 generally reducesyjed, but not always: contrary to the equivalent
Cartesian PML/}ned can exceed 1 and reach very high values foripesiby . This arises
when Egpmi(R1)=0 for the reflected wavern reaches very high values near the complex
zeros of H®, and similarly for 4, near the complex zeros of £f. Form=0 these zeros all
lie in the half-planeXpy <0. Asm increases some zeros are progressively displaveards
Xpm>0. It is therefore important to tune Bg(R)) so that this zone of the complex space is
avoided. Comparing the maps fag||and .| shows that the zeros can also be displaced in
the plane XemL, YpmL) by changing the boundary conditionsRaR;.

(I11.15)
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Figure 2: 2D Contour plots of| (left panels) andr},| (right panels) in logarithmic scale versugyX and
YemL, fromformula (111.16), for increasing azimuthal mode number m. One aanlitoe every 2.5dB. First solid
contour line corresponds tay|=1.

Unlike the Cartesian case, the PML properties fayppgative cylindrical waves
depend onXpy. This parameter can be seen as a normalized rpdgtion of the PEC
boundary in the stretched coordinatésy, can change either by moving physically the PEC
radiusR; or by acting on the real part of the stretchingction. The second method amounts
to artificially displacing the PEC radial positidsowards a region of different radius (even
possibly negative!). The dependencerafo, on Xpm. can be interpreted in terms of local
curvature effects at the stretched PML location.

In the limit of large XemLt+iYpmi| With positiveXpy one findgAbramowitz]

IHn [ Xemait 1 Yemid/Hm [ Xemit i Yomd |~
|Hm’(1)[XpM|_+ tiML]/H m’(z)[xPML"' iYPML] |"'eXp('2{PML)E|/70art| (I “16)

i.e]m|, and f.|, and thereforenjhed as well, converge to the same valgeal|,
independent ofXpm, M) and characteristic of Cartesian PMlsicquot2013]However the
minimal Ypy to reach this asymptotic regime depends X, m): the higherm and the
lower Xpmi, the higherYpyq. should be. In the Cartesian case, referenBesnjudez2007],
[Cimpeanu2015]highlighted the merits of unbounded stretchingcfions such that the
imaginary part ofYpy. reaches infinity. In this cas@d.| is expected to be 0 and the only
residual wave reflection is that introduced by tmemerical scheme for solvingl.9).
Formula(lll.16) shows that this favourable property is preservedyimdrical coordinates.

The parametric region aroungey +iYpm =0 appears unfavourable for low wave
reflection by the PML. At fixed PML extensiadR, low values oiXpy. andYpy are reached
for low kg, i.e. for waves propagating nearly parallel to the p@$tvL interface, similar to
the Cartesian casplacquot2013] The size of the unfavourable region gets largemas
increases: for givenXemi,Yemr), @ critical value ofm always exists above which the PML
loses efficiencyFigures 3map as a function o6y, Ypmr) the lowest value om for which
the amplitude ratio exceeds 0.1.flgures 3this value ism=0 for Ypy.<1.2. The criticaim
value increases with botk-y. andYpm. It can therefore be made arbitrarily high by @op
PML tuning. In practical applications, only a fmihumber of azimuthal harmonics need to be
resolved. The PML can always be tuned so thamtres efficient up to this maximum. In
particular stretching the real part Bf can be beneficial if it moves artificially the PEC
location towards regions of lower curvature. Largeordinate stretching however produces
larger radial variations apy (R) and therefore can impose a finer discretizatibthe PML
region.
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Lowest m for which || >0.1 Lowest m for which |, | >0.1

930 =20 —-10 0 10 20 30 930 =20 —-10 0 10 20 30
a} Xpur b) Xpar

Figure 3: Lowest value of azimuthal mode numbeomwhich the amplitude ratios exceeds 0.1, versus
(Xpm, Yemo)- @) 171[>0.1, b) 7./>0.1.

C. Réflection of evanescent cylindrical wavesin aradial PML.

Whenk-? is real negative for the TE mode, a similar arialgs before can be made
for waves that are evanescent inwaras,waves growing radially as expk#R) for largeR.
In formula(l11.14) the Hankel functions H" and H,®) should be respectively replaced with
the modified Bessel functions,land K, [Abramowitz]. In the absence of coordinate
stretching, the equivalent af; writes Kn(Xy)/Im(X1), whereX;=|k-|R; is a real normalized
radius at PEC location. After the stretching, argomX; should be transformed into
X1+ Xpm+iOYpu Where

{5XPML = |k, |[Re(tr(R) + Ry — Ry)]
Ypuy = |kJ_|Im(tR(R))

Figures 4 therefore plot the ratio
|73]=| Kn(Xa+ IXpmi+i OYemu )/ Im(Xat+ HKpmi+ OYpm) [FIm(X)/Km(X1) — versus  (HKpwmi, OYemL)-
Only positive dYpm. are shown since negativdpm. produce a similar resultgd is 1 for
(XpmL, dYpm)=(0,0) and should be ideally as low as possibte. gtven oYpu, Xemi >0 is
always beneficial for attenuating the reflected &v@ompared taXpw =0, while dXpm <0
might be very detrimental, especially closedpy =-X;. For positivedXpy, adding dYpmy IS
generally beneficial but not always. For large pesi X, |Kn(X+iY)/In(X+i1Y)|~exp(-
2X)/2[X+iY| and one recovers a result similar to the Caresage.

(I1.17)
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Figure 4: 2D contour plots of amplitude ratigs| (in logarithmic scale) versugXpwm, SYpmi) from (111.18)for
X;=2.0 and for the first four values of azimuthal reatumber m. One contour line every 2.5dB. Firgtisol

contour line corresponds tap|=1.

V. Numerical testsof radial PML with gyrotropic media using 2D finite
elements,

The test problem for propagative cylindrical TE wavproposed irpart Il was
implemented with finite elements in two dimensio2®), and the wave reflection was
quantified from the simulation output. This alloassessing numerically the analytical figure
of merit ineo from (111-14). Simulations also illustrate specific features &nutations of the
PML in cylindrical geometry. We finally investigaémhanced PML reflection associated with
the finite element discretization of the simulataiomain. We outline how to choose the PML
parameters in order to obtain a minimal PML reftattat given numerical cost, taking into
account the discretization.

A. Simulation and post-processing protocols

Using the COMSOL finite element solM&@OMSOL], the test problem was simulated
numerically in the 2D (radial, azimuthal) geomgfRy@) sketched ofigure 1, with EM fields
assumed to vary as exp¢d) in the out-of-plane longitudinal directiach COMSOL includes
a built-in module to simulate the standard EM peaobl(ll.1) with standard boundary
conditions and any user-defined material of t{§p&), possibly inhomogeneous in space. All
over the main simulation domain, the homogeneoustmpic dielectric tensoflll.1) was
applied. A PML was implemented in the inner parttioé simulation domain. When not
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precised, the artificial inhomogeneous tengpgs (R) andpew (R) from (11.10) were applied
there, where is still from (111.1).

Although this choice is non-restrictive, we perf@mmost of our numerical tests
using polynomial stretching functions, for easiemparison with earlier work in Cartesian
coordinategJacquot2013]Specifically

SK(R)=1-(S+i S")[| Ro-RI/RIP, Ri<R<Ry (IV.1)
From this one can defing(R) explicitly as

S +is'(R,-R\™
R - tz(R)=R+ R, Ri<R< V.2
«(R) p+1( = j 1<R<Ry (IV.2)

. Fromtable 1 matrix Z(R) in formula (I1.7)takes the following form

Sz(R) 0 0
0 tg(R)/R 0
0 0 1

It differs from a Cartesian-like PML formulation taynon-trivial termZ4R)=tr(R)/R
in the azimuthal direction. The PML medium featuoesnplex dielectric tensor elements,
introducing artificial losses in PML volume. Bessdéhe three diagonal elementsegf (R)
are different from each other apgyv (R) becomes non-trivial. A PEC was implemented at
the inner radial boundary of the simulation domdinom equation (11.9)this boundary
condition applies to the EM fieldEpy. computed in the PML. Since mat@XR) is diagonal
in (IV.3), this amounts to cancelling bofyem (R1,#) and Ezpmi(R1, @) all over the inner
radial boundary.

Several simulation series, summarizedtamble 2, scanned the plasma and PML
parameters identified as important section Il Only cases with propagative cylindrical
waves were envisaged. The cases considered alswefea=0 or highly negatives,, so that
the EM problen{l1.10) involves only (or mainly) the TE mode. TE waveg®ation is exact
for all series except #12 and #14 highlighted ieygmwhere it is approximate sinkgs# 0.
Consistent with this assumption the longitudinal EMctric fieldE; was imposed null at the
outer boundary of the simulation domain, except smmies #12 and #14, where the
approximategormula (I11.8) was used for the FW polarization. The prescribethathal EM
electric field at this location waBg(R,¢)=Eqexp(-img) to select the proper azimuthal mode
number. The outer boundary of the simulation donveais always located 1 m outside the
PML outer radius. For the sake of comparison, setieoftable 2was also repeated using a
Cartesian-like PML formulationyhere 24R)=1 was imposed ilV.3), i.e. the effect of the
cylindrical curvature was artificially suppressed

As a first step the numerical tests tried to repoedthe analytical expectations from
formula(11.14) as accurately as possible, without caring about themerical costBoth the
main simulation domain and the PML were discretizesing an unstructured mesh of
guadratic Nedelec-type triangular finite elemenish typical size 1cm. The main simulation
domain and the PML were meshed separately: nogiteatioes cross the interface between
them. In simulation series #1, one finds 15 triaegbver the length Kf. Up to 843474
elements were necessary to mesh the largest sioruldmains, corresponding to 5908342
degrees of freedom. Calculations relied on thectiselver MUMPS.

R

¢ (IV.3)
Z

2(R)=
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f - b
# by | <M1 m | e | & | S | S | p | RM | Rm]
1.0
1| 50 0 0 | 400 00 -2q 32| 2 05 0.5
2 50 0 o | 400 00| +20 30 2 0.5 01'?25
10.0
3| 50 0 0 | g | 00| +20| 15| 2 05 | 05
25.0
a| 2> o 0o | 400/ 00| -40 15 2 05| 05
5| 50 0 109 400| 00| +20 10/ 2 05| 05
2.0
6| 50 0 6 | 400 00 30]112| 2 05 0.5
0.0
7| 100 | 50| 7 | 400 00| 30 20 2 05| 05
0.05
8| 100 00 | 4| 400 00 00 o085 2 O 0.5
9| 100 00| 4| 400 00783 055 2| 023 | o5
. . 922 . .

10| 50 00 | ol 400 00 20 2 g 0.5 0.5

11| 50 00 | o 7s0. '7(;35 20 | 15| 2 0.5 0.5
672

12| 50 300 | 0 |1500| /%] 20 | 15 | 2 0.5 0.5
740

13| 50 00 | 3| 7504 701 20| 15| 2 0.5 0.5
680

14| 50 300 | 4 |1500 5201 20 | 15 | 2 0.5 0.5

Table 2 Overview of parametric space explored over timeusations. Scanned parameters are highlighted in
green. In series 1-1%,=-10° was used but should not play any role. In simatageries #12 and #14
highlighted in grey the TE polarization is only appimate. Series 12 was performed usifg-10° and g,=-
10". Series 13 and 14 were performed wifh-10° and g,=-10°.

In order to numerically assess the reflection apggating cylindrical waves by the
PML, the azimuthal average &f;(R,@)exp(img) was evaluated numerically from the 2D
simulation output using the FEM matrices. T@@veraged 1D results were then sampled
every millimeter inR over the main simulation domaiithis corresponds to 1000 radial
points, with a spatial resolution ~10 times finban the typical finite element size. In
simulation series #1, one finds 150 points over lkiegth 1k, Using a least-square
minimization procedure, the radial variation ofstiguantity over the main simulation domain
was fitted with a linear combination of ff(koR) and H,?(ksR), with respective complex
weights Hzip sim and Hzo sim In the argument of the Hankel functions, dispersielations
(111.6) or (11.7) were used to determirig, from the input parameters. Finally the magnitude
of the simulated amplitude ratigsin=Hzro_sifHzio_simServed as a figure of merit to quantify
the PML reflection in the numerical tests. Theiridgt procedure implicitly assumes that only
the TE mode with correceh is present in the simulation. In practice numenase is always
superimposed to the ideal results, as well as ther @igenmode of the gyrotropic medium,
especially in the cases where the TE polarizatoronly an approached input. Besides,
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dispersion relation(lll.7) is only approximate. All this introduces uncert@sa in the
numerical determination Gfsin,

B. Comparison with analytical figure of merit.

Over the simulation databadeigures 5compare the numerical reflection coefficient
NsimWith theoretical expectatione, from formula (l11.14) Direct comparison ofrli,| with
figures 2is only possible for the simulations series #1-#ith m&=0. Quantitys, should be
used for this comparison. An important restrictionthe allowed parametric space will be
discussed orFigure 6and is excluded heress},| values well above 1 could be reached,
indicating that the reflected wave can be amplitigdthe PML instead of being attenuated.
This situation is met when the imaginary p8ttof the stretching is negative, like in the
Cartesian case. For positi$ this might also be the case for some valuesspi in formula
(111.15), a peculiarity of the cylindrical geometry produgithe peaks ofigures 2 7simagrees
well with e, OVer eight orders of magnitude down to reflectievels of 10°, when the
precision of the simulation gets limited by eitllee mesh size or the fitting procedure (see
section IV-D. The relative difference betweems, and 7meo roughly scales as
1/min(Vined, [7ned ™). This relative difference is significantly enhadda simulation series
#12 and #14 withk,&# 0. We speculate this is not due to the PML but bseave used
approximated boundary conditions for the quasi-DEafpzation: while the simulation points
with g=-10 or §=-1C% appear in the ballpark of the other seriesigare 5.5 the runs with
g=-10" are well above.

s Fit H,(R,¢)exp(im¢) averaged over ¢

10° Fit H,(R,$)exp(im¢) averaged over ¢ 16
102 i o " 6 ¢ ¢ Scans” e o Scanm < < Scanp
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Figure 5.a) numerical amplitude reflection coefficient
[7sin] Versus theoretical valuep},.d expected from
formula(lll.14), over simulation series #1-#14 from

Figure 5.b) Same database digure 5.3 relative

difference |1Hsin Mined, VS Vined from formula(lll.14).

Tilted curves: y=10/x and y=10°x

table 2 Last series: same as series #1, using a
Cartesian PML-like PML formulatiorwith Z4R)=1
artificially imposed in formuldlV.3)

Figures 5also show a repeat of series #1dhle 2 using a Cartesian-like formulation
of the PML. In this seriegdir|=1 forS'=0, as it should for energetic reasons. For soailees
of S, the Cartesian-like PML behaves better than tlndrical one. This is however
observed over a limited window in parametric sparel it is hardly predictable in advance.
For largeS’, the simulated amplitude reflection coefficieraiches an asymptotic value above
102, while the cylindrical PML achieves}d,|<10°. This illustrates the merits of the new
PML formulation in curved coordinates.
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C. Peculiarities of the cylindrical PML

Figures 6 to 8llustrate specific properties of the cylindricaametry that have hardly

any equivalent with Cartesian coordinates.

Fit H,(R,¢)exp(im¢) averaged over ¢

e o 7, Scan R,
¢ ¢ 5, Scan ¥

Ntheo

10°

Ncart

||

10\ Y
-1.0 -0.5 0.0 0.5 1.0
R, +S6R/(p+1) [m]

1.5

Figure 6 Simulated amplitude reflection coefficient
| 7siml VS Re@(Ry))- Numerical scan of Rvith S'=0,
scan of S’ with R=0.23m and predictionged from
formula (111.14). Horizontal dashed line: amplitude
reflection coefficientjc,| fromformula (111.14)
Simulation series #8 and #9 fraable 2

Figure 6shows a scan of the radial
position R; for the inner PEC boundary of
the simulation domain, witt§=0. Unlike
expression /jcary from (111.16), the
cylindrical reflection coefficient/jned from
(111.14) depends oRy. For given simulation
parameters, a minimum value Bf exists
below which the PML becomes inefficient.
The variation of Asim| with Ry is non-
monotonic. This corresponds to the crossing
of peaks in the 2D diagrams déigures 2
The maximal value of the reflection
coefficient can exceed 1. For larg® the
cylindrical curvature decreases at the PML
location and /sim| reaches an asymptotic
value corresponding t@ydar|-

Figure 6also shows that an effect
similar to the change @, is obtained by

stretching the real part d® through a scan of at fixed R;. From formula (l11.15) the
relevant parameter to plot the results istgB{))=R;+S R/(p+1). Negative values of this
parameter can be reached, whigremains positive. Howevetigure 6shows that in these
cases the PML fails to attenuate the incoming dylcal wave, even wheformula (111.14)
predicts low #imed. This behavior persists when the mesh is refareticannot be ascribed to
the discretization of problerfil.9). It may be linked with the crossing of a singypaint of
the coordinate system inside the PML. One shouddefore avoid this parametric domain.
The related simulation points were deliberatelyigded fromFigures 5.
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Figure 7. reflection coefficient over a scan &f, vs

normal wavevector k- fromequation (111.8) Data

points with positive and negative are plotted with

different symbols. Also shown are expressignsd|

fromformula (Ill.14)and [jcar fromformula (111.16)
Series #14 fronable 2with g=-10°

Figure 7 plots the simulated
reflection coefficients versus wavevector
korw from dispersion relation (111.8)over a
scan ofs. with mz0 (series #14 of able 9.

As for plane waves in Cartesian coordinates,
low levels of reflection are observed for
large kopw While the PML loses efficiency
for cylindrical waves propagating nearly
parallel to the plasma/PML interface.
Howeverwhen m#0 cylindrical waves with
positive and negatives. exhibit different
|7sim]  despite  equal kgrw. N the
electrodynamics of magnetized plasmas,
changing the sign ofc amounts to reversing
the magnetic field directiongdi,| values can
differ by a factor of more than two. This
peculiarity of gyrotropic media in
cylindrical geometry was anticipated from
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formula (11.14), and illustrates the role of parametf(&--n%). Largest ratios are obtained
for medium values okgrw. For low koew, |7sil becomes 1 whatsoever. For lakgey the
reflection coefficients converge tgchy| from formula (I11.16) that does not depend on the

sign of &. In all casesrined is larger thanvicar|.
Figure 8 shows a scan of the azimuthal

Pt H(F.¢)eap(imd) averaged over ¢ mode numbem. Good agreement ofidn| is
£ & 9., found with pned from formula(lll.14). The
Nitheo variation of psim| with m is non-monotonic.

This corresponds to the crossing of peaks in
the 2D diagrams oRigures 2 The maximal
value of the reflection coefficient can exceed
1. For largem, |/7sim| reaches an asymptotic
value of 1. A critical value ofm is
evidenced, above which the PML becomes
inefficient.

0 5 10 15 20 25
m

Figure 8 Numerical reflection coefficient.,, and
prediction 7neofromformula (111-14) vs azimuthal mode
number m. Simulation series #5 froable 2

D. Effect of finite element discretization and indicationsfor PML tuning.

Formula(lll.14) is valid in the continuous limit when the typicahife element size
tends to zero. Yet a numerical computation alwagsrétizes the simulation domain, which is
expected to degrade the PML properties. The memsmyirements and computation time of
a 2D finite element simulation scale roughly as itheersed square of the typical element
size. One therefore needs to find a compromise deiwthese constraints and our initial
request to keep the wave reflection low enough lay megligible role on the simulated
phenomena. Using the simulation parameters ofsédeintable 2 this section investigates
numerically the effect of finite element discretina on our test problem and provides some
indications on how to find this compromise.

Figure 9.aplots |sim| versusYpy Over a scan o8’ similar to series #1 for various
finite element sizes in the PMEigure 9.bis similar tofigure 5.bfor the scan§gure 9.a The
element size in the main simulation domain was ké@mm. For the simulation parameters
of series #1k-= 6.63n, i.e. in the main simulation domain one finds 30 elemanter the
length 1k;=15.1cm. For low values &, | 72sim| decreases with increasiigy, following the
expectations from formuldll.14). Then psim| reaches a minimal value abovg.d{, and
subsequently increases. As the mesh gets coagesaturation occurs for lower values of
S’, and the minimal value ofrkim| gets larger. Therefore we attribute the satumattothe
discretization of the PML domain. Strangely enoulgé results slightly degrade when the
mesh size in the PML is refined from 1 cm to 5 nWe have probably reached limits due to
either the discretization of the main domain orthe least-square fitting procedure to
determine Asim|. 2x10° is the lowest amplitude reflection coefficient tttean be reliably
“measured” in our tests. A similar lower limit iksa reached ifigures 5.a, 7, 10 and 12
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Figure 9.a:Numerical reflection coefficientgm, vs Figure 9.b:Same database éigure 9.3 relative
Yem from formula(lll.15), over a scan of S” with the difference |1Asin{ Fined VS Vined from formula(lll.14).
parameters of series #1 iable 2 for several finite Tilted curve: y=1F/x

element sizes in the PML. Element size 5mm in main

simulation domain. Colored dash-dotted lings;,,

obtained with unbounded stretching funct{tvi.4),
k0,=1.5 and similar mesh.

For a given computational cosigure 9.ashows an ‘optimal’ value o8’ such that
the PML reflection is minimal in presence of disgation. Either this reflection is
considered low enough or one should reduce it bying the mesh, at the expense of larger
computational cost. This optimization procedurejiksir to the Cartesian case, is however
non-exhaustive: one could also play with the onolén formula (IV.1) or optimize all the
coefficients in a polynomial expression &R). For the FDTD scheme in Cartesian
coordinates, an example of more complete optimimatvas given infCollino1998] as a
function of the number of points over the PML degthd the number of points per
wavelength. In the cylindrical case the PML refi@ctdepends also on the stretched PML
location (PML radius, real part of stretching fuont PML depth) and the boundary
conditions that can be tuned in many ways andaifeat the numerical cost. When one looks
for low reflection coefficients, formul@ll.16) suggests that the PML behavior should be
comparable to the Cartesian case in the contindons. But it tells nothing about
discretization effects. Finally, for a realistiosilation, optimization should be undertaken not
for one single cylindrical wave but for a relevaspectrum i(e. many k, and m
simultaneously, see below, and possibly severakvpalarizations). We therefore expect that
the optimization outcome should be quite model-ddpat.

Formula (111.16) suggested the merits of unbounded stretching fomstsuch that
YpmL reaches infinity andnlim| is only limited by the numerical scheme. Follogvin
[Bermudez2007&and[Cimpeanu2015]we test below stretching functions of the form
% . R<R<Ry (IV.4)

SR(R) =1- R-R, ’

Where lengthy, is a tunable parameter. This is not the only fdssthoice but it is
considered as “optimal” in Cartesian geomei@ympeanu2015] The associated stretched
radius is

ta(R) = R + i8,log (R‘f—’;) - Ri<R<Ry (IV.5)

Over a scan oty figure 10plots Jsim| versusknd for various PML depthgR and
fixed Ry=0.5m. For these simulations, the element size5ma® both in the main simulation
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domain and in the PMLAR=4mm is used to force the mesher to put one single layer
triangles over the PML depth. For low valuesdthe simulation behaves as in the absence
of PML. For very large values @b, |7sim| IS also close to 1, because the change of diglect
properties is too abrupt at the plasma/PML interfa®/henkydR<<1, studies in Cartesian
geometry found a minimum of the PML reflection ford=1 [Cimpeanu2015] This was
explained since for this choice of the stretchiumgction

exp[ke Im(tz(R))] = =2 ; Ri<R<Ry (IV.6)
_ . i.e. the field amplitudes for plane waves are
1o°ﬁf':t£ (f.g)eap(im¢) averaged over ¢. expected to decay linearly over the PML
R § : ,/"' . depth, which is beneficial for the numerical
10 N, . accuracy [Cimpeanu2015] Unfortunately
107 \1\\\}5\\‘ ! F these arguments do not apply in cylindrical
= *l;} ! R . P geometry: cylindrical waves behave as
= 103}| ¢-¢ 4mm } oS HinM(2)~[2/(m2)]Y%expli(z-mmv2-v4)]  for
&t Emm g o0 £ large |, whereas plane waves vary as
4 |lm-m 16mm Vax / . . .
0 omm A exp[iz] for all z. In figure 1Q one also finds
105l| ¢ -o 64mm %ﬁum g a local minimum of Asiy|, but in the region
T 100 ""“101 kadb~1.3. As the PML depth increases, the
k|0, minimal value of #sim| decreases and the

range inkpd with low reflection broadens.

Figure 10 Numerical reflection cogﬁiciemsim, vs.kgcg, The computational cost of the PML scales
for several PML depthéR. Vertical dashed line roughly like &R.

k-d=1.3. Simulations using parameters of series #1 in
table 2 Ry=0.5m, unbounded stretching functifiv'.4)
and scan ofy,. Element size 5mm over whole simulation

domain.

Realistic simulations do not feature one singlenclylcal wave, but a whole spectrum
with possibly very disparate valueslef For example, with the dielectric tensor of se#és
depending ork,, ko can take any real value between 0 &ggi’’2. Whatever its tuning the
PML cannot behave well all over this possiklerange: fromfigure 1Q onced, is fixed, one
expects the PML properties to degradekigrl;&. Yet the relevanks values never go down
to 0. Let us suppose that the relevant rangekssf*’ kog1'4 with 0<a<1. A possible tuning
is first to choosay=1/(ake&®) and then choose the mesh size such that thedfiection
persists up tegd=1/a>1. The lowera, the higher the numerical cost.

Similarly realistic simulations feature several naathal harmonics and the PML
should behave well for all relevant valuesnofFigure 11repeats the scan @ in figure 10
for AR=16mm and several values mf Figure 11shows that a minimal reflection is found in
the same range &f, for m=0, 3 and 5. However, asincreases at fixed computational cost,
the minimal value ofrfsim| increases and the domaindywith low reflection gets smaller. For
m=5, one can find values @} for which psin|>1, like with the bounded stretching functions.
Forkn&=1.5 anddR=50cm,figure 12plots }sim| versusm for various mesh sizes in the PML.
For comparison with parabolic stretching functippm| for m=0 are reproduced as colored
horizontal lines orfigure 9.a Depending on the mesh size, the reflection igelaor lower
with stretching function(lV.4) than with the parabolic stretching function. Insttsense
neither of the stretching functions tested is fuptimal. Onfigure 12like onfigure 8 non-
monotonic variations withm are observed, as well ag}|>1. At fixed PML parameters a
critical value ofmis evidenced above which the PML becomes inefiici€his critical value
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cost.
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Figure 11:Numerical reflection coefficiemsn, vs Figure 12:Numerical reflection coefficiemsy, vs
k-, for varying azimuthal number. Vertical dashed azimuthal numbem. Simulations using parameters of
line k;d=1.Simulations using parameters of series #1  series #1 irtable 2 JR=50cm and unbounded
in table 2 Ry=0.5m, d&R=16mm, unbounded stretchingstretching functior(lV.4) with k9,=1.5. Element size
function(1V.4) and scan ofy. Element size 5mm over 5mm in main simulation domain, various mesh size in
whole simulation domain. the PML.

V. Conclusions and prospects.

This paper implemented the stretched-coordinate B¥hnique fronjTexeiral998b]
for time-harmonic EM wave propagation in gyrotropieedia and in curved geometries
relevant for magnetized plasma devices. Specifimiitae were given in cylindrical and
toroidal coordinates. Other sets of orthogonal dimates could be treated similarly in the
future, e.g. spherical coordinates for geophysical and astrsighl plasmas. Extension to
transient EM pulse propagation would also be beragfi

Stretching any system of coordinates does not sadgsensure good PML properties
in all cases. In cylindrical geometry the new folation was assessed in a gyrotropic medium
without losses, using an analytic reflection caséint /7,e, fOor propagative and evanescent
cylindrical waves that play a role similar to thiarme waves of Cartesian geometry. For
simplicity this quantification was restricted heceradial PMLs and longitudinal anisotropy,
in situations when only Transverse Electric (TE)de® of the medium play a role. PMLs in
the longitudinal direction of our test problem behdike in Cartesian geometry. The exercise
remains to be extended to PMLs in the azimutha&lctiion, azimuthal anisotropy, and/or more
complex EM field polarizations, where incident apflected waves from the two eigenmodes
of the medium are coupled by the boundary conditidn this latter case the reflection
coefficient 71eo Should be replaced with a2 reflection matrix whose norm (whatever its
definition) should be minimized. The PML is expette behave well in the continuous limit
if all the relevant eigenmodes are sufficientlyeattated before reaching the innermost
boundary of the simulation domain. Indeed the bampdonditions only play a minor role in
this situation. Analytical quantification of cylindal TE wave reflection was complemented
by finite-element simulations, showing better bebawr for the new PML formulation
compared a Cartesian-like one artificially applie@ylindrical geometry.

Peculiarities associated with both gyrotropy andliindyical geometry were
highlighted. For example in presence of non-diajdeasor elements, the PML behaves
differently for opposite azimuthal mode numbars In anisotropic media forward and
backward waves can coexist with the same dieletgnesor. In cylindrical geometry, like in
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Cartesian one, the proposed radial PML cannot bedttio simultaneously attenuate forward
and backward waves, a limitation inherent to themidation. Referenc¢Bécache2017]
explored ways to overcome this limitation, in ungxnedia and with Cartesian PMLs.

As far as possible the radial extel of the PML should be large, at the expense of
larger simulation domains. The PML behaves betieddrge wavevectork; normal to the
PML and exhibits limitations for cylindrical wavegropagating nearly parallel to the
plasma/PML interface. Combining the results forgagative and evanescent waves one can
see that for givekndR, large positive values f& and S’ provide a better behaviour for the
radial PML in the continuous limit. Similar resultgere obtained in Cartesian geometry for
S’ with propagative waves and f& with evanescent wavddacquot2013]The counterpart
is a larger radial variation of the dielectric peojes of the adapted material and associated
discretization errors. At given computational castoptimal value o’ was identified that
ensures a minimal reflection, taking into accourmgcietization errors. The merits of
unbounded stretching functions were also highlight€éhe PML reflection is then only
limited by discretization errors and can be reduagdaltrarily by refining the mesh, at the
expense of higher numerical cost.

Contrary to Cartesian PMLs, the real part of thdialacoordinate stretch affects the
reflection of propagative waves. This was intemadetis an artificial displacement of the
radial locationR; for the innermost PEC boundary towards regionslifi€rent cylindrical
curvature. In practical applications, the geomethyhe simulation domain often constrains
the value ofR;. StretchingR; usingS can therefore be used to attenuate potential radve
effects of the local curvature, at the expenseebhed mesh inside the PML. This method is
also beneficial to better attenuate the evaneseaves, like in the Cartesian case. In
numerical simulations, the PML loses efficiency whbe real part of the stretched radius
becomes negative. This behaviour was not predicyethe analytical figure of merifineo
This may be related with the crossing of a singplaint of the coordinate system inside the
PML domain.

For given plasma and fixed settings of the PMLriacal azimuthal mode numben
always exists above which the PML loses efficier8ych upper limit was evidenced with
both the bounded and unbounded stretching functitatswe tested. The critical value can
be made arbitrarily high by increasing the realnoaginary stretching, so that al values
relevant for a realistic simulation behave corgecilhe associated numerical cost in terms of
refined radial discretization depends on the resnents about the azimuthal resolution.

So far we have not evidenced a ‘fully optimal’ PNtir EM wave propagation in
cylindrical gyrotropic media. This ‘fully optimaPML is likely model-dependant.
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