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ABSTRACT 24 

In the rhizosphere, complex and dynamic interactions occur between plants and microbial networks that are 25 

primarily mediated by root exudation. Plants exude various metabolites that may influence the rhizosphere 26 

microbiota. However, few studies have sought to understand the role of root exudation in shaping the functional 27 

capacities of the microbiota. In this study, we aim to determine the impact of plants on the diversity of active 28 

microbiota and their ability to denitrify via root exudates. For that purpose, we grew four plant species, Triticum 29 

aestivum, Brassica napus, Medicago truncatula and Arabidopsis thaliana, separately in the same soil. We 30 

extracted RNA from the root-adhering soil and the root tissues, and we analysed the bacterial diversity by using 31 

16S rRNA metabarcoding. We measured denitrification activity and denitrification gene expression (nirK and 32 

nirS) from each root-adhering soil sample and the root tissues using gas chromatography and quantitative PCR, 33 

respectively. We demonstrated that plant species shape denitrification activity and modulate the diversity of the 34 

active microbiota through root exudation. We observed a positive effect of T. aestivum and A. thaliana on 35 

denitrification activity and nirK gene expression on the root systems. Together, our results underscore the potential 36 

power of host plants in controlling microbial activities. 37 

 38 

Keywords: Rhizosphere, Denitrification, Root, Root-adhering soil, Active microbiota, Root exudates, Nitrogen 39 

uptake. 40 

 41 

INTRODUCTION 42 

The ability to secrete a wide range of compounds into the rhizosphere is one of the most remarkable metabolic 43 

features of plant roots with approximately 5 to 21% of the total photosynthetically fixed carbon being transferred 44 

into the rhizosphere through root exudates (Whipps, 1990; Marschner, 1995; Nguyen, 2003). These compounds 45 

are metabolized by soil-borne microorganisms as carbon and energy sources providing the basis for the 46 

establishment of plant-microorganism interactions that benefit plant growth by increasing the availability of 47 

mineral nutrients, production of phytohormones, degradation of phytotoxic compounds and suppression of soil-48 

borne pathogens (Bais et al., 2006; Philippot et al., 2013; Haichar et al., 2014). This demonstrates the importance 49 
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of studying the functional properties of the soil microbiota and the manner in which plant species influence 50 

bacterial diversity and microbial activities.    51 

Denitrification is one of the microbial activities that occurs in the plant rhizosphere. Denitrification is the microbial 52 

process of the nitrogen cycle that allows the return of fixed nitrogen (reduction of atmospheric N2) to the 53 

atmosphere. The reduction of soluble NO3- or NO2- into gas (NO, N2O or N2) by denitrification is catalysed by 54 

metalloenzymes: nitrate reductases (Nar and Nap), nitrite reductases (NirK and NirS), nitric oxide reductases 55 

(cNor and qNor) and nitrous oxide reductase (Nos) (Zumft, 1997; Philippot, 2006). This stepwise reduction of 56 

nitrate is an alternative respiration pathway occurring in the case of oxygen depletion by phylogenetically diverse 57 

microorganisms in a wide range of ecosystems (Zumft, 1997). Most denitrifiers belong to various subclasses of 58 

bacteria, although the ability to denitrify has also been found in some archaea and fungi (Philippot, 2002a). In 59 

addition, co-occurrences of denitrification genes do not appear to be randomly distributed among taxonomic 60 

groups (Graf et al., 2014). 61 

Denitrification represents a significant loss of nitrogen in soils (25–90%) (van der Salm et al., 2007; Radersma & 62 

Smit, 2011), and this microbial process therefore affects the availability of nitrogen to plants. This process 63 

contributes to N2O emission, a powerful greenhouse gas (300-fold more heat-trapping capacity than CO2, per 64 

molecule) and the single most important ozone-depleting agent known (Ravishankara et al., 2009; Coskun et al., 65 

2017). 66 

The major factors regulating denitrification can be modulated in the rhizosphere: nitrate concentration (via 67 

absorption by plants) and oxygen partial pressure (via root respiration and the surrounding root moisture) are 68 

decreased, while the C availability (via rhizodeposition) is generally increased (Tiedje, 1988; Mounier et al., 2004; 69 

Langarica-Fuentes et al., 1918). The impact of the rhizosphere on denitrifying activity has already been reported 70 

(Mahmood et al., 1997; Mounier et al., 2004; Patra et al., 2006; Henry et al., 2008). For example, Philippot et al. 71 

(2002b) observed that the presence of maize roots led to a change in the structure of the nitrate-reducing 72 

community. However, little is known about how denitrification is regulated in the rhizosphere. Determining the 73 

role of host plant on denitrification process modulation is of real importance in understanding the regulation of 74 

denitrification in the rhizosphere.  75 

The aim of this study was to determine the impact of four plant species, wheat (Triticum aestivum), rape 76 

(Brassica napus), barrel clover (Medicago truncatula) and Arabidopsis thaliana (ecotype Colombia), cultivated 77 

in the same soil on i) the diversity of the bacterial community by metabarcoding the 16S rRNA gene genes, and 78 
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on ii) the activity of the denitrifying community in the root-adhering soil (RAS) and on the root system by 79 

evaluating the denitrification activity and nirK and nirS gene expression.  80 

MATERIAL AND METHODS 81 

Plant growth 82 

A laboratory experiment was performed with winter wheat (T. aestivum L. cv. Taldor), rape (B. napus cv. Drakkar), 83 

A. thaliana (ecotype Colombia) and barrel clover (M. truncatula, ecotype A17) on a calcareous silty-clay soil 84 

collected from the upper 20 cm layer of the agricultural site located in the Aix en Provence region. The pH was 85 

8.2 and it contained 5.7% sand, 46.7% silt, 47.6% clay, 1.0% CaCO3, 1.8% organic C and 0.18% organic N. The 86 

soil was sieved (1-mm mesh size), air-dried, and the water holding capacity (WHC) measured according to 87 

Bouyoucos (1929) based on the pulling out of water from soil by suction or vacuum forces. The WHC was 88 

determined in triplicates and was about 7.82%. 150 g dry soil was placed into polypropylene cylindrical pots. Soil 89 

moisture was maintained at 75% of WHC by adding the necessary amount of water. Seeds were sterilized 90 

according to Achouak et al. (2004) and one seed was planted per pot. Sixteen pots of each plant were grown in a 91 

growth chamber. 4 pots (4 repetitions) per plant were dedicated to denitrification activity measurements (on the 92 

RAS and the root system), 3 pots (3 repetitions) per plant were dedicated to molecular analysis (16S rRNA 93 

diversity from the RAS and the root system) and 9 pots per plant were dedicated to isotope labelling experiment. 94 

Sixteen pots with soil but without plants (bulk soil treatment) were used: 4 pots (4 repetitions) were dedicated to 95 

denitrification activity measurements, 3 pots (3 repetitions) were dedicated to molecular analysis (16S rRNA 96 

diversity) and 9 pots were dedicated to isotope labelling experiment. Plants and bulk soil pots were incubated in a 97 

growth chamber with a day–night period about 12/12, respectively; light intensity was 400 mmol photon m-2.s-1 98 

and maximum daily temperature ranged from 20 to 22 °C. Soil moisture was manually controlled.  99 

 100 

Plant harvesting 101 

After 5 weeks of plant growth, plants were collected as follows: the root system of 3 replicates of each plant were 102 

separated from its root-adhering soil (RAS) and 2 g of RAS from each plant were frozen in liquid N2 immediately 103 

and stored at -80 °C for molecular analysis. The root systems were washed with water to remove adhering soil 104 

particles, frozen in liquid N2 and stored at -80 °C. The bulk soil microcosms (4 replicates) were also collected for 105 
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microbial activities measurements and 2 g were frozen in liquid N2 immediately and stored at -80 °C for molecular 106 

analysis.  107 

The entire plant from 4 replicates for each plant was separated from the RAS and both, the whole plant and the 108 

RAS of the planted microcosm and soil of the unplanted microcosm were used to measure denitrification activity. 109 

The remaining 9 replicates for each plant and the bulk soil treatment were used for isotope labelling experiments. 110 

 111 

Measurements of microbial denitrification activities 112 

 Denitrification Enzyme Assay without carbon addition 113 

We measured the denitrification activity of microbial communities inhabiting the root system in each plant 114 

rhizosphere in 4 replicates according to Guyonnet et al. (2017). The entire plant with the root system, rinsed with 115 

water to remove soil particles, was placed in a 150 ml airtight plasma-flask sealed by a rubber stopper. In each 116 

flask, air was removed and replaced with a He/C2H2 mixture (90/10 v/v) to create anoxic conditions and inhibit 117 

N2O-reductase. Potassium nitrate (50 µg of N-KNO3 g-1 of fresh root or dried soil) was added to each vial to 118 

provide microbial communities with nitrate source. The amount of N2O during incubation at 28 °C was measured 119 

each 4 h for 48 h. The slope of the linear regression was used to estimate anaerobic respiration (denitrification 120 

enzyme assay without the addition of carbon) to estimate the produced N2O (g-1.h-1). N2O was measured with a 121 

gas chromatograph coupled to a micro-catharometer detector (µGC-R3000, SRA instruments, Marcy l’Etoile, 122 

France). 123 

  124 

Denitrification enzyme activity (DEA) of plant roots and soils 125 

We measured the denitrification enzyme activity (DEA) in soil, according to Bardon et al. (2014). Ten grams of 126 

fresh soil sample (RAS from each plant and bulk soil) were placed in a 150 ml airtight plasma-vial sealed with a 127 

rubber stopper. In each flask, air was removed and replaced with a mixture of He/C2H2 (90/10 v/v) to create anoxic 128 

conditions and inhibit N2O-reductase. A nutritive solution (0.5 ml) containing glucose (0.5 mg of C-glucose.g-1 of 129 

dried soil), glutamic acid (0.5 mg of C-glutamic acid g-1 of dried soil) and potassium nitrate (50 µg of N-KNO3 g-130 

1 of dried soil) was added to the soil. The amount of N2O during incubation at 28 °C was measured each hour for 131 

5 h. The slope of the linear regression was used to estimate anaerobic respiration (denitrification) by measuring 132 
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the production of N2O (g-1.h-1) using a gas chromatograph coupled to a micro-catharometer detector (µGC-R3000, 133 

SRA instruments, Marcy l’Etoile, France). 134 

 135 

RNA extraction and cDNA synthesis 136 

RNA was extracted from the RAS and root system from each plant rhizosphere in triplicates using an RNA "Power 137 

Soil isolation" kit (MO BIO) that produced total non-degraded RNA according to the manufacturer’s 138 

recommendations. DNA was removed from RNA extracted from RAS and root tissues by using RNeasy Mini Kit 139 

(Qiagen) according to the manufacturer’s recommendations. 16S rRNA gene amplifications (300 bp) were carried 140 

out using the treated RNA as a template to ensure that DNA was completely removed. One µg of RNA from each 141 

RAS and root system sample retrieved from each plant was transcribed into complementary DNA (cDNA) using 142 

the SuperScript III Reverse Transcriptase (Life Technologies) according to the manufacturer’s protocol and stored 143 

at -20 °C.  144 

 145 

nirK and nirS genes expression 146 

Denitrifier abundance was estimated by real-time quantitative reverse transcription PCR (qRT-PCR) targeting the 147 

nirK and nirS genes encoding the copper and cd1 nitrite reductases, respectively. For nirK, the amplification was 148 

performed using the primers nirK876 (5’-ATYGGCGGVCAYGGCGA-3’) and nirK1040 (5’-149 

GCCTCGATCAGRTTRTGGTT-3’) (Henry et al, 2004). The 20 µl final reaction volume contained SYBRgreen 150 

PCR Master Mix (QuantiTect SYBRgreen PCR kit, Qiagen, Courtaboeuf, France), 1µM of each primer, 400 ng 151 

of T4gp32 (MPbiomedicals, Illkvich, France) and from 1 to 3 µl of cDNA according to 16S rRNA gene 152 

normalisation. Thermal cycling was as follow: 15min at 95°C; 6 cycles of 95°C for 15s, 63°C for 30s with a 153 

touchdown of -1°C by cycle, 72°C for 30s; 40 cycles of 95°C for 15s, 58°C for 30s and 72°C for 30s. For nirS, 154 

the amplification was performed using the primers nirSCd3aF (5’-AACGYSAAGGARACSGG-3’) and nirSR3cd 155 

(5’-GASTTCGGRTGSGTCTTSAYGAA-3’) (Throbäck et al, 2004). The 25 µl final reaction volume contained 156 

SYBRgreen PCR Master Mix (QuantiTect SYBRgreen PCR kit, Qiagen, Courtaboeuf, France), 1µM of each 157 

primer, 400 ng of T4gp32 (MPbiomedicals, Illkvich, France) and from 1 to 3 µl of cDNA according to 16S rRNA 158 

gene normalisation. Thermal cycling was as follow: 15min at 95°C; 6 cycles of 95°C for 15s, 59°C for 30s with a 159 

touchdown of -1°C by cycle, 72°C for 30s and 80°C for 30s; 40 cycles of 95°C for 15s, 54°C for 30s and 72°C for 160 
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30s and 80°C for 30s. The standard curves for nirK and nirS qPCR were generated by amplifying 10-fold dilutions 161 

(107 – 102) of a linearized plasmid containing the nirK gene of Sinorhizobium meliloti 1021 and nirS gene of 162 

Pseudomonas stutzeri Zobell DNA (GenArt, Invitrogen, Lifetechnologies, Regensburg, Germany). Melting curves 163 

analysis confirmed the specificity of amplification and amplification efficiencies for nirK and nirS genes were 164 

higher than 90%.  165 

 166 

Sequencing of 16S rDNA gene  167 

For each plant, 10 µL of cDNA obtained from RNA extracted from the root system and the RAS from each plant 168 

in triplicates were sent to FASTERIS (Switzerland) for sequencing using MiSeq Illumina technology. V3-V4 169 

domain of 16S rRNA was amplified with tagged primers 16S Fwd primer 3’-CCTACGGGNGGCWGCAG-5’ and 170 

16S Rev primer 3’-GACTACHVGGGTATCTAATCC-5’. Tagged primers structure was 5’- N2-4X6Pn -3’, with 171 

“N2-4” were random bases, “X6” were 6-bases tag and “Pn” was specific primer. Amplification conditions were 3 172 

min at 95 °C, 35 cycles of 30 s at 95 °C, 30 s at 55 °C, 90 s at 72 °C, and 5 min at 72 °C. 173 

 174 

Isotope labelling and analysis of plant and soil material 175 

After 5 weeks of plant growth, all pots (9 pots per plant and 9 pots of bulk soil) received the same amount of two 176 

forms of nitrogen: ammonium (NH4+) and nitrate (NO3-), and where the nitrogen was either 14N or 15N. 3 replicates 177 

from each plant and bulk soil treatment received 15N labelled ammonium and unlabelled nitrate (15NH4++ NO3-) 178 

and 3 others replicates received unlabelled ammonium and 15N labelled nitrate (NH4+ + 15NO3-). The remaining 3 179 

replicates per plant and bulk soil treatment received unlabelled nitrogen (NH4+ + NO3-) in order to measure the 180 

natural abundance of 15N. The four plant species and the unplanted soil underwent three treatments in triplicates 181 

resulting in 45 pots.  182 

In total, 0.24 µg N.g-1 dry soil was added with 50 % of each nitrogen form. Five millilitres of each solution were 183 

added to each pot in 1 ml aliquots with a single injection homogeneously distributed over the soil surface. Each 184 

aliquot was injected with a syringe with 21-gauge needle that was slowly removed to ensure uniform distribution 185 

throughout the profile. After 12 h of incubation, the shoots of all pots were cut off and stored at -80 °C. The root 186 

systems and their root-adhering soil fractions were subsequently separated. The roots were rinsed with tap water. 187 

All roots and RAS samples were stored at -80 °C. The 12 h incubation time was used in accordance with previous 188 
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studies, which showed maximal uptake of label around this time (Streeter et al., 2000; Bardgett et al., 2003; 189 

Weigelt et al., 2003).  190 

After freeze-drying, 2.5 mg of crushed plant tissue and 10 mg of soil were used to measure nitrogen concentration 191 

and the 15N/14N ratio using an isotopic ratio mass spectrometer (Isoprime 100, Isoprime Ltd, Manchester, UK) 192 

coupled in continuous flow with an elemental analyser (FlashEA 1112 Thermo Electron, Milan, Italy). N 193 

concentration data were calibrated using aspartic acid. For the 15N/14N measurements, a two-point normalization 194 

of the data was performed using international reference material IAEA-305a and IAEA-311 [28]. The 15N/14N 195 

ratios were expressed as atomic fraction (i.e. atomic %, Coplen, 2011): 196 

x(15N)  = (15N/14Nsample) / (1 +  15N/14Nsample) 197 

Values of atom fraction and concentration of N (in %) were used to calculate uptake of 15N on a per unit mass 198 

basis (mg excess of 15N per gram). Mean values of 15N abundance of the unlabelled control plants were used as 199 

reference for 15N excess.  200 

 201 

Bioinformatics analysis 202 

Sequence processing and data analysis 203 

 Sequence data were processed and analysis of high-throughput community sequencing data was performed with 204 

QIIME version 1.8 (Caporaso et al., 2010).  Sequences were trimmed of barcodes and primers, and then short 205 

sequences (< 200 bp), sequences with ambiguous base calls, and sequences with homopolymer runs exceeding 6 206 

bp were removed. Operational Taxonomic Units (OTUs) were then defined by clustering at 97% similarity. Final 207 

OTUs were taxonomically classified using Blast (Altschul et al., 1990) and compiled into each taxonomic level 208 

into both “counts” and “percentage” files. OTU tables were rarefied at the lowest sequencing depth to control for 209 

differences in sequencing depth. A total of 7,185,297 valid reads and 392,892 OTUs were obtained from the 27 210 

samples through sequencing analysis (3 root samples and 3 root-associated soil samples per plant species (4 211 

species) and 3 bulk soil samples). 212 

Alpha diversity analysis was done using the Phyloseq R package version 1.20.0 (McMurdie & Holmes, 2013). 213 

Species richness (observed richness) and species evenness (Inverse Simpson index) were estimated by multiple 214 

subsampling with replacement (n  = 103) to the minimum libraries sizes to standardize the sequencing effort. 215 
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Core microbiota 216 

The core microbiota was identified using QIIME (Caporaso et al., 2010) and was determined by plotting OTU 217 

abundance in the core at 5% intervals (from 50% to 100% of samples). We defined the core microbiota of each 218 

plant as the OTUs present in 100% of samples. Determination of a core microbiota was accomplished by 219 

comparing all samples from each plant across the two compartments (RAS and root). Any taxa found to be 220 

ubiquitous across all samples were then defined to be part of the core microbiota of the compartment. From these 221 

data Venn diagrams were constructed using the R package: VennDiagram, to show common and unique OTUs 222 

within the four plant species (T. aestivum, B. napus, M. truncatula and A. thaliana). 223 

Network analysis 224 

Network inference was made by computing all Spearman's rank correlations between all OTUs of the “family” 225 

taxonomic level. P-value was adjusted using the procedure of Benjamini and Hochberg (1995) to finally consider 226 

only significant correlation (Spearman correlation coefficient |r| > 0.8 and P-adj < 0.05). The same procedure was 227 

used to compute the correlation between each OTU and each compartment (root system and root-adhering soil). 228 

Each network was visualized, analysed and different metrics (Table S1) (i.e. degree, diameter, average path length, 229 

average clustering coefficient, modularity) were calculated using the Gephi open-source software (Bastian et al., 230 

2009).  231 

We analysed OTUs interactions by comparing the high and low DAE graphs for the R and RAS compartments. 232 

By computing intersection, union or difference of this graphs, we can retrieve edges present or not in our DAE 233 

condition of interest. The graphical analysis was done using the igraph R package. 234 

 235 

Statistical analysis 236 

All results are presented as means (± standard error). For each plant, a one-way analysis of variance (ANOVA) 237 

and post-hoc Tukey HSD were performed to test the effect of root exudation on measured variables. Before 238 

analysis, Shapiro and Bartlett tests were performed to ensure conformity with the assumptions of normality and 239 

homogeneity of variances. Effects with p < 0.05 are referred to as significant.  240 

In order to test the significance between microbiota inhabiting the RAS and those colonizing the root tissues on 241 

all plants a non-parametric permutation-based multivariate analysis of variance (PERMANOVA, vegan R 242 
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package, Anderson 2001) on abundance based (Bray-Curtis) dissimilarity matrix was performed. All statistical 243 

analyses were carried out using R statistical software 3.1.0 (R Development Core Team, 2008).  244 

Data deposition 245 

The sequence data generated in this study was deposited at EMBL-ENA public database 246 

(http://www.ebi.ac.uk/ena/data/view/PRJEB25281). 247 

 248 

RESULTS 249 

Denitrifying enzyme activity in plant root systems  250 

To investigate the impact of the root exudates produced by each plant species on denitrifying activity, we measured 251 

the emission of N2O after nitrate amendment only on each plant root system, without adding any carbon source 252 

(Fig. 1A). The denitrification activity of the microbiota colonizing the root system of each plant species differs 253 

significantly from one another. The denitrification activity was higher on the root system of T. aestivum and A. 254 

thaliana (5.2 and 4.6 g N-N2O h-1.g-1 dried roots, respectively) and very low on the root system of M. truncatula 255 

and B. napus (0.6 and 0.08 g N-N2O h-1.g-1 dried roots, respectively). Interestingly, B. napus root exudates appear 256 

to inhibit denitrification activity in the root system or counterselect denitrifying microorganisms. 257 

 258 

Denitrifying enzyme activity on the root-adhering soil 259 

To determine the potential rate of the denitrification of microorganisms present on the root-adhering soil, the DEA 260 

of the RAS fractions retrieved from each plant rhizosphere was measured. The DEA of T. aestivum, B. napus and 261 

M. truncatula are significantly different from the unplanted soil (Fig. 1B), indicating a rhizosphere effect. 262 

However, the DEA of A. thaliana is significantly lower than that of the unplanted soil and the rhizosphere of the 263 

other plants. In addition, T. aestivum, B. napus and M. truncatula do not differ significantly from each other (Fig. 264 

1B).  265 

 266 

 267 
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Preferential uptake of soil nitrogen forms by plant species: NO3
- and/or NH4

+ 268 

In shoot tissues, the 15N content after the separate addition of NO3- or NH4+ for each plant species reveals a 269 

significant preferential uptake of NO3- by T. aestivum, B. napus and A. thaliana plantlets (Fig. 2A). Conversely, 270 

none of the forms of N tested are preferentially absorbed by M. truncatula in our experimental conditions. B. napus 271 

had a significantly greater uptake capacity for NO3- than the other plant species. The patterns of the root tissue 272 

contents in 15N show the same trend as the shoot tissues with a significant preferential uptake of NO3- by T. 273 

aestivum and B. napus (Fig. 2B). As with the shoot tissues, M. truncatula uptakes NO3- or NH4+ forms of nitrogen. 274 

 275 

Diversity of active microbiota inhabiting each plant rhizosphere 276 

To investigate the impact of the root exudates produced by each plant species on the selection of active microbiota, 277 

the RNA extracted from the root-adhering soil and the root system was reverse transcribed and analysed using 16S 278 

rRNA gene sequencing. An average of 7,185,297 sequences were generated and utilized for analysis. The 279 

rarefaction curves, displaying the observed OTUs richness as a function of the sequencing effort, indicated that 280 

the sequencing depth has almost been reached to completely capture the diversity present in the bulk soil, RAS 281 

and root tissues of all the plants (Fig. S1). The richness and diversity of species (Inverted Simpson) were 282 

significantly increased in the RAS compared to the bulk soil for each plant, except for M. truncatula, and decreased 283 

in the root compartment compared to the RAS fraction, especially for A. thaliana and B. napus (Fig. S2).  284 

Several phyla were present in different amounts between the two compartments studied (RAS and root system) 285 

and between the plants (Fig. 3A). In addition, globally on all plants, significant differences (p. value = 0.001) were 286 

observed between microbiota inhabiting the RAS and those colonising the root system. The general trend is a very 287 

low difference between microbial diversity in the RAS fraction of all the plantlets compared to the one of the 288 

reservoir (bulk soil) at the phyla level. Another general trend is an important increase in the Bacteroidetes 289 

abundance (five-fold in the rhizosphere of T. aestivum, B. napus and M. truncatula) and of the OD1 phylum (from 290 

x15 to x150 in the four rhizosphere samples) (Additional File 1). In the root tissues, Chloroflexi was more abundant 291 

on the root system of T. aestivum (8%) than the other plants (3-5%), while Bacteroidetes was more abundant on 292 

the root system of B. napus (15%) and T. aestivum (13%) compared to the other plants (9-10%) (Fig. 3A, 293 

Additional File 1). Verrucomicrobia was highly enriched on the root system of B. napus (8%) compared to the 294 

other plants (1-3%). Firmicutes and Acidobacteria were less abundant on the plant root systems (1-2% and 1-3% 295 



 12 

respectively), except on the root tissues of A. thaliana where they were slightly more abundant (3% and 5% 296 

respectively) (Fig. 3A, Additional File 1). The relative abundance of Crenarchaeota was increased on the root 297 

system of A. thaliana (0.3%) compared to that of the other plants (less than 0.07%). For the RAS fractions, few 298 

differences in phyla abundance were observed between the plant species. However, Bacteroidetes was more 299 

abundant in the RAS of A. thaliana (6%) than in those of T. aestivum, B. napus and M. truncatula (2-3%). 300 

Planctomycetes was counter-selected in the RAS fraction of A. thaliana (9%) compared to other plant rhizospheres 301 

and bulk soil (15-17%) (Fig. 3A, Additional File 1).  302 

Some phyla have been more enriched on the RAS than on the root tissues and vice versa independently of the 303 

plant species (Fig. 3A, Additional File 1). For example, this is the case for Actinobacteria, Gemmatimonadetes, 304 

Plantomycetes and Crenarchaeota, which were more abundant in the RAS of B. napus, T. aestivum and M. 305 

truncatula compared to their root systems (from two-fold to ten-fold increases). Despite the high abundance of 306 

Proteobacteria in all the plant rhizospheres, they were more abundant on the root tissues (44-52%) than in the 307 

RAS (34-39%). 308 

To examine a potential role of the plant species on the root-associating bacterial assemblage, we compared the 309 

bacterial profiles obtained from T. aestivum, B. napus, M. truncatula and A. thaliana root compartments (Fig. 3B). 310 

Within the root OTUs (rOTUs) community, only four OTUs were enriched in the root systems of all the plants 311 

studied, while 21, 106, 74 and 103 OTUs were significantly enriched in the root systems of A. thaliana, M. 312 

truncatula, T. aestivum, and B. napus, respectively (Fig. 3B, Additional File 2). The common and unique OTUs 313 

retrieved from the root system of each plant are shown in Additional File 2. 314 

To examine the impact of the plant species on shaping the bacterial community inhabiting the root-adhering soil 315 

(RAS), we compared the bacterial profiles obtained in the root-adhering soil of T. aestivum, B. napus, M. 316 

truncatula and A. thaliana (Fig. 3C). We identified 24 root-adhering soil OTUs (rasOTUs) shared by the four plant 317 

species. These shared OTUs can be regarded as the core microbiome of the four rhizospheres. Unique rasOTUs 318 

corresponding to the bacterial community specifically inhabiting each plant species were also observed with 130, 319 

65, 133 and 1683 OTUs found in the rhizosphere of A. thaliana, M. truncatula, T. aestivum, and B. napus, 320 

respectively. Common and unique OTUs retrieved from the plant root-adhering soils are shown in Additional File 321 

3. 322 

 323 
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Network description 324 

To explore co-occurrences between the bacterial phyla colonizing the root system and inhabiting the rhizosphere 325 

(RAS fractions) of T. aestivum, B. napus, M. truncatula and A. thaliana, we used a network inference based on 326 

strong and significant correlations (using non-parametric Spearman’s) (Fig. 4, Table S1). The number of positive 327 

correlations (co-occurrences) was higher than the number of negative correlations (co-exclusions) in the 328 

rhizosphere of B. napus and A. thaliana and equal for the two others (T. aestivum, M. truncatula) (Table S1). 329 

The bacterial network of OTUs from the root system (rOTU) and the RAS (rasOTUs) compartments of B. napus 330 

is highly connected (Fig. 4). The structure of the network demonstrates densely connected groups of nodes, 331 

forming a clustered topology. Comparing the properties of the calculated networks, we observed that the B. napus 332 

network contains a significantly higher percentage of negative (220) and positive (171) edges than the other plants 333 

(Table S1). OTUs considered to be keystone species belonged primarily to different genera within the phyla of 334 

Proteobacteria, Planctomycetes and Actinobacteria (Fig. 4). 335 

The T. aestivum bacterial network that associates OTUs from the root system (rOTU) and its RAS (rasOTUs) is 336 

also highly connected (Fig. 4) with 105 positive edges and 110 negative edges (Table S1). The OTUs considered 337 

to be keystone species (depicted as nodes with larger sizes in the network) belonged primarily to different genera 338 

within the phyla of Proteobacteria, Bacteroidetes and Actinobacteria (Fig. 4). 339 

For the bacterial networks of M. truncatula and A. thaliana, we noticed a clear separation between the rOTUs and 340 

rasOTUs with a very weak connection between them. More bacterial phyla colonizing RAS co-occur in the 341 

rhizosphere of M. truncatula compared to the root system (Fig. 4). For A. thaliana, the co-occurring bacterial phyla 342 

display an equal distribution in the RAS and the root system, and very few co-occur on the root tissues. 343 

Finally, co-exclusions and co-occurrences found between certain rOTUs and/or rasOTUs retrieved from each plant 344 

are shown in Additional File 4. Overall, regardless of the plant studied, we noticed more co-exclusion and less co-345 

occurrence relationships among the significant interactions (Fig. 4 and Table S1). Among several positive 346 

interactions observed, we noted strong co-occurrence relationships for some members of Firmicutes 347 

(Paenibacillaceae) with Acidobacteria and Actinobacteria (Frankiaceae) in the RAS of B. napus (Additional File 348 

4). A positive correlation was also observed between Nitrospiraceae and Actinobacteria in the RAS of B. napus 349 

and A. thaliana and between Nitrospiraceae and Planctomycetes in the RAS of T. aestivum, B. napus and A. 350 

thaliana. A positive correlation was also observed between Rhizobiaceae and Chloroflexi and between 351 
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Chlamydiales and Planctomycetales on the root system of T. aestivum and M. truncatula, respectively (Additional 352 

File 4).  353 

Among several negative interactions observed, we noted a co-exclusion relationship for A. thaliana for the OTUs 354 

of the Acidobacteria (Chloracidobacteria) found on the RAS with the OTUs of the Firmicutes (Paenibacillaceae) 355 

found on the root system (Additional File 4). In the rhizosphere of T. aestivum, the OTUs from Gemmatimonadetes 356 

were negatively correlated with those of the Opitutales (Verrucomicrobia). For example, in the rhizosphere of B. 357 

napus, the OTUs of the Chloroflexi correlate negatively with the OTUs of the Comamonadaceae. 358 

By comparing OTUs interactions under high and low DEA conditions in the R and RAS compartments of the 359 

studied plant, we have identified a few OTUs that co-occur only in the RAS of T. aestivum and A. thaliana, with 360 

high DEA, while, other OTUs co-occur only in the R of T. aestivum and B. napus with high DEA (Additional File 361 

5), suggesting a potential role for these OTUs in denitrification. This is the case, for example, of the co-occurrence 362 

on the RAS of T. aestivum and B. napus between OTUs of Nitrospira and Solirubrobacterales and 363 

Rhodospirillales and Candidatus nitrososphaera or between OTUs of Acidobacteria and Verrucomicrobia on the 364 

R of T. aestivum and A. thaliana (Additional File 5). 365 

nirS and nirK transcript levels in the rhizosphere microbiota 366 

To gain additional insights on the role of root exudates in regulating denitrification, we measured the expression 367 

of the nirK and nirS genes on the root system and in the root-adhering soil of each plant species (Fig. 5). The 368 

number of nirK (encoding a copper-containing nitrite reductase) transcripts from the denitrifiers was higher on the 369 

root system of A. thaliana and T. aestivum (2.3 X 104 and 2.8 X 104 nirK cDNA copies per g of dried root 370 

respectively), in contrast with a lower expression on the root system of B. napus (0.9 X 104 nirK cDNA copies per 371 

g of dried root) and the almost complete absence of nirK expression on the root system of M. truncatula (Fig. 5A). 372 

The nirS gene that encodes a cytochrome cd1-containing nitrite reductase was detected only on the root system of 373 

M. truncatula (1.7 X 104 nirS cDNA copies per g of dried root).  374 

Given the level of expression of the nirK gene in the root-adhering soil, no significant difference was found 375 

between the RAS of T. aestivum and M. truncatula compared to the bulk soil. In contrast, the expression of nirK 376 

was significantly decreased in the RAS of A. thaliana and B. napus compared to the bulk soil (Fig. 5B). As on the 377 

root system, the expression of nirK is the lowest in the RAS of the B. napus plantlets (Fig. 5A and 5B). No 378 

expression of nirS was detected in the RAS fraction of the four plant species and in the bulk soil. In summary, 379 
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only nirK (not nirS) was expressed on the root system of T. aestivum and A. thaliana and, to a lesser extent, on the 380 

one of B. napus and repressed in the presence of M. truncatula. nirK was repressed in the RAS of A. thaliana and 381 

B. napus and unchanged in that of T. aestivum and M. truncatula. Surprisingly, nirS expression was detected only 382 

on the root system of M. truncatula. 383 

 384 

DISCUSSION 385 

Plant species shape denitrification activity through root exudation 386 

The measurement of the denitrification activity of the root system without additional carbon (Fig. 1) as conducted 387 

in a previous study (Guyonnet et al., 2017), likely displayed higher activity than in the root-adhering soil where 388 

carbon source was added. This result suggests the role of the root exudates of each plant species in the management 389 

of the denitrification activity. This plant intervention might be conducted by selecting beneficial microorganisms 390 

involved in plant nutrition and protection against pathogens, which may happen to denitrify. The host plant may 391 

also produce compounds that could control the expression of the genes involved in denitrification. Figure 1 shows 392 

a higher denitrification activity on the root system of T. aestivum and A. thaliana, which is consistent with the high 393 

expression of the bacterial nirK gene for these two host species (Fig. 5). This suggests a potential positive effect 394 

of the root exudates from T. aestivum and A. thaliana to select bacterial populations able to denitrify or to activate 395 

the expression of denitrification genes. The very low level of denitrification activity on the root system of B. napus 396 

is consistent with a lower level of expression of the nirK gene compared to that of the root system of T. aestivum 397 

and A. thaliana. These results suggest that the plantlets of B. napus may not recruit bacterial populations able to 398 

denitrify or may alter the expression of denitrification genes on the root system probably via root exudation. In 399 

addition, by measuring the preferential uptake of B. napus for nitrate and ammonium, our results demonstrated a 400 

greater avidity of B. napus for nitrogen uptake primarily in the form of nitrate compared to the other plants (Fig. 401 

2), suggesting potential competition for nitrate with denitrifiers as previously observed for other plants (Kuzyakov 402 

& Xu, 2013; Bardon et al., 2014). Denitrification inhibition, named Biological Denitrification Inhibition (BDI), 403 

has already been observed in Fallopia sp. and has been defined as the ability of the plant to release secondary 404 

metabolites such as procyanidins that inhibit denitrifiers, and therefore enables the plant to recover nitrate for its 405 

growth (Bardon et al., 2014, 2016, 2017). B. napus may perform BDI, because the presence of procyanidins has 406 

already been demonstrated on its roots (Wronka et al., 1994, Nesi et al., 2009).  407 
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On the root system of M. truncatula, the nitrogen uptake was very low regardless of its form, suggesting that unlike 408 

B. napus, competition for nitrogen with denitrifiers is not expected. However, the low denitrification rate primarily 409 

achieved by denitrifying bacteria harbouring the nirS gene indicates a counter-selection of the populations 410 

harbouring the nirK gene. However, we did find that a high level of denitrification activity on the legume RAS 411 

positively correlated with the nirK gene expression (Fig. 1). Several studies have investigated the effect of legume 412 

cultivation on nitrogen cycle processes, since legumes associated with nitrogen-fixing bacteria can be used as a 413 

substitute for mineral fertilizers (Philippot et al., 2007). Researchers reported high denitrification rates with legume 414 

rhizospheres compared to other plants (Svensson et al., 1991; Kilian and Werner, 1996) which is consistent with 415 

our data. Although, several studies have reported that denitrification is very common in rhizobia and that many 416 

strains can denitrify both as nodule bacteroids and as free-living bacteria (Philippot et al., 2007). In our study, 417 

either M. truncatula root-associated Rhizobia (bacteroids or free-living bacteria) are not involved in the 418 

denitrification process, since nirK gene expression was not detected (Fig. 5, Additional File 2), or it can be assumed 419 

that only the nirS copy is transcribed, since it was recently suggested that certain rhizobia may possess Cu-type 420 

(nirK) and cd1-type (nirS) nitrite reductase genes (Sánchez and Minamisawa, 2018). 421 

Our results provided evidence that the denitrification activity of the microbial communities inhabiting the 422 

rhizosphere (root-adhering soil) of T. aestivum was significantly higher than that of the unplanted soil, where less 423 

carbon is available (Fig. 1). Similarly, the measurement of the denitrification rate of cereals, such as barley grown 424 

in pots (Klemedtsson et al., 1987, Metz et al., 2003) and maize in field conditions (Mahmood et al., 1997), also 425 

revealed high denitrification activity compared to the unplanted soil. However, even though denitrification is 426 

primarily conducted by bacteria, we cannot exclude the role of fungi and archaea as previous studies have already 427 

shown their capacity to denitrify (Philippot, 2002a, Maeda et al., 2015). In addition, the nirK and nirS primers 428 

used in this study are not universal enough to survey all the soil denitrifiers, since they were designed based on a 429 

limited number of sequences, primarily from laboratory strains. Further studies developing new nirK and nirS 430 

primers and targeting denitrification genes expression from fungi and Archaea are needed to confirm our 431 

hypothesis.  432 

 433 

Core and specific active microbiota among plant species 434 

Metabarcoding of 16S rRNA revealed the enrichment of members of Chloroflexi on the root system of T. aestivum, 435 

Bacteroidetes and Verrucomicrobia on that of B. napus and Firmicute and Acidobacteria on that of A. thaliana at 436 
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the root system level (Figure 3A, Additional File 1). These results are consistent with previous data using a stable-437 

isotope probing (SIP) approach on B. napus (Gkarmiri et al., 2017), A. thaliana (Bulgarelli et al., 2012; Lundberg 438 

et al., 2012) and wheat (Wang et al., 2016). 439 

Comparison of the microbiota inhabiting the root-adhering soil revealed differences in the phyla abundance with 440 

high abundance, for example, Bacteroidetes in the rhizosphere of A. thaliana (Figure 3A, Additional File 1), which 441 

is consistent with previous research by Bulgarelli et al. (2012) on this model plant. Remarkably, the rhizosphere 442 

of A. thaliana was enriched with the Crenarchaeota phylum, which is consistent with the results of Bressan et al. 443 

(2009). This phylum, considered to be the most abundant ammonia-oxidizing phylum in soil ecosystems 444 

(Leininger et al., 2006), has been found to be involved in root exudate assimilation in the rhizosphere of A. thaliana 445 

using an SIP approach (Bressan et al., 2009).  446 

The comparison of the microbial assemblages revealed differences and similarities in the composition of the 447 

microbiota inhabiting the roots and the rhizosphere retrieved from the four plant species (Fig. 3B and C). First, we 448 

demonstrated that four rOTUs belonging to members of the families Caulobacteraceae, Comamonadaceae, 449 

Chitinophagaceae and Bacillaceae were enriched in the root systems of all the plants studied. These rOTUs can 450 

be considered generalists, since they are associated with the root system of all plants studied as determined by 451 

Haichar et al. (2008). Second, some clear differences were observed between the microbiota from the four plant 452 

root systems (Fig. 3B and C). For example, some members of the Cytophagaceae and the Chitinophagaceae family 453 

are specifically selected by A. thaliana (Additional File 3), while members of the families Opitutaceae, 454 

Verrucomicrobiacea, Solibacterales and Ellin 6075 were specifically associated with B. napus. In contrast, the 455 

enrichment of the members of the Microbacteriaceae family appears to be a distinct feature of the microbiota of 456 

the T. aestivum roots. In a recent study by Tomasek et al. (2017), a positive correlation between the abundance of 457 

Cytophagaceae, Chitinophagaceae and Microbacteriaceae and denitrification activity was observed, suggesting 458 

that these families potentially play an important role in denitrification at the root of A. thaliana and T. aestivum. 459 

For microbiota colonizing the root-adhering soil, we identified 24 rasOTUs common to all the plants studied 460 

(Additional File 3), suggesting that these OTUs represent generalist bacteria, while those retrieved only from a 461 

single plant species are considered to be specialist bacteria (Haichar et al., 2008). 462 

By comparing the root microbiota with the RAS microbiota, it appears that the root compartment is more selective 463 

than the soil surrounding the root system, indicating the specific recognition and nutritional selection of bacterial 464 
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communities on the root tissues prior to the release of nutrients into the rhizosphere (Haichar et al., 2008, 2012, 465 

2013). 466 

As the bacterial community colonizing the root system differs according to the plant species, the differences in 467 

denitrification activity could also be linked to the selection of certain denitrifying bacteria that are more or less 468 

effective for each plant through root exudates. Similarly, the diversity of the bacterial community inhabiting the 469 

root-adhering soil could also explain the denitrification activity profiles. Futures studies targeting the diversity of 470 

denitrifiers using denitrification genes, such as nirK and nirS, are needed. As described above, the current 471 

challenge is to design optimal nirK and nirS universal primer pairs to target entire denitrifier communities in the 472 

environment as already suggested by Bonilla-Rosso et al. (2016). 473 

 474 

Microbial interaction networks 475 

Positive correlations between microbial populations suggest the occurrence of a mutualistic interaction and co-476 

existence, while negative correlations might suggest the presence of host-competitive exclusion or a predation 477 

relationship between the microorganisms (Steele et al., 2011, Barbéran et al., 2011, Ju and Zhang, 2015). A closer 478 

look at the bacterial networks shows that several associations confirm or reveal interesting ecological patterns for 479 

the taxa that have not been as well studied as was also shown by Barbéran et al. (2011) (Fig. 4, Additional File 4). 480 

This is the case for the Crenarchaeotal OTU, which is particularly remarkable because of our poor understanding 481 

of the ecological niches occupied by this taxon, even though it has been proposed that related Crenarchaeota are 482 

ubiquitous in the soil (Bates et al., 2010; Barbéran et al., 2011) and that they may have an important role in the 483 

nitrogen cycle as ammonia oxidizers (Simon et al., 2000; Leininger et al., 2006; Barbéran et al., 2011). In this 484 

study, taxa related to Crenarchaeota OTUs co-occurred with the Alphaproteobacteria class (Ellin329 order) and 485 

Acidobacteria in the RAS of B. napus and with Chloroflexi (Anaerollinea class) in the RAS of M. truncatula. The 486 

co-occurrence between the Crenarchaeota OTUs is probably involved in the nitrogen cycling with the OTUs of 487 

the families Acidobacteria, Alphaproteobacteria and Chloroflexi, which are probably also involved in carbon 488 

cycling (Ward et al., 2009; Hug et al., 2013; Brauer et al., 2016), highlight the link between these two cycles and 489 

the importance of each for a better understanding of the other. 490 

It is interesting to note that Nitrospirales and Solirubrobacterales co-occur only in the RAS of T. aestivum and 491 

B. napus displaying high DEA, suggesting a syntrophic relationship, in which ammonium released by 492 
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Solirubrobacterales during the organic metabolism of N (Tu et al., 2017) could serve as a substrate for Nitrospira 493 

to achieve nitrification (Daims et al., 2015) and provide nitrate to denitrifiers. Similar interactions might also be 494 

suggested between Candidatus nitrosphaera participating to nitrification process (Spang et al., 2012) and 495 

Rhodospirillales known to perform denitrification as described by Saarenheimo et al. (2015).  496 

 497 

CONCLUSION 498 

Collectively our results have shown that plant species shape denitrification activity and modulate the diversity of 499 

active microbiota through root exudation. As expected, a positive effect of the root exudates on denitrification 500 

activity was observed on the root system of A. thaliana and T. aestivum, while B. napus appears to alter 501 

denitrification activity on the root system through root exudates. This denitrification inhibition is probably due to 502 

competition between B. napus and the denitrifiers for nitrate, since nitrate is preferentially utilized by B. napus. 503 

Some OTUs were associated with all the plants studied and are considered generalists, while others are specifically 504 

associated with plant species and are considered to be specialists. Network analysis indicated that Nitrospirales 505 

and Solirubrobacterales were positively correlated with high denitrification activity  in the RAS of T. 506 

aestivum and B. napus, while a positive correlation was observed between Cytophagaceae, 507 

Chitinophagaceae and Microbacteriaceae and a high DEA at the roots of A. thaliana and T. aestivum. 508 

 509 
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FIGURES, TABLE, ADDITIONAL FILES 706 

Figure 1. Denitrification activities of microbiota colonising the root system and inhabiting the root-adhering soil 707 

of wheat (Triticum aestivum), rapeseed (Brassica napus), barrel clover (Medicago truncatula), and Arabidopsis 708 

thaliana plantlets. (A) Impact of root exudates on denitrifying activity of microbial community colonising the root 709 

system. Denitrification activity (g N-N2O h-1.g-1 dried roots) was measured in triplicates after the addition of nitrate 710 

source only. (B) Denitrification enzyme activity  (DEA) of soil samples amended with nitrate (50 µg of N-KNO3 711 

g-1 of dried soil) and carbon sources (0.5 mg of C-glucose and 0.5 mg of C-glutamic acid g-1 of dried soil) measured 712 

in triplicates. Letters show which means differed between treatments (Tukey’s test; a = 0.05). Vertical bars: Means 713 

± Standard Errors. 714 

 715 

Figure 2. Nitrogen uptake of ammonium and nitrate for aboveground (A) and belowground (B) tissues 12 h after 716 

15N labelling (NO3- or NH4+) of wheat (Triticum aestivum), rapeseed (Brassica napus), barrel clover (Medicago 717 

truncatula), and Arabidopsis thaliana plantlets. Vertical bars: Means ± Standard Errors. Means significantly 718 

different from 15N-NO3-: *, P < 0.05. Nitrogen uptake was not measured belowground for A. thaliana due to low 719 

amount of roots. 720 

 721 

Figure 3. Analysis of bacterial diversity. (A) Distribution of the 15th majors bacterial phyla (abundance in %) 722 

among the root system and the root-adhering soil of wheat (Triticum aestivum), rapeseed (Brassica napus), barrel 723 

clover (Medicago truncatula), and Arabidopsis thaliana plantlets. A Venn diagram showing shared and unique 724 

bacterial OTUs at 100% identity among bacterial community colonising the root system  (B) and those inhabiting 725 

the root-adhering soil (C) retrieved from the rhizosphere of wheat (Triticum aestivum), rapeseed (Brassica napus), 726 

barrel clover (Medicago truncatula), and Arabidopsis thaliana. 727 

 728 

Figure 4. Significant co-occurrence and co-exclusion relationships among the microbiota inhabiting the root-729 

adhering soil (in green) and colonising the root system (in brown) of wheat (Triticum aestivum), rapeseed 730 

(Brassica napus), barrel clover (Medicago truncatula), and Arabidopsis thaliana plantlets. The colour of nodes 731 

(ring of the cercal) corresponds to the phylum, while the size of the nodes is proportional to their abundance. The 732 
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red and blue lines specify significant positive and negative correlations (Spearman correlations ≥ 0.8 or ≤-733 

0.8, P.adj < 0.05) between two nodes, respectively. Full circles with green or brown colour correspondent to OTUs 734 

more abundant on the root system and the root-adhering soil respectively. Empty circles correspondent to OTUs 735 

with the same abundance between the root system and the root-adhering soil compartments.   736 

 737 

Figure 5. Predictive functional metagenome composition. Heatmap of the normalized relative abundances of the 738 

predicted functional categories (level 3) of the microbiota colonising the bulk soil, the root system and the root-739 

adhering soil (RAS) of wheat (Triticum aestivum), rapeseed (Brassica napus), barrel clover (Medicago truncatula) 740 

and Arabidopsis thaliana plantlets.  741 

 742 

Figure 6. Quantification of nirK and nirS genes transcripts from RNA extracted from the root system (A) and the 743 

root-adhering soil (B) from wheat (Triticum aestivum), rapeseed (Brassica napus), barrel clover (Medicago 744 

truncatula) and Arabidopsis thaliana plantlets by real-time RT-PCR. Letters show which means differed between 745 

treatments (Tukey’s test; a = 0.05). Vertical bars: Means ± Standard Errors. 746 

 747 

Additional files: 748 

Table S1. Global network statistics for bacterial association networks from the rhizosphere of wheat (Triticum 749 

aestivum), rapeseed (Brassica napus), barrel clover (Medicago truncatula), and Arabidopsis thaliana. Red edges 750 

correspondent to positive correlations (co-occurrences) and blue one to negative correlations (co-exclusions).  751 

Figure S1:  Rarefaction curves demonstrating species richness of microbiota retrieved from the root system (R) 752 

and root-adhering soil (RAS) compartment from wheat (Triticum aestivum), rapeseed (Brassica napus), barrel 753 

clover (Medicago truncatula), and Arabidopsis thaliana plantlets.  754 

Figure S2: Species Richness and diversity (Inverted Simpson) of microbiota associated with the bulk soil (BS), 755 

the root-adhering soil (RAS) and the root system (R) of wheat (Triticum aestivum), rapeseed (Brassica napus), 756 

barrel clover (Medicago truncatula), and Arabidopsis thaliana plantlets.  757 
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Additional File 1: Abundance in percentage (%) of the 15 more abundant phyla (used in Figure 3) retrieved from 758 

the bulk soil and the root system (R) and the root-adhering soil (RAS) of wheat (Triticum aestivum), rapeseed 759 

(Brassica napus), barrel clover (Medicago truncatula), and Arabidopsis thaliana plantlets. 760 

Additional File 2: Taxonomic affiliation of OTUs retrieved from root tissues (tab 1) shared by all the plants 761 

(Triticum aestivum/Tae, Brassica napus/Bna, Medicago truncatula/Mtr, and Arabidopsis thaliana/Ath) and 762 

representing the core microbiome; (tab 2) present in Ath only; (tab 3) present in Bna only; (tab 4) present in Mtr 763 

only and (tab 5) present in Tae only. 764 

Additional File 3: Taxonomic affiliation of OTUs retrieved from the root-adhering soil (tab 1) shared by all the 765 

plants (Triticum aestivum/Tae, Brassica napus/Bna, Medicago truncatula/Mtr, and Arabidopsis thaliana/Ath) and 766 

representing the core microbiome; (tab 2) present in Ath only; (tab 3) present in Bna only; (tab 4) present in Mtr 767 

only and (tab 5) present in Tae only.  768 

Additional File 4: Taxonomy of OTUs (nodes in Fig. 4) and their significant (spearman value indicated) co-769 

exclusion/co-occurrent OTUs retrieved from the root system (R) or the root-adhering soil (RAS) of Brassica napus 770 

(tab 1), Arabidopisis thaliana (tab 2), Triticum aestivum (tab 3) and Medicago truncatula (tab 4).  771 

Additional File 5 : OTUs interactions associated only with high DAE conditions from the root system (R) and the 772 

root-adhering soil (RAS) compartments. OTUs co-occurring only in the RAS of Triticum aestivum and 773 

Arabidopsis thaliana presenting high DEA. OTUs co-occurring only in the R of Triticum aestivum and Brassica 774 

napus presenting high DEA. 775 
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