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Abstract. Neoclassical Tearing Modes (NTM) must be controlled or suppressed to

prevent a degradation of the energy confinement in tokamak plasmas. This can be

done applying RF-current via Electron Cyclotron Current Drive (ECCD) and -heating

(ECRH) at the rational surface where the instability appears. Both the current and

heating generated by the RF waves are known to provide a stabilizing effect on the

magnetic island. In the present work, we address the issue of Neoclassical Tearing

Mode stabilization by Heating and Current Drive in an ITER-like configuration, using

a stiff transport model. From a revised Generalized Rutherford Equation, we revisit

the criterion on the RF current and power required to stabilize an NTM, showing that

the level of plasma background heating (residual heat sources) in ITER significantly

lowers the benefit of the RF heating contribution. Nonlinear MagnetoHydroDynamic

simulations with the XTOR code, where a stiff transport model as well as RF-power

and -current drive are implemented, are performed to compute the NTM stabilization

efficiency. The stabilization efficiency due to the RF current contribution is found to be

less than theoretically predicted in the case of continuous application, but consistent

with theory in the modulated control scheme, suggesting an enhanced destabilization at

the X-point. The role of RF heating for continuous application is found to be moderate

for the range of power envisaged in ITER, essentially because of the detrimental effect

of residual heat sources. This numerical work confirms the capability of the ITER RF

system to control the (3, 2) NTM, with a larger confidence for the modulated control

scheme.
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1. Introduction

The power produced by fusion devices is proportional to the square of the plasma

beta β, the ratio of the plasma pressure over the magnetic pressure. A large β is

therefore desired in future machines such as ITER. An important task to ensure good

performances of the device is the control of magneto-hydrodynamic (MHD) plasma

instabilities, among which Neoclassical Tearing Modes (NTMs) deserve particular

interest because of their broad range of impact, from energy confinement degradation

to plasma disruption. These modes consist of magnetic island that are metastable,

i.e. linearly stable and non linearly unstable above some critical island size. The

linear stability essentially results from a large curvature effect associated with the large

plasma β [Kotschenreuther et al., 1985, Lütjens et al., 2001], while the nonlinear drive

is provided by the self generated bootstrap current [Carrera et al., 1986].

As any magnetic island, NTMs can be controlled by a current source opposing the

island current, and localized preferably at the O-point. This focused current source can

be obtained either by directly driving an electron flow, or by heating the plasma, which in

presence of a toroidal electric field results in an amplification of the ohmic current. Both

mechanisms lead to a decay of the island size [Hegna and Callen, 1997]. In tokamaks, the

use of RF waves at the Electron Cyclotron (EC) frequency has proved to be very efficient

in this respect because of the narrow deposition width that can be obtained, as demon-

strated in a large number of experiments [Maraschek, 2012], and verified in numerical

simulations [Yu and Günter, 1998, Popov et al., 2002, Yu et al., 2000, Yu et al., 2004,

Février et al., 2016, Février et al., 2017]. Although the best results are obtained when

the RF beam is toroidally oriented to drive a current, the favorable effect of pure

heating has also been demonstrated experimentally [Westerhof et al., 2007] and numer-

ically [Kurita et al., 1994, Lazzari and Westerhof, 2009, Lazzari and Westerhof, 2010,

Kim et al., 2016, Maget et al., 2018b].

The evaluation of the relative benefits of heating and current drive sug-

gests that the current contribution is the most efficient on large tokamaks

[Lazzari and Westerhof, 2009, Lazzari and Westerhof, 2010], and the heating contri-

bution is generally neglected in island stabilization analyzes, either for present

experiments or for ITER. However, the vanishing of turbulent transport in-

side a magnetic island was neglected until recently [Fitzpatrick, 2017], and nu-

merous experiment observations report strong evidences of this phenomenon

[Inagaki et al., 2004, Ida et al., 2012, Bardòczi et al., 2016, Bardòczi et al., 2017], also

supported by numerical simulations of turbulence in presence of a magnetic is-

land [Hornsby et al., 2010, Hornsby et al., 2011, Zarzoso et al., 2015, Hill et al., 2015,

Izacard et al., 2016, Navarro et al., 2017, Agullo et al., 2017a, Agullo et al., 2017b].

The response of an island to a localized heating is indeed sensitive to the stiffness of

the temperature profile due to turbulent transport properties. The island will respond

strongly to limited power densities, up to the level where turbulence will be excited,

and will not respond to further power density increase because a growing turbulence
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level will prevent further temperature increase. The implication is that the contribution

of power density to the island stabilization can be much larger than anticipated with

a non-stiff transport model when the RF power is moderate compared to the power

flowing through the island position [Maget et al., 2018a]. But on the other hand, even a

limited background heating, present before the RF system is used, can damp the control

capability by localized heating [Maget et al., 2018b]. The RF heating contribution is

therefore very much case dependent, and one of the goals of the present study is to

evaluate it in an ITER-like configuration.

In the present work, we investigate issues related with the stabilization of the (m =

3, n = 2) NTM , with m and n the poloidal and toroidal mode numbers respectively,

in an ITER-like configuration. In ITER, a dedicated system is designed for this

purpose [Figini et al., 2015, Henderson et al., 2015, Poli et al., 2015, Poli et al., 2018],

with a power of 13 MW made available for the control of this island. We first address

this question using a simple evolution equation for the magnetic island (Rutherford

Equation), where the bootstrap drive and RF heat and current drive terms are

considered (section 2). A criterion on the required RF current drive and power

needed for full stabilization is derived and illustrated for the ITER situation. In

a second part, we present full MHD non linear simulations using the XTOR code

[Lütjens and Luciani, 2010] where a stiff transport model [Maget et al., 2018b] and RF-

heating and -current drive are implemented [Février et al., 2016, Février et al., 2018].

The MHD model that is considered includes ion and electron diamagnetic rotations as

well as an ad-hoc bootstrap current, and we consider a simplified ITER-like configuration

(section 3) where the (3,2) NTM saturates at about 10% of the minor plasma radius

due to the bootstrap drive (section 4). We then focus our work on the RF stabilization

efficiency issue, taking into account current drive and heating contributions, in both

continuous and modulated control schemes (section 5). The dynamics of the island

decay is fundamentally different for current or heating applications, with a rapid and

large overshoot due to the heating effect, while the island responds slowly to the RF

current. The numbers obtained from numerical simulations show a degraded efficiency

of the current drive contribution for continuous application, a reduction that vanishes for

modulated injection. We document this degradation in section 6, but we acknowledge

that this issue is not fully understood for the moment. The heating contribution is found

to follow theoretical predictions, including the background plasma heating effect already

studied in the context of classical tearing modes [Maget et al., 2018b]. In conditions

comparable to the ITER ones, where the ratio between the applied RF power and the

power injected inside the resonant surface ranges between 10 and 20%, RF heating is

expected to contribute to 20% of the stabilization efficiency in the case of continuous

application, a number that appears to be relatively large, but the reason comes from the

degraded contribution of the current drive. In the modulated scheme, the net effect of

the RF heating decays with time but the overall stabilization efficiency is in accordance

with theory as shown in section 5.2. The results are summarized in the conclusion

(section 7).
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2. ECCD-ECRH Criteria for NTM Control

The dynamics of a magnetic island can be represented in a simplified form with a

generalization of the Rutherford Equation [Rutherford, 1973]. We will consider for the

present purpose a linear drive that is negative (the island is supposed to be linearly

stable), a nonlinear drive due to the bootstrap current perturbation, the RF stabilization

terms coming from current drive and heating, as well as a stabilization term due to the

background plasma heating.

The magnetic island size w is normalized to the minor plasma radius a and is noted

W = w/a, and the Generalized Rutherford Equation writes:

dW

dτη
= a∆′ + a∆′bs + a∆′RF + a∆′Ω(Pres), (1)

where τη = t/(0.82τR), τR = µ0a
2/η is the resistive timescale, a∆′ and a∆′bs are the

tearing [Furth et al., 1963] and bootstrap [Fitzpatrick, 1995] terms. The term a∆′RF
represents the effect of the RF control source, and the last term a∆′Ω(Pres) in (1)

represents the stabilization mechanism due to the plasma background heating in the

absence of the RF source [Maget et al., 2018b]. The RF term has contributions from

the RF current drive and power:

a∆′RF = a∆′CDRF + a∆′HRF (PRF , Pres), (2)

where a∆′CDRF represents the RF-current stabilizing term [Hegna and Callen, 1997] and

a∆′HRF (PRF , Pres) is the RF-heating stabilisation term with PRF the RF power deposited

inside the island and Pres the residual heating coming from the background plasma heat

source [Maget et al., 2018a].

The parameters ∆′ in (1) have the following form

a∆′bs = 6.35Jbs
q

s

W

W 2 +W 2
m

, (3)

a∆′CDRF = − 32
q

s
JRF

δRF
W 2

ηRF , (4)

a∆′HRF (PRF , Pres) = − α2 (2π)2CΩ (µc, σ)
a

LT

q

s
JΩ

[(
PRF + α1Pres

Peq

)1/σ

−
(
α1Pres
Peq

)1/σ
]
,(5)

a∆′Ω(Pres) = − α3 (2π)2CΩ (1, σ)
a

LT

q

s
JΩ

(
Pres
Peq

)1/σ

, (6)

where Jbs = jbsµ0R0/B0 and JΩ = jΩµ0R/B0 are the normalized local bootstrap and

ohmic currents, δRF is the width of the RF-current density profile normalized to the

minor radius and JRF = jRFµ0R0/B0 its peak value. The width Wm characterizes

the threshold below which heat transport restores the bootstrap current inside the

island [Fitzpatrick, 1995]. The temperature gradient length at the resonance is LT =

−Ts/dTs/dr with Ts the temperature at the resonant surface. We also introduce the

normalization of the RF deposition width µc = (δRF/W )2. The safety factor at the

resonant surface is q and s = (r/q)dq/dr is the magnetic shear. While Pres represents
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the amount of residual heat deposited inside the whole island by the background plasma

heat source, Peq is the background plasma power injected inside the island position,

and it is related to the local temperature gradient through the plasma diffusivity

[Maget et al., 2018a]. The ratio of these two quantities is instrumental for assessing the

impact of local heat sources in a stiff plasma: a large residual heat source contributes

to lower the island saturation (equation 6) but it also damps severely the capability

to control it with the local heat source provided by the RF system (equation 5). The

coefficients α1 ≈ 0.1, α2 ≈ 0.8 and α3 ≈ 1 have been determined numerically and

apply for a continuous RF injection [Maget et al., 2018b]. The function CΩ (µc, σ) is

approximated by the formula [Maget et al., 2018a]

CΩ (µc, σ) ≈ 3

4π2

[
0.8 +

0.6

σ
− 1.09

µc
σ

+ 0.242
(µc
σ

)2

− 0.228
µc
σ

ln
(µc
σ

)]
(7)

where σ is the transport stiffness. This stiffness parameter would be unity if turbulent

transport was independent from the local temperature gradient, but it is large in

realistic situations, approaching σ ≈ 8 following turbulent transport simulations for

ITER [Kinsey et al., 2011]. In the following we will detail how the terms relative to

heat sources, either residual or RF driven, impact the island saturation and the RF

specifications that are required to stabilize it.

2.1. NTM Saturation Size

We first consider the effect of the residual heat source on the NTM saturation, in the

absence of RF control. The residual heat Pres within the NTM due to the plasma

background heating is given by the formula [Maget et al., 2018b]

Pres = 8πaWJHeq, (8)

with J the Jacobian at the resonant surface and Heq the heat power density source

value at the resonance. The residual heat is distributed over the whole NTM which

implies µc = 1 in (7). At saturation, we assume that the characteristic transport width

Wm is sufficiently small compared to the island size Ws that we can neglect it. One has

therefore for the saturation without the residual heat source a∆′Ws = −6.35Jbsq/s, and

after including the residual heat source the island saturates at Ws,H with:

1− Ws

Ws,H

+ 6.22α3CΩ(1, σ)
a

LT

JΩ

Jbs

(
Pres(Ws,H)

Peq

)1/σ

Ws = 0 (9)

Setting Ws,H = Ws − δ with δ � 1 gives

δ ≈ 6.22α3CΩ(1, σ)
a

LT

JΩ

Jbs

(
Pres
Peq

)1/σ

W 2
s (10)

The reduction of the island saturation due to the residual heating is therefore an

increasing function of the heat power density source value at the resonance, and it is

particularly pronounced in a stiff plasma since we have always Pres/Peq < 1. This effect

is present already for classical islands [Maget et al., 2018b], and numerical simulations

will show its evidence on NTM saturation in section 4.



Non-Linear Simulations of Neoclassical Tearing Mode Control 6

The stabilizing influence reported here opposes other effects of the reduced heat

transport inside the island. Indeed, the characteristic transport width Wm is also

reduced due to the larger ratio χ‖/χ⊥, leading to a larger contribution of the bootstrap

term when the island size is close to Wm [Fitzpatrick, 2017, Bardòczi et al., 2017]. For

an island width much above Wm, as is expected in the ITER case, this destabilizing

effect should not affect strongly the saturated size, in contrast with the effect of the

residual heating that scales as W 2
s .

2.2. RF-Current and -Heating Threshold

From Equation (1), a criterion on the RF current required to fully stabilize a NTM can be

derived [Poli et al., 2015]. The stabilizing effect of the residual heating is participating

in the saturation of the island, and is therefore integrated in the a∆′ term that balances,

in the absence of RF control, the bootstrap drive. But the damping of the RF heating

stabilization due to this residual heating needs to be taken into account. The full

stabilization of the NTM requires that the equation

1

a∆′
dW

dτ
= 1 +

∆′bs
∆′

+
∆′RF
∆′

(11)

is negative for all W . We consider different limits of (11) to determine the stabilization

conditions related to RF-current and heating deposition as well as the residual heat

within the island.

2.2.1. Combinaison of RF current and heating The ECCD-ECRH combination results

in a new criterion for the minimal RF-current required to stabilize an NTM. Neglecting

residual heat, the criterion is[
1 + 6.22α2Ws

a

LT

JΩ

Jbs
CΩ(µc, σ)

(
PRF
Peq

)1/σ
]
δRF
Ws

JRF
Jbs

ηRF ≥
1

20.16
. (12)

The RF current required to stabilize the NTM is therefore reduced thanks to the

contribution of RF heating. Note that the residual heat Pres does not degrade the

stabilization efficiency due to the RF-heating in the case of a non-stiff plasma (σ = 1).

If we know take into consideration the residual heating, we get a new criterion

[1 + F(PRF , Pres)]
δRF
Ws

JRF
Jbs

ηRF ≥
1

20.16
(13)

F(PRF , Pres) = 6.22α2Ws
a

LT

JΩ

Jbs
CΩ(µc, σ)

[(
PRF + α1Pres

Peq

)1/σ

−
(
α1Pres
Peq

)1/σ
]

(14)

where the the contribution of RF heating in the NTM stabilization can be significantly

reduced, as we will see in the numerical application.

2.2.2. Application to ITER In order to determine the minimum PRF required to

stabilize an NTM located at the resonant surface q=3/2 for ITER, we use the numerical

values of JΩ/Jbs = 2.3, and a/LT = 2.6 at the resonant surface q = 3/2 (
√
ψ = 0.76
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or
√

Φ = 0.64 in terms of toroidal flux co-ordinate) from the ITER-like equilibrium

described in section 3.2. The magnetic shear at q = 3/2 is s ≈ 1.3. For the RF

specifications, we assume an available power of 13.3 MW and a toroidal injection angle

of 20 degrees that provides a current drive efficiency ηCD of about 9 kA/MW and

gives IRF ≈ 120 kA [Farina et al., 2014, Figini et al., 2015]. For the nominal ITER

scenario, where the plasma current is Ip = 15 MA and the power injected inside

q = 3/2 is about Peq = 90 MW [Casper et al., 2014], we get therefore IRF/Ip = 0.8%

and PRF/Peq = 0.15 (see section 3). In addition we take δRF = 0.017 (i.e. 3.4 cm

in ITER where the minor radius is a = 2 m), a value that corresponds to the

nominal value of the EC system specification [Figini et al., 2015] (note that δRF is

defined as the full width at half the peak value of the RF current deposition profile).

This gives JRF/Jbs = 1.26 at q = 3/2. Note that the profile broadening issue

[Peysson et al., 2011, Decker, J. et al., 2012, Sysoeva et al., 2015, Snicker et al., 2018]

does not affect the product δRFJRF , but it does enter in the problem via the RF

stabilization efficiency ηRF that depends on W/δRF . For the island saturation size,

we take Ws = 0.1 (see section 4). The residual heating for this island size is evaluated

around Pres/Peq = 0.08 (see section 3.2), a value that is therefore about twice lower

than the RF power contribution. Finally we approximate the RF-current efficiency ηRF
by the fits given in Sauter et al. for continuous and 50% modulated RF application

[Sauter, 2004]

ηCWRF

(
W

WRF

)
=

1

4

(
W
WRF

)2

1 + 2
3

(
W
WRF

)2 (15)

ηmodRF

(
W

WRF

)
=

9

20
tanh

(
2

5

W

WRF

)
(16)

with WRF =
√

ln 2 δRF . The RF current and heating that are required to fully stabilize

the (3, 2) NTM are computed by increasing JRF and PRF until equation 11 has no

positive value. On the question of the critical width Wm, we compare two different

approaches, one where we assume Wm = 0 and ηRF

(
Ws

δRF

)
≈ 0.35, and the other where

we take Wm = 2% and the expression of equation 15 for the RF efficiency. It is known

indeed that the RF current requirement decreases as Wm is increased, and we find that

the first option gives conservative constraints on this requirement, as shown below.

Figure 1 represents the values of the RF-current and -heating necessary to stabilize

the (3, 2) NTM with or without residual heating. Values under the lines are unable

to stabilize the (3, 2) NTM, and the ITER reference is indicated by the vertical line at

PRF/Peq ≈ 0.15. The requirement in terms of RF current in the absence of RF heating is

JRF/Jbs ∼ 0.74 (forWm = 2%). The gain that can be expected in ITER from the heating

contribution is negligible in a non-stiff plasma, and is, for σ = 8, around 11% in the

absence of residual heating. With the expected value Pres/Peq ≈ 0.08, the contribution

of RF heating to the NTM stabilization translates into a moderate reduction of the RF

current requirement of only 4%. The value of about JRF/Jbs = 1.26 appears therefore
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Figure 1. Required EC current density to stabilize an NTM as given by (13) as a

function of the RF power (PRF ) for a non-stiff plasma (σ = 1) and a plasma with

stiffness parameter σ = 8, with a residual heating Pres = 0 or, as estimated in ITER,

Pres/Peq = 0.08. Dashed lines correspond to the hypothesis Wm = 0 and ηRF = 0.35

and full lines to Wm = 2% and ηRF (W ). The vertical line shows the expected value

in ITER, PRF /Peq ≈ 0.15.

to be sufficient for the stabilization of the (3, 2) NTM in ITER, with a margin of about

a factor of two, and the heating has a negligible contribution. For a broader application

range, e.g. in present tokamaks where the ratio PRF/Peq can be of order unity, the figure

illustrates how the plasma stiffness reduces the advantage using a large RF power. It

should be kept in mind, however, that the equilibrium effect on the current profile,

not taken into account here, can be significant (and stabilizing if well aligned with

the resonance) in such cases [Glasser et al., 1977, De Luca et al., 1986, Westerhof, 1987,

Sing et al., 1993, Pletzer and Perkins, 1999, Kislov and T-10 Team, 2001].

The requirement on the EC system expressed in equation 12 can also be written

in terms of the current drive efficiency ηCD ≡ IRF/PRF . For an elongated plasma,

we use the approximation IRF ≈ π3/2/
√

2 ln 2xs
√

1 + κ2δRFa
2jRF with κ ≈ 1.8 the

plasma elongation, in order to derive a simple criterion. The minimum required power

to stabilize the NTM can then be expressed as

[1 + F(PRF , Pres)]
PRF
Peq

ηRF

√
2 ln 2 PeqηCD

π3/2xs
√

1 + κ2a2Ws

µ0R0

JbsB0

≥ 1

20.16
(17)

where xs = rs/a. Figure 2 depicts (17) where the red square corresponds to

ηCD ≈ 9kA/MW, which is the ITER value at q = 3/2 that will be used in the

numerical simulations. The contribution of heating in the stabilization can be isolated

by computing (PCD only
RF − PRF )/PRF , as shown in figure 3. This contribution decreases

naturally at larger CD efficiency, and since the power requirement is lower with PRF/Peq
getting low as well, the plasma stiffness tends to enhance this contribution. At low CD

efficiency, either intentional by directing the RF antenna more perpendicularly to the
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Figure 2. Current drive efficiency ηCD ≡ IRF /PRF required for (3, 2) NTM

stabilization as a function of the RF power (PRF /Peq), with σ the stiffness strength,

including a residual heat source Pres/Peq = 0.08 (left: log scale, right: linear scale), and

we use Wm = 2% and ηRF (W ). The ITER reference used in the numerical simulations

is marked with a red square.

magnetic surface or due to a low plasma temperature, the power required to stabilize

the NTM becomes large and the ratio PRF/Peq rapidly exceeds the value where plasma

stiffness is favorable. In ITER, with the parameters detailed earlier and taking into

account a residual heating of about 8%, the reduction of the required RF power due

to the heating contribution does not exceed 4% of the injected power when we take

ηCD ≈ 9kA/MW, and at the lowest CD efficiency allowed within the available power

ηCD ≈ 3kA/MW (see figure 2), the heating contribution would not exceed about 10%.

3. Non-Linear Simulations Set-Up

3.1. Equations Solved

We use the XTOR code [Lütjens and Luciani, 2010] to solve the following non-linear set

of normalized MHD equations

(∂t + Vi · ∇) ρ = − ρ∇ ·Vi −∇ · Γan + S, (18)

(∂t + V · ∇) p = − Γp∇ ·V − diΓK ·
[
p

ρ
∇pi +

pi
ρ
∇pi −

pe
ρ
∇pe +

p2
e − p2

i

ρ2
∇ρ
]

(19)

+ (Γ− 1) (Heq −∇ · qχ +HRF ) , (20)

ρ (∂t + V · ∇) V = − ρV?
i · ∇V⊥ + J×B−∇p+∇ · ν∇Vi, (21)

∂tB = −∇× E, (22)

with

E + V ×B = η [J− Jbs − JCD − JRF ]− di
∇‖pe
ρ

, (23)
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Figure 3. Contribution of RF heating in the stabilization of the (3, 2) NTM island

as a function of the current drive efficiency ηCD ≡ IRF /PRF . The vertical line at

ηCD = 0.009 is the value taken in the simulations for ITER.

with ρ = ni/ni(0) the normalised mass density on axis, V = VE+V‖,i, VE = V×B/B2,

V‖,i the ion parallel velocity, di = VA/(aωci) the normalized ion skin depth with VA =

B0/
√
µ0ρ(0) the Alfvén velocity, Γ = 5/3 represents the ratio of specific heat and Heq =

− (Γ− 1)∇ ·χ0
⊥∇⊥p(t = 0) the heat source. The symbol HRF represents the externally

driven heat (ECRH). The diffusive heat flux is qχ = −ρχ‖b(b · ∇T )− ρχ⊥∇⊥T . Here

b = B/|B|, T = p/ρ and χ⊥ represents the perpendicular diffusivity due to turbulent

transport processes as [Maget et al., 2018a]

χ⊥ = χ0
⊥

∣∣∣∣ T ′T ′eq
∣∣∣∣σ−1

, (24)

where χ0
⊥ and Teq are the heat diffusivity and the temperature equilibrium in the absence

of NTM, σ the stiffness parameter and T the temperature. The ′ denotes derivatives

in the radial direction. In ITER, a typical value of the stiffness strength at the q=3/2

resonant surface is σ=8 [Kinsey et al., 2011]. The particle source S restores the mass

density profile, Γan = (−D⊥∇ρ+ ρVpin) is the anomalous particle flux modeling the

turbulent particle transport, D⊥ = 2χ⊥/3 the perpendicular diffusion coefficient and

Vpin a pinch velocity that restores the density profile in the core region (
√
ψ ∈ [0, 0.9])

where the density source is zero, as described in [Maget et al., 2016]. Both the heat

source and particle sources are defined by their equilibrium profiles (section 3.2). We use

for the bootstrap current the ad-hoc formulation Jbs = Jeqbs |∇p|/|∇peq|b where the initial

equilibrium bootstrap is computed within the CHEASE code [Lütjens et al., 1996].

The non-inductive current density source JCD = JCD eϕ is then prescribed as

JCD = (Jϕ − Jbs,ϕ − E0/η)t=0 with E0 a constant prescribed at the edge such that

E0/(η(0) Jϕ(0)) = 0.75 (see Février et al [Février et al., 2018]), i.e. the ohmic current
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represents 75% of the total current at the plasma center, and about 54% of it at q = 3/2.

The ECCD and ECRH sources are evolved by the following governing equations

∂tJRF = νf
(
JRFs − JRF

)
+ χRF⊥ |B|∇2JRF

|B|
+ χRF‖ |B|∇2

‖
JRF
|B|

, (25)

∂tHRF = νf
(
HRF
s −HRF

)
+ χRF⊥ ∇2HRF + χRF‖ ∇2

‖HRF , (26)

with JRF = JRFb and νf = νei (vth/vres)
3 the collision frequency of fast electrons for

which we use vth/vres = 1/2. The evolution equation for the EC current has been

slightly modified compared with Février et al [Février et al., 2016] so that we have, in

the limit χRF‖ → ∞, a divergence-free RF current. The subscript s denotes the source

terms that are implemented as 1D or 3D Gaussian

ASRF (y, θφ) = AS0 exp

(
−(y − y0

RF )
2

2σ2
r

− (θ − θ0
RF )

2

2σ2
θ

− (φ− φ0
RF )

2

2σ2
φ

)
, (27)

where A ≡ H or J and y ≡
√
ψ. The source width δRF = 2

√
2 ln 2σr is the full width

at half maximum of the source.

3.2. Equilibrium

We use a simplified version of the ITER plasma shape given in Casper et al

[Casper et al., 2014] using an up-down symmetric equilibrium (see figure 4). The

inverse aspect ratio is ε = a/R0 = 0.323 for a the minor radius and R0 = 6.35m

the major radius at the geometric axis. Other parameters at the geometric axis are the

magnetic field, pressure, mass density and electronic temperature given as B0 = 5.17T,

p(0) = 691.5kPa, Ni(0) = 1020m−3 and Te(0) = 21.3keV respectively with Ti/Te = 1.

The normalized density profile is parametrized as

ρ =
1− d1y

d2

1 + d3yd4
(28)

with [ d1, d2, d3, d4] = [0.3, 7, 1.2, 60], which gives a flat density profile in the core.

To determine our initial profiles, we solve the Grad-Shafranov equation using the

Chease code [Lütjens et al., 1996] with the following analytical equilibria

∂ψp = − 0.61 + 0.087

(
1 + tanh

(
y − 0.6

0.3

))
, (29)

F∂ψF = 0.696

(
tanh

(
y − 0.67

0.18

)
− 1

)
, (30)

with the flux function F = RBφ, y =
√
ψ and ψ the normalized poloidal flux. In

our simulations, the equilibrium profiles determined by solving (29) are qualitatively

similar with the Q=10 ITER baseline inductive scenario [Casper et al., 2014], where the

pressure pedestal has been ignored. The safety factor, current density and bootstrap

current density, and pressure profiles are shown in figure 5. The position of the q = 3/2

surface is at
√
ψ = 0.761, or in terms of normalized toroidal flux coordinate

√
Φ = 0.643,

while the q = 2 surface is at
√
ψ = 0.868 (

√
Φ = 0.773), values that are consistent with

the ITER scenario specifications [Figini et al., 2015].



Non-Linear Simulations of Neoclassical Tearing Mode Control 12

Figure 4. Left: plasma shape used for the simulations (up-down symmetry), with

original asymmetric shape. The Poincaré plot of the (3, 2) island at saturation is also

shown. Right: contour plot of the RF current density for a 1D source injected at the

saturated island position.

In the simulations, we take the ratio of parallel to perpendicular heat diffusivity as

χ‖/χ⊥(0) = 108 together with S0χ⊥ = 150. Here S0 = τR/τA is the Lundquist number at

the plasma center, τA = R0

√
µ0ρ(0)/B0 the Alfvén time, τR = µ0a

2/η(0) the resistive

time scale and η(0) the resistivity at the plasma center. This leads at q = 3/2 to a

characteristic transport width Wχ ≈ 3.3% and Wm = 1.8Wχ ≈ 6% at equilibrium. This

is larger than the expected value in ITER, due to numerical limitations on the value of

χ‖, but still significantly lower than the saturated width. For the figures that will be

shown, we rescale the time scale of the simulations with respect to the resistive time as

t = τA
Sreal

S0

t̄ (31)

where Sreal ∼ 2 × 1010 and S0 = 107 are the typical Lundquist number in the core of

ITER and in the simulations respectively.

3.3. Background heat source

As described in section 2, the plasma background heating has a significant effect on

the island saturation size when plasma stiffness is large, and it also reduces the ECRH

capability in controlling the NTM. The default heat source used in XTOR derives from

the assumption of an initial diffusivity coefficient that follows plasma resistivity, and
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Figure 5. Safety factor, current density, bootstrap current density and pressure

profiles used in the simulations. The vertical lines indicates the positions of q = 3/2

and q = 2.

increases therefore from the core to the edge. Consequently, we need to compute a

modified heat source that has an ITER-like radial shape, peaking at the plasma center,

for cases with σ > 1. A good fit of the power density in Casper et al. [Casper et al., 2014]

is HITER
eq ∼ (1−

√
ψ)3/2. This is very close, although slightly broader, to the heat source

produced by fusion reaction Hfus ∝ p2. We force the ITER-like heat source to be equal

to the default heat source outside
√
ψ > 0.8, and the profile inside this radius is scaled

so that the total injected power (Peq) remains unchanged. The radial profiles of the

initial and ITER-like heat sources are shown in Figure 6.

Less residual heat is present within the NTM for the ITER-like heat source, with

a power density source Heq that is reduced by a factor 5.8 at q = 3/2. Note that

the modified heat sources cannot be used with the non-stiff transport model, since

it would lead to a very strong modification of the plasma equilibrium, as shown in

[Maget et al., 2018b], while the change of temperature gradient due to a variation of

the heat source in a stiff plasma remains moderate.
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Figure 6. ITER-like heat source equilibrium profile normalized to the default heat

source value at the core (ψ = 0).

Figure 7. (3,2) NTM time evolution. Left: two different seed sizes, showing the

metastable nature of the island. Right: simulation without bootstrap (Jbs = 0)current

showing that it constitutes the nonlinear drive, and without diamagnetic rotations

(ω? = 0) showing their stabilizing effect.

4. (3,2) NTM Saturation

The n = 2 mode is linearly stable and requires a seed island to access the metastable

NTM branch. This is obtained by amplifying the decaying mode structure obtained from

a large initial perturbation, and inserting it as an initial condition in the simulation.

The spatial discretization is of 512 points in the radial direction, and we use for the

saturation issue 96 points in the poloidal direction, and 16 in the toroidal direction. We

simulate a half torus, i.e. we retain even toroidal mode numbers only.

Figure 7 depicts the time evolution of the magnetic island size for different seeds

and situations. The metastable character of the (3, 2) island is evidenced by the fact
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that the island is stable for a seed of 2.6% of the minor radius, and unstable for a seed

of 5.2%. The island does not grow when we artificially set the bootstrap current to zero,

showing that the magnetic island is driven by the bootstrap current, and is therefore an

NTM. We also test the implication of diamagnetic rotations (ω?) on the island stability.

We find that diamagnetic effects have stabilizing properties that delay the onset of the

NTM growth. When setting the diamagnetic rotations to zero (ω? = 0) by taking di = 0

in the MHD equations, the NTM grows immediately after the seed introduction.

The (3,2) NTM is close to saturation after about a minute of growth, and its size

is about 10% of the minor radius, i.e., w ≈ 20 cm. At this stage of the simulation,

the poloidal and toroidal discretizations are increased to 128 and 24 points in the

poloidal and toroidal directions respectively. We then follow two values of the stiffness

parameter, the default one at σ = 1 that corresponds to a non-stiff plasma, and σ = 8

that corresponds to the expected stiffness strength in ITER. For the stiff case, we also

compare the default heat source and the ITER-like one, as explained in section 3.3. For

the actual island size W ≈ 9.5%, the ratio Pres/Peq is about 49% for the default heat

source, and about 8% for the ITER-like one.

The evolution of the island size when using these two values of the residual heat

source for σ = 8 is shown in figure 8. As expected from the analytical model,

residual heat sources are stabilizing, and the island moves to a lower size. For

the case with Pres/Peq = 49%, the island growth stops at about 9.5%. Using the

analytical estimate for the reduction of the saturated width, equation 10, we find that

δ ≈ 1.6% for the ITER-like heat source (Pres/Peq = 8%) and δ ≈ 2.0% for the default

heat source Pres/Peq = 49%, taking for the saturated width Ws = Ws(Pres/Peq =

49%) + δ(Pres/Peq = 49%) ≈ 11% in the formula. We assume here that in this case the

saturation is around 9.5%. The residual heat source is therefore expected to contribute

to a reduction of about 15% of the island saturation in ITER. The saturated size of the

(3, 2) island would be around w ≈ 22 cm, a value is consistent with previous estimates

around 25cm [Poli et al., 2015]. We do not observe any sign of the destabilizing influence

of a lower transport width, as expected theoretically when residual heat is not taken into

account [Fitzpatrick, 2017]. This could result from the island size being sufficiently large

compared to Wm, where the destabilization effect tends to vanish. But the amplitude

of the residual heating effect might also be sufficiently large to overcome what remains

of this destabilization.

5. (3,2) NTM Control

The (3,2) NTM can be controlled driving RF-current (ECCD) or -heating (ECRH) inside

the helical structure of the island. For this study we consider either a 1D RF source,

equivalent to a continuous RF application of a 3D source on an island that rotates

rapidly with respect to its characteristic evolution time [Ayten and Westerhof, 2012],

or a 3D RF source for modulated EC injection. We assume that the RF deposition is

radially localized at the position of the O-point (
√
ψ = 0.755), where the stabilization
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Figure 8. Island width evolution for σ = 1, 8 with different residual heat source

(Pres/Peq).

is the most efficient. We use χRF‖ = 103 and χRF⊥ = 10−7 in the RF evolution equations

25 and 26. The RF source width is set at σr = 8.9 × 10−3, which gives a theoretical

δthRF = 0.02 in
√
ψ co-ordinate (and δthRF = 0.017 in

√
Φ co-ordinate that is used in the

Rutherford analysis). The broadening caused by diffusion is evaluated in a separate

simulation without island. We find an effective width of about δeffRF ≈ 0.023 in
√

Φ

co-ordinate.

The role of heating on the NTM decay rate is emphasized by varying the amount

of applied ECRH, i.e. by modifying the value of PRF/Peq, for different values of the

stiffness parameter σ. The role of the residual heat source in the case of stiff profiles is

evidenced by comparing the default and ITER-relevant heat source. Because the time

needed for a full stabilization of the (3,2) saturated NTM is beyond reach with the

settings that we have chosen (in particular the spatial discretization and χ‖ value), we

focus our study on the island decay rate that is a crucial element for the RF system

requirements, as shown in section 2.

We will use two different characterizations of the island reduction by RF control.

First, we consider the jump in the island size due to the RF-current and -heating

application. This jump is represented by

S0dW̃/dt (32)

where we isolate the RF contribution by defining

W̃ = WRF (t)−Ws(t) +Ws(tRF ). (33)

Here tRF is the time the RF is applied, WRF (t) is the NTM normalized width once RF

control is applied, and Ws(t) the island width without RF control.
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The other quantitative parameter is the effective stabilization efficiency ηeffRF ,

computed as

ηeffRF = −0.82S
dW̃

dt

W 2

DRF

, (34)

Here DRF reads

DRF =
16

π

µ0R0IRF
sψ′s

, (35)

where ψ′s is the derivative of the poloidal flux on the resonant surface. Equation (34)

measures the efficiency of the applied RF on the (3,2) NTM stabilization, and can be

compared with theoretical values [Hegna and Callen, 1997, Sauter, 2004].

In the case of modulation it is also convenient to define an average effective

stabilization efficiency
〈
ηeffRF

〉
as〈

ηeffRF

〉
(t) = −

(∫ t

tRF

dt 0.82S
dW̃

dt

)
/

(∫ t

tRF

dt
DRF

W 2

)
(36)

5.1. Continuous ECCD/ECRH Injection

5.1.1. Overview The contour of the RF current density injected at the island position

for a 1D source is shown in figure 4. In this case, the current is distributed equally over

the island phase. The mains results for σ = 1 and σ = 8 with the two heating sources are

summarized in figure 9, with pure current drive stabilization and with the additional

contribution of RF heating at moderate levels PRF/Peq = 0.11 and PRF/Peq = 0.22,

consistent with the operating range of ITER or Asdex-Upgrade. The decay rate and

stabilization efficiency are shown with a sliding time average window of 40 ms.

The stabilization due to the RF current is insensitive to the plasma stiffness and

reaches in about 100ms a steady value ηeffRF ≈ 0.11. This value is significantly lower

than the theoretical prediction from equation 15, which would give ηCWRF ≈ 0.33. This

degradation by a factor around 3 has been confirmed in separate simulations with simpler

geometry and MHD model, so that it seems a robust trend of the code prediction (see

the discussion in section 6).

The response of the island to localized heating is significantly different from the

pure RF current response. It is characterized by two different characteristic time scales.

On a time scale of the order of a fraction of a second, we observe a strong decay rate that

manifests the short characteristic time of energy confinement compared with resistive

time. This overshoot of the stabilization efficiency is shorter in stiff plasma conditions,

thus evidencing the role of the turbulence increase due to the RF heating inside the

island. The stabilization efficiency rises to about a factor of 6 above the pure RF

current effect. On a longer time scale, the heating effect has a modest contribution to

the island decay. Because the scale of the plots in figure 9 is dominated by the fast

response of RF heating, the longer term contribution is not clearly visible, but if we

focus on a time window where the decay rate has reach a quasi steady state, we see that

it is not completely negligible.
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Figure 9. From top to bottom: island width, ratio IRF /Ip, ratio PRF /Peq, normalized

decay rate S0dW̃/dt and effective stabilization efficiency ηeffRF for σ = 1 (left column),

σ = 8 with a residual power inside the island of Pres/Peq = 0.49 (middle column) and

σ = 8 with a residual power inside the island of Pres/Peq = 0.08 (right column).

5.1.2. Decay rate : contribution of heating We compute the decay rate and the

stabilization efficiency by averaging on a time window covering the stationary phase.

For σ = 1, the transition between the initial overshoot and the long term decay rate

is long, and it is still decreasing slowly at the end of the simulation. For this stiffness

value, we choose the time window (t−tRF ) ∈ [0.6, 0.7]s whenever RF heating is applied,

and (t − tRF ) ∈ [0.4, 0.5] s for the pure RF current stabilization scheme. For σ = 8

on the contrary, the stationary regime is reached very rapidly, after about 200 ms. The

time window (t − tRF ) ∈ [0.4, 0.5] s is therefore appropriate. The decay rate and the

effective stabilization efficiency are shown in figure 10 as a function of the RF power.

A comparison of the heating contribution to theory can be made by taking into

account that the current and heating have nearly independent contributions, and that

the decay rate of the combined effects is the sum of the two decay rates. This is due

to the fact that, to leading order, the heating contribution to the perturbed bootstrap

cancels in average, the temperature gradient being more positive on the inner side of the

O-point and more negative on the outer part of it. We have investigated this assumption

in dedicated simulations, and checked that this additivity is verified. The simulation

results can then be compared with theory, as described in section 2, with an offset
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Figure 10. Normalized decay rate (top) and stabilization effective (bottom) averaged

over the steady phase, as a function of the applied ECRH power for σ = 1 and 8,

default (Pres/Peq = 0.49) and ITER-like (Pres/Peq = 0.08) heat source.

corresponding to the pure ECCD decay rate. The analytical prediction is

σ = 1 : S0
dW

dt
= −18.25

PRF
Peq

+

(
S0
dW

dt

)CD only

(37)

σ = 8 : S0
dW

dt
= −11.50

[(
PRF + α1Pres

Peq

)1/σ

−
(
α1Pres
Peq

)1/σ
]

+

(
S0
dW

dt

)CD only

(38)

(39)

where (S0dW/dt)CD only ≈ −11.00.

For σ = 1, the dependence of the decay rate with respect to the RF power is

linear, in agreement with theory. The amplitude is overestimated, but as said before,

this can be attributed to the fact that the initial overshoot is not fully relaxed. In

the more realistic case of stiff transport (σ = 8), a good agreement between simulation

results and theory is obtained once the residual heat is included in the theory. When

the residual heat is large, there is no benefit from the heating contribution. For a

situation representative of the ITER case (PRF/Peq = 15%, Pres/Peq = 8%), RF heating

increases the decay rate and stabilization efficiency by about 30%. This contribution is

relatively large compared with the numbers found in the analytical approach because

the pure RF current contribution is degraded. The net stabilization efficiency for ITER

for continuous RF application is then ηeff,CWRF ≈ 0.14, that is to say about half the

expected value.
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5.2. Modulated ECCD-ECRH Injection

The use of a modulated RF source is motivated by the better stabilization efficiency

obtained at the O-point as compared with the efficiency average over the full island

phase. In principle, the benefit is low when the RF source is very narrow compared

with the island size, and large when the RF deposition approaches or overcomes the

island size. In our case, we have δRF/W ≈ 0.23, so that we would expect the benefit

from modulation to be moderate. More precisely, using the formulas given in eq. 15, we

expect the averaged stabilization efficiency to increase from ηCWRF ≈ 0.33 to ηmodRF ≈ 0.40

for a 50% duty cycle modulation. During the RF application, the stabilization efficiency

should be large due to the low value of δRF/W , but not as large as if RF was strictly

focused on the O-point. In fact, the effective width of the RF deposition can be derived

from the fact that it is related to the modulation duty cycle [Maget et al., 2018a]:

f on = π−1 arccos
(
1− 2µeff,modc

)
with f on = 0.5 and µeff,modc ≡ (δeff,modRF /W )2. This

gives δeff,modRF /W ≈ 0.7, and using for example the formula [Février et al., 2016] :

ηORF =
1

1 + (δRF/W )2 (40)

we expect the stabilization efficiency to be ηORF ≈ 0.67.

To investigate this issue, we use pure ECCD or coupled ECCD-ECRH modulation

with 50% duty cycle at the island O-point using a 3D Gaussian localized RF source,

with a poloidal and toroidal widths of σθ = 0.12 and σφ = 0.18. The modulation process

is artificially controlled by rotating toroidally the 3D RF source around the plasma at

a low frequency fmod = 10 Hz, so that the stabilization efficiency when the RF source

is activated can be compared with the pure O-point localization case represented by

equation (40).

The simulations are performed for the most realistic case, i.e. σ = 8 and

Pres/Peq = 0.08, and the results are summarized in figure 11, with an RF heating

extending up to PRF/Peq = 0.78. We show the evolution of the island width, the RF

current, the RF power, the instantaneous stabilization efficiency ηeffRF during the RF

application (the time average is performed on a sliding time window of 2 ms only) and

the averaged stabilization efficiency 〈ηeffRF 〉. We also compute the stabilization efficiency

averaged during RF application, 〈ηonRF 〉, defined as the time windows where the RF

current is above 80% of its maximum value. Error bars represent the standard deviation

of this average during each modulation.

The island response to pure CD application has a different behavior compared

with combined CD and heating, since the island decay is slow to reach its stationary

value, and it still has a remaining decay in between the RF application times. The

stabilization efficiency at the end of the on-time is 〈ηonRF 〉 ≈ 0.37. This is less than the

expected value ηORF ≈ 0.67 derived above, but still more than a factor of 3 above the

continuous application value of about 0.11. When heating is added, we benefit from

the very efficient effect on short time scale, and the averaged stabilization efficiency

during RF application rises to very large values, close to unity for PRF/Peq = 0.2. The
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Figure 11. Left plot from top to bottom : island size, RF current, RF power,

effective stabilization efficiency and averaged stabilization efficiency for σ = 8 and

Pres/Peq = 0.08. Right plot: stabilization efficiency during the RF on time as a

function of the modulation cycle number. The value is taken at the end of the on-time

for pure RF current, and averaged over the time where the RF current is above 80%

of its maximum value for the combined current and heating cases.

low modulation frequency favors this large effect by allowing the level of turbulence

inside the island to decay in between the RF application time windows. The large

overshoot that characterizes the initial island decay after the RF power application can

therefore be repeated at each modulation, with an amplitude that is only marginally

reduced after 9 modulations. Note that the fact that the island goes below its averaged

size during the modulation could in principle lower the requirements on the RF system

[Ayten and Westerhof, 2012], but the amplitude of this island width modulation is too

small to have a large benefit in the present case. However, the island grows again in

between the modulations and corrects this favorable behavior. This is another strong

difference with the RF current effect, that persists throughout the cycle.

The computation of the averaged effective stabilization efficiency 〈ηeffRF 〉 provides

an answer on the net advantage of the modulated control scheme. It shows that the

pure CD application is much more efficient than in the continuous case. Whereas it
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Figure 12. Averaged stabilization efficiency for σ = 8 and Pres/Peq = 0.08 after 5

and 9 modulations at 10 Hz, as a function of the RF power.

was largely degraded in the continuous case, with
〈
ηeff,CWRF

〉
≈ 0.11, we recover in

the modulated case a value consistent with theory, with
〈
ηeff,modRF

〉
≈ 0.34. This is

summarized in figure 12, showing the averaged stabilization efficiency for σ = 8 and

Pres/Peq = 0.08 after 5 and 9 modulations at 10 Hz.

6. Discussion on ECCD stabilization efficiency

The effective ECCD stabilization efficiency that is obtained numerically (PRF = 0)

is lower than the theoretical prediction by about a third. Such a degradation was

already reported, although less pronounced, in a previous work [Février et al., 2016]

where simulations were performed with a pure resistive MHD model and pure O-point

RF application. In order to document this phenomenon, we have made investigations

in several directions, on the basis of a simpler, circular, equilibrium. The first check

concerns the Fourier resolution, and we have performed simulations with a reduced

toroidal discretization by filtering out Fourier modes above the first harmonic of the

main mode, without any change of the stabilization efficiency. The second direction

is the parallel diffusivity in the RF evolution that we have increased by a factor of

two, without any change either on the stabilization efficiency. Another direction is

the physics model. On the ITER-like equilibrium considered here, we find indeed that

diamagnetic rotations degrade the stabilization efficiency, as shown in figure 13. The

effective stabilization efficiency without diamagnetic rotations is increased by about

30% (from 〈ηeffRF 〉 = 0.11 to 〈ηeffRF 〉 = 0.15) but remains about a factor of 2 below the

theoretical value (〈ηCWRF 〉 = 0.33). From the results reported in the present paper, a key

point seems to be the contribution of the RF current deposited at the X-point. The fact

that we recover the correct stabilization efficiency in the modulated scheme suggests

indeed that the negative impact of the RF current in the X-point region of the island is
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Figure 13. Island width (top), RF current (middle) and stabilization efficiency

(bottom) for σ = 1 with and without diamagnetic rotations and IRF /Ip = 0.8%.

much larger than expected.

7. Conclusions

We investigated in this work the stabilization of Neoclassical Tearing Mode by the

combination of RF heating and current drive, with emphasis on the ITER specifications

for the (3, 2) island. A criterion based on the Rutherford equation is derived to assess the

necessary current and heating that are required to fully suppress a Neoclassical island.

It confirms earlier results that the contribution of heating will be minor in ITER, and

quantify this theoretical value in the context of a turbulent-based heat transport model

that strongly impacts the island response to RF heating.

Numerical experiments performed with the XTOR code are then used to address

the issues of island saturation and its stabilization by continuous or modulated RF

application, taking into account both the current and heat contributions. They show

that the (3, 2) island will saturate at about 10% of the minor radius, and that the

residual heating coming from fusion reactions and additional heating systems reduce

the saturation size. The control capability of the RF system is evaluated by computing

the stabilization efficiency, a parameter that is instrumental for determining the RF

system requirements from the Rutherford equation, and can then be compared with

theoretical predictions. We find that for continuous RF application, the stabilization
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efficiency is about a factor of 3 lower than expected, and that this disagreement can be

attributed to two main effects. The first one is related with diamagnetic rotations, and

the second one comes from the underestimated contribution of the RF current deposited

at the X-point of the island. Indeed, the theoretical value is recovered in simulations

where the RF current is modulated at the O-point. The contribution of RF heating is

characterized by a large initial effect on the decay rate, but on a longer time scale, this

effect is moderate but consistent with theory. As a result for continuous application, if

the degradation of the stabilization efficiency by the RF current was to be confirmed,

the margin of a factor of two on the required RF power that is predicted from the

Rutherford analysis would become close to zero due the degradation of the stabilization

efficiency by a similar factor. The use of a modulated control scheme enhances the role of

RF heating during the RF application, since the strong initial effect is repeated at each

modulation, allowing a lower island size to be reached transiently. The net stabilization

efficiency that is found in this modulated scheme is consistent with theoretical values

and gives confidence that the RF system foreseen on ITER will be able to stabilize the

(3, 2) NTM if necessary.

Acknowledgments

This work has been carried out within the framework of the French Research Federation

for Fusion Studies, and of the EUROfusion Consortium. It has received funding

from the Euratom research and training programme 2014-2018 and 2019-2020 under

grant agreement No 633053 for the project WP17-ENR-CEA-06. We benefited from

HPC resources from GENCI (project 056348), from Marconi-Fusion (project NISMO)
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