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Abstract

The initiation and propagation of cracks in solids often leads to unstable structural responses characterized by
snap-backs. Path-following procedures allow finding a solution to the algebraic system of equations resulting
from the numerical formulation of the considered problem. Accordingly, the boundary value problem is
supplemented by a novel global unknown, namely, the loading factor, which should comply with a dedicated
equation, the so-called path-following constraint equation. In this contribution, path-following methods
are discussed within the framework of the Embedded Finite Element Method (E-FEM). Thanks to the
enhanced kinematic description provided by the E-FEM, we show that it is possible to formulate constraint
equations where the prescribed quantities are directly related to the dissipative process occurring at the
strong discontinuity level. After introducing the augmented E-FEM formulation, three discontinuity-scale
path-following constraints and their numerical implementation (using an operator-splitting method) are
described. Simple quasi-static strain localization problems characterized by unstable structural responses
exhibiting multiple snap-backs are numerically simulated. A comparison with several well-known constraint
equations (commonly used in non-linear finite element computations) is finally established. This allows
for illustrating the main features of the proposed methods as well as their efficiency in controlling highly
unstable embedded discontinuity finite element simulations.
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1. Introduction

Solids subjected to loading are often characterized by the initiation and propagation of damaged bands and
cracks. Under some circumstances (e.g., for quasi-brittle materials [1]), the strain localization process leads
to the formation of discontinuity surfaces (from a kinematic viewpoint) on which energy is dissipated. Since
elastic unloading occurs around the regions where damage concentrates, an elastic energy release takes place.
When the released energy exceeds the dissipative capacity of the structure, snap-backs may come up in the
structural response.

The numerical simulation of structural problems dealing with snap-backs is a challenging task, especially in
computational solid mechanics. In particular, due to the simultaneous decrease of the force and displacement
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in the global structural response (Fig. 1), conventional force and displacement control methods do not ensure
achieving convergence in the post-critical regime (i.e., when such instabilities occur). Once the onset of
instabilities is achieved the structural response cannot be controlled, and convergence cannot be reached
either.

Path-following methods [2] enable overcoming these issues. In these formulations, the evolution of the
external actions is no more assumed as known a-priori, but is updated along with the deformation process
based on a given criterion. From a mathematical viewpoint, this leads to supplement the equilibrium
problem with an additional problem unknown, namely the loading factor, which should comply with a
dedicated equation, the so-called path-following constraint equation.

Initially introduced for the simulation of unstable responses associated with geometrical non-linearities
[3, 4, 5], the so-called “arc-length methods” were extensively used to deal with structural instabilities. In
these formulations, constraint equations are expressed as functions of the norm of the whole degrees of
freedom (DOFs) of the problem. As underlined by many authors, however, this choice is not suitable when
dealing with material instabilities [6, 2]. Indeed, due to the highly localized nature of the strain localization
process in solids, strong non-linearities are associated with a limited number of DOFs. As a consequence,
arc-length methods may fail in evaluating the force in the post-peak regime.

Since the pioneering work of [6], many algorithms were proposed in the literature to overcome these limita-
tions. Among them, one should mention path-following constraints on the rate of variation of selected sets
of DOFs [6, 7], on strain measures [8, 9, 10] or on variables directly associated with the energy dissipation
occurring in the system during damage propagation [11, 12, 13, 14, 15, 16]. Hybrid geometric-dissipative
arc-length methods were also proposed (see e.g. [17]) in order to ensure a continuous variation of the nature
of the constraint along with the deformation process.

These techniques were successfully applied to non-linear finite element simulations where material non-
linearities were represented using continuum damage mechanics models [13, 18], phase-field formulations [14],
Thick Level-Set (TLS) damage models [19]. Path-following methods were also used in strong discontinuity
simulations, where cracks were modeled using zero-thickness interface finite elements [20, 13, 17], in the
eXtended Finite Element Method (X-FEM) [21] and in the Embedded Finite Element Method (E-FEM)
[22, 23, 24]. This latter framework is considered in this work.

According to this approach [25, 26, 27, 28, 29, 30], the enhanced displacement field representing the displace-
ment jump associated with the crack is embedded at the elemental level. Thanks to a static condensation
procedure, enhanced displacements are computed by solving elemental traction continuity conditions (in
weak form), without changing the total number of degrees of freedom of the global equilibrium problem.
The resulting numerical implementation is therefore less intrusive than the X-FEM method [31, 32, 33, 34],
while preserving an enhanced kinematics description.

Since constraint equations are generally functions of continuous variables (e.g. total displacement field, total
strain field), their integration in standard E-FEM implementations can be achieved in a slightly intrusive
way. These methods may, however, fail in some circumstances, in particular when dissipative and elastic
equilibrium solutions should be distinguished [13].

Given the enhanced kinematics description provided by strong discontinuity formulations, one could therefore
think of deriving constraint equations by prescribing the evolution of variables associated with the non-linear
(dissipative) response of the elemental discontinuities directly. In the case of the E-FEM, the integration of
this kind of constraint equations in the iterative procedure for solving the non-linear mechanical problem
has not been formalized yet. Presenting such a kind of path-following methods, describing their numerical
implementation and showing some representative results are the main objectives of the present work.

The article is structured as follows. After presenting briefly a finite element formulation with embedded
strong discontinuities, a reformulation of path-following methods in this framework is proposed. Then,
three constraint equations are formulated to drive the mechanical response at the strong discontinuity level.
Finally, simple numerical test cases involving unstable structural responses characterized by one or more
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Figure 1: Dissipative and non-dissipative solutions for a simple unidimensional damage mechanics localization problem exhibit-
ing an unstable structural response characterized by a snap-back.

snap-backs are presented. Assuming that the bulk always remains in elastic regime and that dissipation
occurs at the embedded discontinuity level only, the proposed control constraints are discussed and com-
pared. For this purpose, several well-known path-following constraints classically adopted in continuum
finite element simulations are also considered. Some conclusions and perspectives close the paper.

2. Finite elements with embedded discontinuities

This section presents the E-FEM formulation that is considered in this work. After introducing the enhanced
strong discontinuity kinematics, the Boundary Value Problem (BVP) is illustrated. The resulting equilibrium
equations are finally discretized in space based on the “Statically and Kinematically Optimal Nonsymmetric”
(SKON) formulation first proposed in [35, 26] and better studied in [36].

2.1. Strong discontinuity kinematics
Consider a ndim–dimensional domain Ω ⊂ Rndim crossed by a discontinuity line/surface Γ ⊂ Rndim dividing
the body into two non-overlapping parts Ω− and Ω+ (Fig. 2). The displacement field u = u(x, t) : Ω ×
[0, T ]→ Rndim at time t ∈ [0, T ] can be written as:

u = u +HΓJuK (1)

where u = u(x, t) : Ω × [0, T ] → Rndim is the continuous part of the displacement field, JuK = JuK(x, t) :
Ω × [0, T ] → Rndim denotes the displacement jump function and HΓ = HΓ(x) is the Heaviside unit step
function centered on Γ (HΓ is equal to unity on Ω+ and is null otherwise).

The infinitesimal strain field ε = ε(x, t) : Ω × [0, T ] → Rndim×ndim kinematically compatible with the
discontinuous displacement field (1) reads:

ε = ∇su = ∇su +HΓ∇sJuK + δΓ(JuK⊗ n)s (2)

where “∇” is the gradient operator, upper-script s denotes the symmetric part operator, n = n(x) is the
normal to the discontinuity line/surface, symbol “⊗” is the dyadic product between second order tensors
and δΓ = δΓ(x) is the Dirac’s delta distribution function on Γ (δΓ is equal to +∞ on Γ and is null other-
wise).
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Figure 2: Domain Ω crossed by a discontinuity line Γ and definition of the quantities of interest

2.2. Discrete strong discontinuity formulation
Two contributions to the strain field (2) can be distinguished. The first one (∇su +HΓ∇sJuK) is bounded
whereas the term arising from the displacement jump (δΓ(JuK⊗ n)s) is singular in the distributional sense.
Such a singularity brings inconsistencies into the continuum constitutive equations. To overcome this issue,
a so-called Discrete Strong Discontinuity Approach (DSDA) is considered [37, 38]. Accordingly, we assume
that a continuum stress - strain law holds in the bulk material, whereas a discrete constitutive relationship
links the traction vector (t) between the crack surfaces to JuK on Γ. A traction continuity condition finally
ensures fulfilling the equilibrium condition across the cracked region.

2.3. Boundary value problem in a strong discontinuity setting
Strong form. Infinitesimal strain and quasi-static loading conditions are considered. In the absence of body
forces, solving the BVP consists in finding – at any time t – an admissible displacement field such that:

divσ = 0, on Ω (3)
σ = F(ε), on Ω (4)
ε = ∇su, on Ω (5)
u = uimp, on ∂uΩ (6)

σm = himp, on ∂tΩ (7)
t = G(JuK) on Γ (8)

JσKn = 0, on Γ (9)
σ n− t = 0, on Γ (10)

where “div” denotes the divergence operator, σ = σ(x, t) : Ω × [0, T ] → Rndim×ndim is the Cauchy stress
tensor, F is a continuum constitutive relationship between σ and ε, ∂Ω ⊂ Rndim denotes the boundary
of the domain, m = m(x) is the outward normal to ∂Ω, uimp is the imposed displacements vector on
∂uΩ ⊂ ∂Ω, himp is the traction vector prescribed on ∂tΩ ⊂ ∂Ω. Furthermore, JσK = JσK(x, t) is the stress
jump across the discontinuity and G is the constitutive law describing the response of the discontinuity (i.e.,
the traction-separation law). The split of the boundary of the domain is such that ∂Ω = ∂uΩ ∪ ∂tΩ and
∂uΩ ∩ ∂tΩ = ∅, where the superposed line denotes a closure.

Weak form. The weak form of the BVP is derived by applying the general Hu-Washizu variational principle
[39, 40]. For this purpose, three independent fields (u, ε, σ) and the corresponding admissible variations
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(u∗, ε∗,σ∗) are considered. After application of the Green theorem to the term containing u∗, and provided
the independence of (u∗, ε∗,σ∗), the following variational equality is obtained:

∀ (u∗, ε∗,σ∗) ∈ (U , E ,S)∫
Ω
ε∗ : σ̃(ε) dv +

∫
Ω
σ∗ : (∇su− ε) dv +

∫
Ω
σ : (∇su∗ − ε∗) dv −

∫
∂tΩ

u∗ · himp ds = 0 (11)

where “:” denotes the standard double contraction between symmetric second order tensors, “·” is the
Euclidean inner product between vectors in Rndim , σ̃(ε) satisfies the constitutive law (4), U = {u∗ |u∗ ∈
H1(Ω), u∗ = 0 on ∂uΩ}, E = {ε∗ | ε∗ ∈ L2(Ω)} and S = {σ∗ |σ∗ ∈ L2(Ω)}.

2.4. Embedded discontinuity finite element problem
The domain Ω is discretized through a finite element mesh Ωh comprising nel elements Ωe and nnt nodes.
The discretization is such that Ωh =

⋃nel
e=1 Ωe and

⋂nel
e=1 Ωe = ∅. Inside Ωe ⊂ Ωh, the following nodal

interpolations are considered:

u = Nd + Ncdc ε = Bd + Ge σ = Ss (12)

where d is the nodal displacements vector, dc is the elemental enhanced displacements vector, e denotes
the enhanced strains vector and s is the elemental stress vector. Furthermore, N = N(x) is the dis-
placement interpolation (elemental shape functions) matrix, Nc = Nc(x) denotes the enhanced displace-
ments interpolation operator, B = B(x) = LN is the total strains interpolation matrix (L computes ∇s),
G = G(x) is the interpolation operator of the enhanced strains associated with e. Similar interpolations are
adopted for virtual fields, with the exception of ε∗. For the sake of generality, this latter is approximated as
ε∗ = Bd∗+G∗Te∗, with G∗T denoting the interpolation operator for the enhanced virtual strains e∗.

Given the independence of variations (u∗, ε∗,σ∗) and assuming dc = e, replacing approximations introduced
above into the variational identity (11), after some mathematical manipulations yields:

fint(d, e)− fext =
nel

A
e=1

∫
Ωe

BTσ(d, e) dv −
nel

A
e=1

∫
∂tΩe

NThimp ds = 0 (13)∫
Ωe

G∗σ(d, e) dv = 0 ∀Ωe ∈ Ωhloc (14)

where σ(d, e) = F(Bd + Ge), symbol A denotes the assembly operator, and Ωhloc is the set of all localized
(cracked) elements:

Ωhloc ⊂ Ωh := {Ωe ∈ Ωh : Ωe ∩ Γ 6= 0} (15)

In the following, we will consider that each finite element can be crossed by a single strong discontinuity
line/surface (Γe). Moreover, linear Constant Strain Triangular (CST) elements will be used for the sake
of simplicity. In that case, the numerical integration of elemental operators is performed through a single
point located at the gravity center of Ωe and the enhanced displacements are directly evaluated at the same
location. Slightly more complex formulations are obtained for other elements, e.g. quadrilateral elements
with piece-wise linear jump interpolations [41, 42].

2.5. Statically and Kinematically Optimal Nonsymmetric (SKON) formulation
Different choices are possible concerning the nodal interpolation of the enhanced displacement and strain
fields (i.e., concerning the definition of operators G and G∗). A comparative study of existing methods
was proposed by [36]. More recently, [24] performed a detailed numerical comparison of embedded strong
discontinuity methods based upon different error norms and evaluated their variational consistency.

According to the classification introduced by [36], three families of formulations should be distinguished:
“Statically Optimal Symmetric” (SOS), “Kinematically Optimal Symmetric” (KOS) and SKON formula-
tions. In particular, for the SOS formulation, G is a matrix with zero mean over the element and G∗ = GT.
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For the KOS formulation, G = Bc = LNc and G∗ = GT = BT
c . Finally, for the SKON formulation, G = Bc

and matrix G∗ is chosen to ensure that the element passes the patch-test (zero mean condition).

This latter approximation is considered in this work. Accordingly, operator G∗ is chosen as follows:

G∗ =
(
δΓ −

meas(Γe)
meas(Ωe)

)
PT (16)

where “meas(Ωe)” denotes the elemental area/volume, “meas(Γe)” is a measure of the discontinuity line/surface
inside Ωe, and matrix P contains the components of n. Finally, interpolation operators Nc and G are defined
as:

Nc = HΓ −
∑

na∈Ω+
e

Na G = Bc = LNc = δΓP−
∑

a∈Ω+
e

Ba (17)

where Na is the elementary restriction of N to nodes na ∈ Ω+
e and Ba = LNa. Notice that, in previous

definitions, we supposed that the elemental discontinuity splits Ωe into two sub-elements Ω+
e and Ω−e such

that vector n is inward Ω+
e .

By substituting definition (16) into (14), and exploiting the properties of the Dirac’s delta function, one
obtains the following local/discontinuity-scale momentum balance equation:

1
meas(Ωe)

∫
Ωe

PTσ(d, e) dv − 1
meas(Γe)

∫
Γe

t(e) ds︸ ︷︷ ︸
:=t(e)

= 0 (18)

The latter equation represents the weak averaged traction continuity condition (10) over the finite element
crossed by the discontinuity. For CST elements, equation (18) can be simplified as follows:

PTσ(d, e)− t(e) = 0 (19)

3. Path-following algorithms in the Embedded Finite Element Method

The formulation of path-following algorithms in the E-FEM context is addressed in this section. After
deriving the linearized finite element formulation of the augmented equilibrium problem, we show that
path-following procedures can be naturally formulated in this framework. Provided the static condensation
of the enhanced fields at the elemental level, we demonstrate that decomposing the nodal displacement
field in an additive way – as it is classically done in path-following methods – leads to a similar split of
the enhanced displacement field. Thanks to the enriched kinematics description proper to the E-FEM, it
is therefore possible to prescribe the evolution of both global DOFs and local variables associated with the
dissipative response of the strong discontinuity.

3.1. Augmented embedded discontinuity finite element problem
In order to introduce path-following constraints into the numerical formulation, the external force vector is
rewritten as [3]:

fext = fext,0 + fext,λ = fext,0 + λf̂ (20)

where fext,0 is known (user-defined) external forces contribution, fext,λ an unknown (controlled indirectly)
external forces contribution, f̂ is a normalized vector defining the direction of fext,λ and λ ∈ R is a variable
loading parameter. In a similar manner, the Dirichlet boundary conditions read:

dimp = dimp,0 + dimp,λ = dimp,0 + λd̂ (21)
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where dimp,0 is a known contribution and vector d̂ provides the direction of the unknown (indirectly con-
trolled) displacement dimp,λ. The loading parameter λ is an additional problem unknown which shall comply
with a path-following constraint equation.

The augmented E-FEM problem to solve finally consists in finding a triplet (d, e, λ) such that:

r(d, e, λ) = fint(d, e)− fext,0 − λ f̂ = 0 (22)
reloc(d, e) = PTσ(d, e)− t(e) = 0 ∀ Ωe ∈ Ωhloc (23)

P (d, e, λ; τ) = 0 (24)

with the boundary condition (21). In previous equations, r(d, e, λ) is the global residual (global out-of-
balance force) vector, reloc(d, e) are the local residuals (local out-of-balance forces) associated with the
elemental traction continuity conditions, equation (24) defines the path-following constraint and τ is the
user-defined path-step length. This latter can be regarded as a pseudo-time parameter.

3.2. Linearized problem
Previous equations are discretized in pseudo-time according to an ordered sequence of steps [t0, t1, . . . , T ],
such that tn+1 > tn for all n ∈ N. Given the solution an = {dn, en, λn} at time tn, one looks for the solution
variation ∆a = {∆d,∆e,∆λ} in the interval [tn, tn+1] such that a = an + ∆a at time tn+1. Given the non-
linear nature of constitutive equations usually adopted in computations, the incremental problem is solved
by means of an iterative procedure. The total solution increment at global iteration k+ 1 is thus written as
∆ak+1 = ak+1−an = ∆ak + δak+1, where δak+1 =

{
δdk+1, δek+1, δλk+1} is the solution variation between

two successive iterations3.

3.2.1. Global and local equilibrium equations
By performing a truncated Taylor expansion of equilibrium equations (22) and (23) around the solution
(dk, ek, λk), one obtains the following linearized equations:

−rk = Kk
bb δdk+1 + Kk

bgδek+1 − f̂ δλk+1 (25)

−re,kloc = Ke,k
gb δd

k+1 + Ke,k
gg δek+1 ∀ Ωe ∈ Ωhloc (26)

where rk = r(dk, ek, λk) and re,kloc = reloc(dk, ek). Furthermore, the stiffness operators Kk
bb, Kk

bg, Ke,k
gb and

Ke,k
gg read:

Kk
bb =

nel

A
e=1

Ke,k
bb =

nel

A
e=1

∫
Ωe

BTDkB dv (27)

Kk
bg =

nel

A
e=1

Ke,k
bg =

nel

A
e=1

∫
Ωe

BTDkG dv (28)

Ke,k
gb =

∫
Ωe

G∗DkB dv (29)

Ke,k
gg =

∫
Ωe

G∗DkG dv (30)

with Dk = (∂εσ)k denoting the stiffness tensor of the bulk material at iteration k (∂• = ∂/∂• is the partial
derivation with respect to variable •). It should be noticed that any other stiffness tensor could have been
considered as soon as it leads to a symmetric, positive–definite stiffness matrix.

3In previous equations, down-script n+ 1 was omitted for the sake of compactness. The same nomenclature will be used in
the following. As a consequence of this, any quantity without down-script should be intended as referring to pseudo-time tn+1.
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Decomposition of total and enhanced displacements. According to the arguments introduced above, the
loading factor can be written as λk+1 = λk + δλk+1. Introducing this decomposition into a standard
incremental finite element formulation leads to write δdk+1 = δλk+1δdk+1

I + δdk+1
II , where δdk+1

I and δdk+1
II

are solved from two independent systems of equations. In the following we show that such decomposition is
still valid in a E-FEM framework. Furthermore, a similar decomposition is obtained for δek+1.

In order to derive this formulation, let us consider the case of one or more finite elements experiencing strain
localization. Solving equation (26) with respect to δek+1 yields:

δek+1 = −(Ke,k
gg )−1Ke,k

gb δd
k+1 − (Ke,k

gg )−1re,kloc ∀Ωe ∈ Ωhloc (31)

By substituting this expression into (25) and solving with respect to δdk+1 one obtains:

K̃k
bbδdk+1 = f̂ δλk+1 − rk +

nel

A
e=1

[ϕeKe,k
bg (Ke,k

gg )−1re,kloc ] (32)

with K̃k
bb denoting the enhanced (condensed) stiffness operator of the bulk:

K̃k
bb =

nel

A
e=1

[Ke,k
bb − ϕ

eKe,k
bg (Ke,k

gg )−1Ke,k
gb ] = Kk

bb −
nel

A
e=1

[ϕeKe,k
bg (Ke,k

gg )−1Ke,k
gb ] (33)

and where ϕe = ϕe(Ωe) is a binary function indicating if Ωe is localized or not. It is defined as:

ϕe =
{

1 if Ωe ∈ Ωhloc
0 otherwise

(34)

The nodal displacement increment can therefore be expressed as:

δdk+1 = δλk+1δdk+1
I + δdk+1

II (35)

where δdk+1
I and δdk+1

II are solved from:

K̃k
bbδdk+1

I = f̂ and K̃k
bbδdk+1

II = −rk +
nel

A
e=1

[ϕeKe,k
bg (Ke,k

gg )−1re,kloc ] (36)

Note that decomposition (35) is usual in path-following methods. Furthermore, a standard continuum
mechanics formulation [2] is recovered when Ωhloc = ∅. In that case, contributions associated with the
enhanced displacement field vanish, and nodal displacement variations are calculated by solving: Kk

bbδd
k+1
I =

f̂ and Kk
bbδd

k+1
II = −rk.

By replacing relationship (35) into (31):

δek+1 = −(Ke,k
gg )−1Ke,k

gb (δλk+1δdk+1
I + δdk+1

II )− (Ke,k
gg )−1re,kloc (37)

and collecting terms multiplied by δλk+1, it is easy to verify that a similar additive decomposition holds for
the enhanced displacement field too. In particular, one obtains:

δek+1 = δλk+1δek+1
I + δek+1

II ∀Ωe ∈ Ωhloc (38)

where contributions δek+1
I and δek+1

II are solved from:

Ke,k
gg δek+1

I = −Ke,k
gb δd

k+1
I and Ke,k

gg δek+1
II = −Ke,k

gb δd
k+1
II − re,kloc (39)

3.2.2. Path-following constraint equations
In addition to the above given equations of equilibrium, the constraint equation should also be fulfilled.
Regarding its linearization, however, two main situations should be distinguished depending on the differ-
entiability properties of function P = P (d, e, λ; τ).
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Case 1. When P is differentiable with respect to (d, e, λ), equation (24) can be linearized:

P k+1 = P k + (∂dP )k δdk+1 + (∂eP )k δek+1 + (∂λP )k δλk+1 = 0 (40)

and an explicit formula for the loading factor variation derived. Substituting decompositions (35) and (38)
inside (40), and solving for δλk+1 yields:

δλk+1 = − P k + (∂dP )kδdk+1
II + (∂eP )kδek+1

II
(∂dP )kδdk+1

I + (∂eP )kδek+1
I + (∂λP )k

(41)

Once again, when Ωhloc = ∅, terms associated with the enhanced displacements disappear from (41) and a
standard formulation [2] is recovered.

Differentiability can be guaranteed, for instance, when path-following constraints are written in terms of
sets of global DOFs fixed a priori [6, 7]. Widely used in continuum mechanics computations, these con-
trol techniques may reveal very useful for numerically reproducing experimental loading conditions [43, 44].
However, under complex conditions involving unstable responses characterized by multiple snap-backs (e.g.
in the presence of multiple propagating strong discontinuities), these formulations lose much of their robust-
ness and may fail due to the difficulty of choosing a set of controlled DOFs ensuring that a solution to the
underlying incremental problem exists.

Case 2. More robust constraint equations can be obtained by allowing λ to evolve based on a condition
defined by maximizing a quantity of interest z = z(x) over Ω. For instance, by requiring that the maximum
variation of z (e.g. a strain measure, a local energy dissipation) is equal to ∆τ somewhere in the structure.
Denoting with α ∈ Ωh a part (or a numerical entity) of the discretized domain (e.g. a finite element, an
integration point, an elemental discontinuity), the constraint equation may be written as:

P k+1 = max
α∈Ωh

(∆zk+1
α )−∆τ = max

α∈Ωh
(∆zkα + δzk+1

α )−∆τ = 0 (42)

where δzk+1
α = δzk+1

α (δdk+1
I , δdk+1

II , δek+1
I , δek+1

II , δλk+1) through decompositions (35) and (38). By doing
so, entities α potentially experiencing the higher increments of the controlled quantity can be searched
automatically and are updated along with the solving process.

The main drawback of this approach is that function (42) is no more differentiable, and a direct estimation
of δλk+1 is no more possible. However, the computation can be performed through an iterative procedure,
e.g. a nested interval algorithm [13].

3.3. Operator-splitting solution method
Thanks to the static condensation of the enhanced DOFs at the elemental level, equilibrium equations (36)
and (39) can be solved sequentially through an “operator splitting method” [45] (such strategy is often called
staggered static condensation [46, 47]). In this way, the size of the global problem to solve is unchanged
compared to a standard FEM formulation, and the numerical implementation can be achieved in slightly
intrusive way. The whole solution procedure can be summarized according to three main steps as follows.
Given the solution (dk, ek, λk) at iteration k:

(i) The nodal displacement increments (δdk+1
I , δdk+1

II ) are first computed from (36) while keeping the
enhanced displacements fixed;

(ii) The enhanced displacement corrections (δek+1
I , δek+1

II ) are then calculated by solving traction continu-
ity conditions (39) localized element by localized element, while keeping nodal displacements constant.
Since non-linear traction-separation laws are typically adopted in computations, local incremental
iterative procedures are used to solve traction continuity conditions at the elemental level.

(iii) Finally, the loading factor increment δλk+1 is estimated. This calculation is performed after computing
the displacement increments. As a consequence, it can be implemented in a dedicated subroutine and
easily adapted to deal with different path-following constraint equations.
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3.4. Classification of path-following constraint equations
Several constraint equations can be defined based on the displacement decompositions derived above. In the
following, they are classified according to three main families depending on the scale (or algorithmic level)
corresponding to the controlled variables.

Global-Scale (GS) constraints are written in terms of large-scale/global quantities (e.g. total displacements,
total strains). These control methods are classically used in non-linear FEM simulations. Since nodal
displacements account indirectly for the strong discontinuities embedded into finite elements, most of these
formulations (e.g. [6, 8, 9, 10]) may be used in E-FEM computations without major modifications.

In this work, however, attention is focused on Discontinuity-Scale (DS) constraints. With this term, we refer
to constraint equations where the prescribed quantities are relative to the response of the discontinuity itself
(e.g. enhanced displacements, internal variables of the traction-separation law):

P k+1 = P k+1(ek, λk, δek+1
I , δek+1

II , δλk+1; ∆τ) = 0 (43)

In this way, one can imagine to drive the propagation of a crack based on the dissipation occurring on the
crack tip or inside a fracture/damaging process zone.

Multi-Scale (MS) constraints may also be obtained by combining large- and discontinuity-scale quantities.
They could be useful for controlling, for instance, numerical simulations where a transition from damage to
fracture is represented by coupling continuum and strong discontinuity models [48]. Their formulation is
not investigated further in this work.

4. Discontinuity-Scale path-following constraints

Drawing from methods previously proposed in continuum mechanics contexts (e.g. [13, 19]), three DS path-
following constraints are obtained. They are based upon prescribing: (i) the maximum value of the elastic
predictor of the yield (damage) criterion function driving the dissipative response of the discontinuity; (ii)
the maximum rate of variation of the internal variables of the traction-separation law; (iii) a scalar measure
of the enhanced displacement increment.

4.1. Dissipative model
We assume that dissipation occurs on Γ only, while the response of the bulk always remains linear elastic.
At the elemental level, the traction-separation law (8) is formulated according to a rate-independent con-
stitutive model with a single internal variable κα. Its evolution satisfies the Kuhn-Tucker and consistency
conditions:

fα ≤ 0 κ̇α ≥ 0 κ̇αfα = 0 κ̇αḟα = 0 ∀α ∈ Ωhloc (44)

where fα = fα(Yα, eα, κα) is a damage (plastic) criterion function and Yα = Yα(eα, κα) is the thermodynamic
force associated with κα. In the following we will always refer to fα as the damage criterion function for the
sake of homogeneity with test cases illustrated in the next section. Similar considerations hold, however, for
plasticity models.

4.2. Constraint on the Maximal Elastic Predictor (DS-CMEP) of the damage criterion function
Initially proposed for rate-independent continuum models [13], a path-following Constraint on the Maximal
Elastic Predictor (CMEP) of the damage criterion function (i.e., the value of function fα when consider-
ing an incrementally elastic response) is well suited to capture localized phenomena resulting from strain
localization. Furthermore, it allows to distinguish between elastic unloading and dissipative equilibrium
solutions. As shown by the cited authors, a positive value of the elastic predictor is associated with a dis-
sipative branch of the equilibrium path. For more details concerning the properties of the CMEP method,
the interested reader can refer to [13].
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4.2.1. Constraint equation
The path-following CMEP can be adapted easily to problems involving embedded strong discontinuities to
obtain the DS-CMEP. In that context, one looks for ∆λk+1 = ∆λk + δλk+1 such that the elastic predictor
(f elas,k+1
α ) of the damage function is equal to ∆τ > 0 on at least one localized element (and is lower

elsewhere). The constraint equation thus reads:

P k+1 = max
α∈Ωhloc

(
f elas,k+1
α (δλk+1)

)
−∆τ = 0 (45)

where:
f elas
α (δλk+1) = f(Yα(ek+1

α (δλk+1), κα,n), ek+1
α (δλk+1), κα,n) α ∈ Ωhloc (46)

with κα,n denoting the internal variable at time tn and:

ek+1
α (δλk+1) = eα,n + ∆ekα + δλk+1δek+1

α,I + δek+1
α,II α ∈ Ωhloc (47)

Notice that, due to the use of an operator splitting method, the only unknown in (46) is δλk+1. As a
consequence, one can write f elas

α (δλk+1;λk, ek, δek+1
I , δek+1

II ) or, in a more concise form, f elas
α (δλk+1). The

same nomenclature will be used in the following.

4.2.2. First loading factor increment
Since solving equation (45) requires that Ωhloc 6= ∅, this control method cannot be used as long as the
deformation process is in elastic regime. A first initialization phase is thus needed. It may consist in
computing the loading factor λ1 (at time t1 > t0) such that at least one element satisfies the localization
condition.

A simple choice to identify the onset of localization consists in using a Rankine’s criterion [49, 29, 50].
Accordingly, one computes λ1 such that the maximum elastic principal stress (σmax

prin = σmax
prin (λ1)) equals the

tensile strength of the material (σt) somewhere in the bulk. Alternatively, one could have considered, for
instance, a criterion based on the loss of ellipticity of the governing equations [51, 28].

4.2.3. Loading factor variation δλ
Since fα is commonly chosen to be a convex function of eα, f elas

α is also convex. Furthermore, given the
convexity of the “max” function, the path-following constraint (45) preserves the same convexity property.
As a consequence, it may admit up to two distinct real or complex (inadmissible) roots. Their direct
determination however is often impossible, because function f elas

α is generally non-linear and the “max”
operator represents a further source of non-linearity. As mentioned in previous sections, a possible solution
strategy may consist in using a “nested interval algorithm”. According to this method, the computation of
δλk+1 is performed in three phases as follows:

(i) Initialization. One initializes the space of admissible solutions as Lδλ := (−∞,+∞) and starts looping
over α ∈ Ωhloc;

(ii) Computation. For each α ∈ Ωhloc, a loading factor δλk+1
α is computed by assuming that (45) is locally

satisfied:
P k+1
α = f elas

α (δλk+1
α )−∆τ = 0 (48)

When closed-form solutions to (48) are not available, iterative root-finding algorithms may be adopted.
For this purpose, function f elas

α is approximated as:

f elas
α (δλα) = f elas

α (δλref) + ∂δλf
elas
α (δλref) (δλα − δλref) (49)

where upper-script “ref” denotes the reference state for the linearization. The simplest choice consists
in using an explicit solution procedure to avoid further local sub-iterations. In that case, δλref = 0
(i.e., λref = λk) and δλk+1

α can be calculated from:

aα,0 + δλk+1
α aα,1 −∆τ = 0 (50)
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where:
aα,0 = f elas

α (0) aα,1 = ∂δλf
elas
α (0) (51)

with f elas
α (0) = f(Yα(ek+1

α (0), κα,n), ek+1
α (0), κα,n) and ek+1

α (0) = eα,n + ∆ekα + δek+1
α,II .

The interval Lδλ is then updated based on the solution just calculated and the sign of aα,1 (to check
if the linearization is performed on the ascending or descending branch of the function f elas

α ):

Lδλ := Lδλ ∩

{
(−∞, δλk+1

α ] if aα,1 > 0
[δλk+1

α ,+∞) otherwise
(52)

If Lδλ = ∅, no solutions exist. In that case, one should reduce ∆τ and restart the iteration process
from a known equilibrium condition.

(iii) Selection. If at the end of the procedure Lδλ 6= ∅, a single value δλk+1 ∈ Lδλ is selected based on a
user-defined criterion. A possible choice consists in minimizing the global residual [52, 13]:

δλk+1 = arg min
δλk+1
? ∈Lδλ

(
(rk)Trk+1) (53)

where rk = rk(dk, ek, λk) and rk+1 = rk+1(. . . , λk + δλk+1
? ). According to [13], such a criterion is

stabilizing regarding the convergence of the Newton–Raphson algorithm. A comparative study between
different convergence criteria was performed by [21] in the X-FEM context.

4.3. Constraint on the Internal Variables Increment (DS-CIVI)
Based on the linearization of the damage criterion function, it is possible to formulate different dissipative
path-following constraints. To illustrate this case, we consider a simple traction–separation law and derive
a constraint equation based on controlling the rate of variation (∆κα) of the internal variable. The loading–
unloading conditions discretized in time are now written as:

fα ≤ 0, ∆κα ≥ 0, fα∆κα = 0 (54)

where, in a continuum damage mechanics context, κα may be an equivalent measure of the displacement
jump (i.e., of vector eα) across the discontinuity line/surface. These developments were motivated by the
recent implementation by [19] of the TLS damage model by [53]. In the cited work, a linearized damage
criterion was used to drive the strain localization process by imposing the maximum rate of variation of the
level-set function controlling damage evolution.

4.3.1. Constraint equation
The constraint equation is written requiring that ∆κk+1

α reaches the maximum value ∆τ > 0 on one localized
element and is lower elsewhere:

P k+1 = max
α∈Ωhloc

(∆κk+1
α (δλk+1))−∆τ = 0 (55)

4.3.2. Loading factor variation δλ
The procedure for computing δλk+1 is the same as with the DS-CMEP method. In that case, a δλk+1

α value
should be computed for each elemental discontinuity by solving:

P k+1
α = ∆κk+1

α (δλk+1
α )−∆τ = 0 (56)

Such problem can be, however, restated in a different way. Indeed, since ∆τ > 0, fulfilling conditions (54)
implies that fα(ek+1

α , κk+1
α ) = 0 for any dissipative process such that ∆κk+1

α = ∆τ . As a consequence,
increments δλk+1

α can be equivalently computed from:

P k+1
α = fα(δλk+1

α ) = fα(ek+1
α (δλk+1

α ), κk+1
α ) = 0 (57)
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with the constraint:
κk+1
α = κkα + δκk+1

α = κkα + ∆τ −∆κkα (58)

Once again, since the damage criterion function is non-linear, equation (57) should be solved iteratively.
Performing a truncated Taylor expansion of fα around (δλref , δκref), and enforcing the incremental constraint
δκα = ∆τ −∆κref

α , one obtains:

fα(δλα) = fα(δλref , δκref) + ∂δλf(δλref , δκref) (δλα − δλref)
+ ∂δκf(δλref , δκref) (∆τ −∆κref

α − δκref) = 0 (59)

Using an explicit solution procedure (δλref = 0, δκref = 0, ∆κref = ∆κkα), for the sake of comparison with
the DS-CMEP method, yields the following linearized equation to solve at each iteration:

aα,0 + δλk+1
α aα,1 −∆τ = 0 (60)

where:
aα,0 = ∆κkα −

fα(0, 0)
∂δκfα(0, 0) aα,1 = −∂δλfα(0, 0)

∂δκfα(0, 0) (61)

It should be notice that, since κα is updated throughout convergence iterations, function (59) no more
corresponds to the linearized elastic predictor of the damage criterion.

4.4. Constraint on the Enhanced Displacement Increment (DS-CEDI)
Since a derivation of functions fα and f elas

α with respect to some variables is needed, the implementation of
the DS-CMEP and DS-CIVI methods depend on the chosen model (i.e., slight modifications are needed for
each model used). An alternative and physically consistent choice, that can be made to avoid case-by-case
changes to the numerical formulation, may consist in controlling the simulation through a scalar measure of
∆ek+1

α (i.e., the displacement jump variation). In that case, the constraint equation can be written as:

P k+1 = max
α∈Ωhloc

(cT
α∆ek+1

α )−∆τ = 0 (62)

where ∆τ > 0, cα = eα,n/‖eα,n‖ is the direction of vector eα at time tn and:

∆ek+1
α (δλk+1) = ∆ekα + δλk+1δek+1

α,I + δek+1
α,II (63)

Equation (62) is again solved through a “nested interval procedure”. The equation to solve localized element
by localized element reads:

P k+1
α = cT

α∆ek+1
α −∆τ = cT

α(∆ekα + δλk+1
α δek+1

α,I + δek+1
α,II )−∆τ = 0 (64)

or, in a more concise form:
aα,0 + δλk+1

α aα,1 −∆τ = 0 (65)
with:

aα,0 = cT
α(∆ekα + δek+1

α,II ) aα,1 = cT
αδek+1

α,I (66)

5. Numerical test cases

Path-following methods developed in the previous sections are studied through one- and two-dimensional
quasi-brittle fracture simulations involving unstable structural responses. Although attention is focused on
DS methods, two standard GS formulations are also considered for the sake of comparison. They consist
in imposing the increment of the linear combination of selected global DOFs (GS-CNDI, Control by Nodal
Displacement Increment [6]) and the maximal strain variation over the domain (GS-CMSI, Control by
Maximal Strain Increment [8, 9, 10]). Numerical developments were performed using the “CastLab” toolbox
[54].
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Figure 3: Bar under tension — Geometry, finite element discretization, boundary conditions and quantities of interest

5.1. Constitutive laws
A linear elastic stress-strain constitutive relationship is assumed inside the bulk. The onset of localization is
identified based on a Rankine’s criterion. For the strong discontinuity, a cohesive traction-separation law is
formulated according to a Continuum Damage model with a single scalar variable Dα ∈ [0, 1). In the local
reference system of the elemental discontinuity, the traction force normal to the discontinuity (tα = nT

αtα)
reads:

tα = tα(eα, Dα) = (1−Dα)Keα (67)

where eα = nT
αeα is the normal displacement jump to Γe and K is the initial stiffness of the discontinuity.

Its value is defined according to a penalty formulation as K = σt/κα,0, with κα,0 ≈ 0 denoting the normal
displacement jump at damage initiation.

The damage criterion function is written in the enhanced displacements space as:

fα = fα(eα, κα) = eα − κα ≤ 0 (68)

where the internal variable κα starts at κα,0 and is updated as the historical maximum of eα.

The damage variable rises from zero (not localized element) to unity (fully developed crack) according to
the exponential evolution law:

Dα = r(κα) = 1− κ0

κα
exp

(
− σt
Gf

κα

)
(69)

where Gf is the fracture energy.

This model was chosen for the sake of simplicity. More advanced constitutive laws, accounting for complex
physical mechanisms, can be found in the literature [49, 55, 56, 57]. They can be used in conjunction with
path-following methods without significant modifications.

5.2. One-dimensional test case: bar under tension
A one-dimensional body, L = 1 m in length and A = 0.01 m2 in constant transversal cross-section, is
submitted to tensile loading (Fig. 3). An indirectly controlled external force (fext = fext,λ = λ) is applied
at x = L, whereas the displacement is blocked at x = 0. The computational domain is discretized through
nel = 20 linear Bar finite elements. Mechanical parameters are assigned as follows: E = 30GPa (Young’s
modulus of the bulk), σt = 2.8MPa and Gf = 100N/m. Strain localization is forced to occur on the element
comprised between nodes n1 and n2, the weakened element (denoted with letter w). In this way, the set
Ωhloc contains the weakened element only, the maximum operator can be removed from constraint equations
and a first validation of the numerical implementation can be obtained.

5.2.1. Path-following constraint equations
DS-CMEP and DS-CEDI. Given the considered geometrical/loading conditions and damage criterion func-
tion (68), function f elas

w = ek+1
w (δλk+1) − ew,n coincides with the total enhanced displacement variation of

the weakened element. The DS-CMEP and DS-CEDI constraints thus coincide:

P k+1 = ∆ek+1
w (δλk+1)−∆τ = ∆ekw + δλk+1δek+1

w,I + δek+1
w,II −∆τ = 0 (70)
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The loading increment correction can be computed explicitly as:

δλk+1 = δλk+1
w = ∆τ − aw,0

aw,1
(71)

where:4
aw,0 = ∆ekw + δek+1

w,II aw,1 = δek+1
w,I (72)

As mentioned before, solving (70) implies that the weakened element is localized. For that reason, the first
loading factor λ1 (at time t1 > t0 = 0) is computed from the Rankine’s initiation criterion. This yields:
λ1 = ∆λ1 = σtA > 0.

DS-CIVI. When used to control the evolution of κw, the DS-CIVI method is very similar to the DS-CMEP.
For that reason, it is here adapted to drive the growth of the damage variable Dw. This can be obtained by
linearizing the damage criterion function (68) around δλref and δDref (instead of δκref), and enforcing the
constraint δDw = ∆τ −∆Dref

w . Employing an explicit solution method for the sake of comparison with the
previous case, δλk+1 can be obtained from equation (71) with:

aw,0 = ∆Dk
w −

fw(0, 0)
∂δDfw(0, 0) aw,1 = − ∂δλfw(0, 0)

∂δDfw(0, 0) (73)

where ∂δDfw = (∂δκfw) (∂δDκw) and ∂δDκw = ∂δD(r−1(D)).

GS-CNDI. In addition to these discontinuity-scale constraints, a well-known global-scale indirect control
method is used to prescribe the relative displacement of the nodes n1 and n2. Given the considered boundary
conditions (i.e., d1 = 0), the constraint equation reads:

P k+1 = ∆dk+1
2 (δλk+1)−∆τ = ∆dk2 + δλk+1δdk+1

2,I + δdk+1
2,II −∆τ = 0 (74)

The loading factor increment δλk+1 can be thus calculated as:

δλk+1 = ∆τ − a0

a1
(75)

with coefficients:
a0 = ∆dk2 + δdk+1

2,II a1 = δdk+1
2,I (76)

GS-CMSI. Finally, a global-scale indirect control method based on prescribing the strain rate of the weak-
ened element is analyzed. Given the assumed loading/geometrical conditions and linear interpolation of the
elemental displacement field, the constraint equation almost coincides with (74). Denoting with hw = x2−x1
the size of element w, one can write:

P k+1 = ∆εk+1
w (δλk+1)−∆τ = (∆dk2 + δλk+1δdk+1

2,I + δdk+1
2,II )/hw −∆τ = 0 (77)

5.2.2. Results
Global responses. The global structural response is represented through the total applied force (F = λ) and
sample elongation (∆L). Figure 4 compares results obtained using the DS and GS formulations introduced
above. A direct displacement controlled (DDC) simulation was also performed. For the sake of comparison,
a fixed number of Nτ = 200 pseudo-time steps was considered for each method. The corresponding ∆τ
values were chosen to obtain the same bar elongation (∆L = 120µm) at the end of the simulation.

4Coefficients aw,0 and aw,1 were obtained by collecting terms in (70). Since felas
α (0) = ∆ekw+δek+1

w,II and ∂δλf
elas
α (0) = δek+1

w,I ,
it is straightforward checking that expressions (72) can be equivalently obtained from definitions (51).
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Figure 4: Bar under tension — Force-displacement responses obtained using the DS-CIVI, DS-CMEP, DS-CEDI, GS-CNDI,
GS-CMSI and DDC formulations

As expected, the DDC loading does not allow to properly describe the force-displacement response in the
phase post-peak of load. Indeed, once the localization condition is achieved, an uncontrolled elastic energy
release occurs in the system and convergence is lost. This results in a sudden force reduction.

Conversely, indirect control methods allow to follow the structural response throughout the localization
process in the whole range of ∆L levels. Concerning the DS constraints, given the adopted localization
criterion, the first computed loading factor corresponds to the peak load. Once this condition is reached, the
structural response becomes unstable and a clear snap-back is observed. Since a large number of pseudo-time
steps is considered in simulations, the (F,∆L) responses provided by the tested DS and GS formulations
are very similar.

Total displacement, enhanced displacement and damage evolutions. To better illustrate the evolution of
the localization process, Fig. 5 compares the pseudo-time evolutions of representative local quantities (the
total displacement d2, the enhanced displacement ew and the damage variable Dw) calculated using all the
constraint equations previously introduced. As expected:

(i) The enhanced displacement is always lower than the total displacement (d2 > ew) and progressively
tends to its value when Dw → 1. In this phase, no more load transfer is possible through the strong
discontinuity. As a consequence, any displacement increase imposed to the system induces an increase
in the displacement jump across the cracked element.

(ii) When a DDC loading method is used, the global displacement evolves linearly (elastic phase) whereas
the enhanced displacement remains null till σ ≤ σt. Once the localization condition is attained,
convergence is lost, an instantaneous damage increase occurs and abrupt variations of the total and
enhanced displacements of the weakened element are obtained. This corresponds to the previously
observed brutal decrease of the external force.

(iii) When using path-following methods, the controlled quantities always evolve linearly with respect to
the pseudo-time whereas other quantities non-linearly grow.

For the GS-CNDI (or equivalently the GS-CMSI) formulation, ew and Dw remain null till the local-
ization condition is attained. Then, they start increasing non-linearly up to the end of the simulation.

Different evolutions are observed when using the DS-CMEP (or equivalently the DS-CEDI) and DS-
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Figure 5: Bar under tension — Pseudo-time evolutions of the total displacement of node n2 (d2), of the enhanced displacement
(ew) computed at the gravity center of the weakened element and of the damage variable (Dw) computed at the same location:
(a) DS-CMEP and DS-CEDI methods; (b) DS-CIVI method; (c) GS-CNDI and GS-CMDI methods; (d) DDC formulation

CIVI formulations. Indeed, provided the loading factor initiation procedure, d2 sharply grows at the
very beginning of the simulation (i.e., the elastic phase is not reproduced). The enhanced displacement
then starts to gradually increase. In that phase, the total and enhanced displacements evolve non-
linearly for both methods.

Their evolutions are, however, quite different. In particular, when using the DS-CIVI method, their
rates of variation progressively increase when Dw → 1. During this phase, controlling the simulation
becomes more difficult because very small (imposed) damage increments (i.e., ∆τ → 0) would be
required in order to obtain an admissible displacement variations. The structural response may thus
become unstable. Indeed, due to the bounded character of the damage variable (i.e., Dw < 1),
controlling the damage growth makes difficult to reproduce the tail of the softening curve accurately.
This issue will be more clear in the two-dimensional case test illustrated in the following section.
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5.3. Two-dimensional test case: eccentrically perforated plate
A perforated plate L = 2m in width (along the x-axis), H = 2m in height (along the y-axis) and T = 0.1m
in thickness is submitted to a tensile loading in the horizontal direction (Fig. 6). The hole (R = 0.5m in
radius) is centered horizontally and eccentrically placed in the vertical direction. The computational domain
is discretized through two finite element meshes comprising, respectively, 808 and 1338 CST elements.
Horizontal displacements (dimp = dimp,λ = λ ix, ix = (1, 0)) are imposed on the vertical right surface
(x = L), whereas the left surface (x = 0) is blocked. Two-dimensional computations are performed under
the plane stress assumption. Material parameters are: E = 30GPa, ν = 0.2 (Poisson’s ratio), σt = 3MPa
and Gf = 100N/m.

In order to compare the different methods, ∆τ values were assigned to ensure approximately the same first
computed enhanced displacement (≈ 0.4µm) for each method. Given the localized nature of the cracking
process at the strong discontinuity level and the illustrative purpose of the comparison, this criterion seemed
acceptable and quite consistent from a physical viewpoint.

A very similar test was simulated by [13] and [10]. Accordingly, two vertical cracks are expected to propagate
from the hole’s boundary toward the upper and lower free-edges of the plate. Furthermore, since the hole is
eccentrically placed, an unstable global response characterized by two snap-backs in the phase post-peak of
load will be obtained.

5.3.1. Crack-path definition
Given the considered geometrical (symmetry) and loading conditions, the determination of the crack path
is done a-priori by enforcing the crack propagation through the symmetry axis of the specimen. In other
words, the Rankine’s criterion is adopted to detect the onset of localization only. Once this condition is
satisfied, elemental cracks are assumed vertically oriented (nα = ix for all α ∈ Ωhloc) and fixed.

Under more complex cracking conditions involving curved cracks, global/local crack tracking algorithms
[58, 59, 60, 61, 62] should be used in order to ensure the continuity of the crack-path, thus avoiding stress-
locking issues that may be encountered when no tracking methods are used. These formulations could be
used in conjunction with path-following methods without requiring significant modifications to the numerical
formulation. Although one could expect a moderate impact on the algorithmic robustness of the proposed
path-following methods, such a study is not performed in this work for the sake of compactness.

5.3.2. Path-following constraint equations
DS-CMEP. Provided the considered loading conditions, the constraint equation is:

P k+1 = max
α∈Ωhloc

(eα,n + ∆ekα + δλk+1δek+1
α,I + δek+1

α,II − κα,n)−∆τ = 0 (78)

A loading factor increment δλk+1
α is thus computed for each localized element as:

δλk+1
α = ∆τ − aα,0

aα,1
(79)

where:
aα,0 = eα,n + ∆ekα + δek+1

α,II − κα,n aα,1 = δek+1
α,I (80)

It should be noticed that, since localized elements can experience re-closure during crack propagation,
κα,n 6= eα,n. As a consequence, the DS-CMEP no more leads to exactly prescribe the rate of variation of
the enhanced displacement field.

DS-CEDI. The constraint equation for controlling the enhanced displacement variation is written exactly
as in (62). It can be, however, slightly simplified by observing that cα = nα = ix for all α ∈ Ωhloc.
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Figure 6: Perforated plate — Geometry of the computational domain, boundary/loading conditions, finite element discretization
(808 CST elements), identification of the four nodes (nt+, nt−, nb+, nb−) used to compute Crack Opening Displacements
(CODtop = (dk+1

x,t+ + dk+1
x,t−)/2, CODbottom = (dk+1

x,b+ + dk+1
x,b−)/2, CODmean = (CODtop + CODbottom)/2), and illustration of

the chosen elemental strong discontinuities schematization

DS-CIVI. The path-following constraint on the rate of variation of the damage field can be written as:

P k+1 = max
α∈Ωhloc

(fα(ek+1
α (δλk+1

α ), κk+1
α (Dk

α + ∆τ −∆Dk
α))) = 0 (81)

Its resolution is performed through the same procedure as the DS-CMEP. Coefficients aα,0 and aα,1 figuring
in (79) are now computed localized element by localized element according to expressions (73).

GS-CNDI. This method is used to control the mean Crack Opening Displacement (CODmean) at the hole’s
boundary, where crack initiation is expected. This can be obtained by controlling the rate of variation of
the mean relative horizontal displacements of two pairs of nodes (nt+, nt−) and (nb+, nb−) located close to
the hole (Fig. 6). Following [6], the constraint equation reads:

P k+1 = pT∆dk+1 −∆τ = pT(∆dk + δdk+1
I δλk+1 + δdk+1

II )−∆τ = 0 (82)

where p is a selection vector defining a linear combination of the global DOFs. In the considered case, p
contains values 1/2 and −1/2 at positions corresponding to the horizontal displacements of nodes (nt+, nb+)
and (nt−, nb−) respectively, and is null elsewhere. As a consequence, δλk+1 can be computed from (75)
with:

a0 = pT(∆dk + δdk+1
2,II ) a1 = pTδdk+1

2,I (83)

GS-CMSI. Since strains are evaluated at the Gauss points level, this constraint equation can be written
as:

P k+1 = max
gp∈Ωhgp

(qT
gp∆εk+1

gp )−∆τ = 0 (84)

where “gp” denotes now a Gauss integration point, Ωhgp is the set of all the integration points of the mesh,
versor qgp = εgp,n/‖εgp,n‖ provides the direction of the strain vector at time tn and:

∆εk+1
gp = Bgp∆dk+1 = Bgp(∆dk + δdk+1

II ) + δλk+1Bgpδdk+1
I (85)
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Figure 7: Perforated plate — Comparison among global responses obtained using the DS-CMEP, DS-CIVI, DS-CEDI, GS-
CMSI, GS-CNDI and DDC formulations

with Bgp = B(xgp) denoting the strain-displacement matrix at the location xgp of gp ∈ Ωhgp. The nested
interval algorithm is still used, but equation (84) is now solved Gauss point by Gauss point. In this way,
one has to solve nel linear equations of the kind (79) with coefficients:

agp,0 = qT
gpBgp(∆dk + δdk+1

2,II ) agp,1 = qT
gpBgpδdk+1

2,I (86)

5.3.3. Results
The global structural response is represented through the displacement (∆L = λ) of the bearing surface and
the corresponding force (F ). As shown in Fig. 7, a good agreement between the (F,∆L) responses obtained
through the path-following methods discussed above can be observed. The only exceptions are the GS-CNDI
formulation (this aspect will be discussed in the following) and, as expected, the DDC method.

As already pointed out by several authors in other numerical contexts [13, 21, 10], the structural response
is unstable and characterized by two clear snap-backs. Furthermore, small snap-backs corresponding to
the strong discontinuity propagation through consecutive finite elements are also observed [63, 64, 65, 13].

Discontinuity-scale path-following constraints: representative response. For illustrating the main features
of the observed structural behaviors, attention is first focused on the (F,∆L) response computed through
the DS-CMEP formulation (Fig. 8a). Figure 8b provides the discontinuity-scale damage field (Dα) for
six representative phases of the simulation. The corresponding enhanced displacement (eα) and damage
distributions along a vertical line aligned with the mean-crack path (see Fig. 6) are also given in Fig. 9.

These results allow putting into evidence that once the peak load is reached, two cracks start propagating
from the hole’s boundary through the upper and lower ligaments. Since the hole is eccentrically placed, the
lower crack reaches the bottom free-edge of the plate, while the tip of the other crack is still far from the
upper boundary. Once this condition is attained, an elastic energy release takes place in the system and
the structural response exhibits a first snap-back. Further loading steps correspond to the simultaneous
opening of the lower crack and propagation of the upper one. When all the elements pertaining to the upper
ligament are localized too, a novel elastic energy release occurs. This leads to a second snap-back. Finally,
both cracks progressively open till the end of the simulation.

As mentioned before, small instabilities associated with elemental cracks activation are present in the struc-
tural response. These instabilities are thus strictly associated with the spatial discretization of the con-
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Figure 8: Perforated plate — Global sample response obtained using the DS-CMEP formulation (a) and damage fields (at the
strong discontinuity level) corresponding to six phases of the simulation (b)

sidered problem. Figure 10 compares (F,∆L) curves obtained considering two different mesh refinement
levels. This illustration allows showing that the “rough” branch of the force-displacement curve progressively
becomes smoother when refining the mesh, whereas the two major (physically motivated) snap-backs are
preserved.

Discontinuity-scale path-following constraints: comparison among formulations. Very similar global and
local responses can be obtained by controlling the simulation through the DS-CIVI (Fig. 11a) and DS-
CEDI (Fig. 11b) methods. As shown in Fig. 11a, however, the DS-CIVI formulation does not allow to
properly reproduce the structural response for high ∆L levels. This limitation stems directly from the
upper-boundedness of the damage variable. Indeed, when all the finite elements pertaining to the upper
and lower ligaments are localized and Dmin = minα(Dα) > 1−∆τ , finding an admissible solution (i.e., such
that Dα ≤ 1 ∀α ∈ Ωhloc) to (81) becomes no more possible.5

This becomes even more clear when studying the pseudo-time evolutions of the maximum damage in-
crease (∆Dmax = maxα(∆Dα), Fig. 12a) and the maximum enhanced displacement increments (∆emax =
maxα(∆eα), Fig. 12b). The evolutions of the maximum (Dmax = maxα(Dα)) and the minimum (Dmin)
damage values over the upper and lower ligaments (for the three considered DS methods) are also given in
Fig. 12c.6 As expected:

5To remove this limitation, one could imagine to progressively reduce ∆τ from the initial (user-defined) value to zero. This
kind of technique is not, however, implemented and studied in this work.

6Dimensionless pseudo-time t/tmax is computed, for all control methods, as the ratio of the time step to the number of steps
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Figure 9: Perforated plate — Enhanced displacement eα (a) and damage Dα (b) distributions along a vertical line aligned
with the mean crack path (computation performed using the DS-CMEP formulation)

(i) When using the DS-CIVI method, ∆Dmax remains almost constant and equal to the chosen ∆τ
value. Furthermore, when Dmin exceeds the limit value 1−∆τ , convergence is lost and the simulation
prematurely ends.

(ii) This issue is not observed when controlling the simulation through unbounded variables (DS-CEDI
and DS-CMEP formulations). Provided the chosen damage criterion function, the DS-CMEP path-
following constraint almost leads to control the normal enhanced displacement variation. As a conse-
quence, the DS-CMEP and DS-CEDI formulations provide very similar results. In both cases, ∆emax
(obtained/imposed) is approximately constant whereas the maximum damage nonlinearly evolves.
At the end of the simulation, imposing almost constant enhanced displacement increments leads to
compute progressively vanishing damage variations (i.e., ∆Dmax → 0 for eα → +∞).

Limited unwanted/parasite unloading-reloading paths can be observed in the global responses of Figs. 8a
and 11a-b, as well as in the curves of Fig. 12. They are mainly associated with small instabilities occurring
when elemental cracks propagate from a finite element to the adjacent one. From a numerical viewpoint,
this issue could be further enhanced by the explicit procedure adopted to solve the path-following constraint
equations at the elemental level, or by the use of too large ∆τ values. Although a convergence study on
the path-step length is not performed in this work, it should be noticed that higher the ∆τ , the lower the
quality of the global response in representing the small instabilities mentioned above.

A further possible explication for these elastic unloadings should be mentioned for the DS-CEDI method.
Indeed, since localized elements may experience crack re-closure during the strong discontinuity propagation,
increases in the enhanced displacement may be predicted both in the elastic and dissipative regimes. Such
issue does not affect the DS-CMEP and DS-CIVI formulations, since they are designed to select dissipative
solutions only.

Discontinuity-scale vs global-scale path-following constraints. The interest of using DS constraints in the
E-FEM context becomes more clear when comparing previous responses with those obtained through the
GS-CMSI and GS-CNDI methods. As shown in Fig. 13, these formulations are not fully satisfactory for

needed to attain ∆L = 200 µm. The sole exception concerns the DS-CIVI method. Since the simulation stops prematurely,
t/tmax is evaluated as the ratio of the time step (t) to the total number of computed time steps, multiplied by the ratio of the
maximum attained ∆L level to 200 µm.
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Figure 10: Perforated plate — Global sample responses obtained using the DS-CMEP formulation for two different finite
element meshes containing 34 (coarse mesh) and 72 (finer mesh) elements along the upper and lower ligaments. The total
number of finite elements is 808 and 1338, respectively

different reasons. In particular, due to the chosen control variable, the GS-CNDI method allows describing
local instabilities due to elemental cracks localization. However, the two snap-backs corresponding to the
complete localization of the upper and lower cracks are not followed properly. At the price of a more time
expensive computation (due to the nested interval algorithm) the GS-CMSI formulation yields improving
this aspect. However, since solutions can be found in both elastic and dissipative regimes [13], several elastic
unloading-reloading equilibrium paths are obtained.

These “less controlled” responses are also clear when analyzing the pseudo-time evolutions of ∆Dmax and
∆emax throughout the simulations (Fig. 14). In both cases, these quantities exhibit more important varia-
tions than those observed using discontinuity-scale constraints. In particular:

(i) For the GS-CNDI formulation, ∆Dmax ranges between approximately null values and about 0.95. The
higher damage variations are attained in correspondence of the abrupt force decreases observed in the
structural responses.

(ii) In the case of the GS-CMSI, ∆Dmax and ∆emax evolve in a more controlled way. The presence of
non-dissipative unloading–reloading equilibrium paths is, however, again clear: null maximum damage
increases are obtained (∆Dmax = 0) for several time intervals. Elastic unloading paths induce abrupt
reductions in ∆emax, whereas elastic reloading take place with approximately constant enhanced dis-
placement variations (∆emax = cst.). This clearly put into evidence that the enhanced displacement of
the elemental discontinuity experiencing ∆Dmax = 0 increases linearly, following the damaged elastic
branch of the traction separation-law.

Another comparison can be established by analyzing the CODmean = pT∆d evolution respect to the sample
elongation. As shown in Fig. 15, when snap-backs occur, ∆L and CODmean both decrease for all the control
methods. The only exception is the GS-CNDI method, because (82) prescribes that ∆(CODmean) = ∆τ > 0.
Since the CODmean variation is not allowed to become negative, the capability of the GS-CNDI method
to follow these instabilities cannot therefore be enhanced by reducing ∆τ . The only way for improving
numerical results could consist, in that case, in considering a different set of DOFs to compute the controlled
displacement variable. However, such a choice is not straightforward, because the a-priori knowledge of the
cracks opening mechanism is required.

Previous considerations can be further corroborated by studying the pseudo-time evolutions of CODtop,
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Figure 11: Perforated plate — Global sample responses obtained through the DS-CIVI (a) and DS-CEDI (b) formulations

CODbottom and CODmean (Fig. 16). The sole GS-CNDI and GS-CMSI methods are considered for the
sake of simplicity. As expected, CODbottom is larger than CODtop for both methods in the first phase
of the test. When using the GS-CMSI method, the two physically motivated snap-backs correspond to
a simultaneous decrease in the COD measures. In other words, both cracks re-close when snap-backs
occur. This is not, however, possible when using the GS-CNDI method, because fulfilling the path-following
constraint (82) implies that at least one CODmeasure continues increasing throughout the entire deformation
process.

6. Conclusive remarks

Path-following methods for post-critical structural responses induced by the localization of strong discon-
tinuities were discussed in the framework of the E-FEM. Given the static condensation of the enhanced
fields at the elemental level, we showed that additively decomposing the nodal displacement field – as it is
classically done in path-following methods – leads to a similar decomposition of the enhanced displacement
field. Thanks to the enriched kinematics description proper to the E-FEM, it is therefore possible to formu-
late constraint equations where the controlled quantities refer to the global problem (nodal displacements,
total strains,. . . ) as well as the discontinuity-scale problem (displacement jump, internal variables of the
traction-separation law, . . . ). In this way, it is possible to control the localization process occurring at the
embedded discontinuity level directly.

Several Discontinuity-Scale (DS) constraint equations were presented and their numerical implementation,
based on an operator splitting method, was discussed (DS-CMEP, DS-CIVI and DS–CEDI methods). The
simulation of simple structural test cases involving unstable structural responses allowed validating the pro-
posed formulations. Although attention was mainly focused on DS formulations, two well known Global-Scale
(GS) path-following constraints (commonly used in nonlinear finite element simulations) were considered for
the sake of comparison. A deep comparative study of the illustrated formulations is still needed. However,
these first analyses showed that DS constraints are quite effective in E-FEM simulations. In particular,
despite what is obtained when considering modified arc-length algorithms based upon prescribing a com-
bination of global DOFs [6], or when controlling the maximum strain increment over the computational
domain [8, 9, 10], it seems possible to obtain a more accurate representation of dissipative equilibrium
solutions.

Further works are needed in order to study these DS methods and their implementation. Indeed, in the
present work, explicit root-finding algorithms were used to solve the constraint equations at the elemental
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Figure 12: Perforated plate — Pseudo-time evolutions of the maximum damage variation (∆Dmax) (a), the maximum enhanced
displacement variation (∆emax) (b), the maximum (Dmax) and minimum (Dmin) damage (c) computed through the DS-CMEP,
DS-CIVI and DS-CEDI formulations

level. Since such a choice could partly explain some (limited) unwanted loading-unloading paths observed
in the global response of the holed plate (second test case), one should also investigate implicit methods.
At the price of increasing the computational cost associated with the resolution of the control equation, this
could increase accuracy in the determination of the dissipative solution. A convergence analysis with respect
to the loading parameter ∆τ could also be extremely useful to achieve this goal. Finally, the study of more
complex quasi-static strain localization problems involving curved, branching and geometrically complex
cracks should be performed.
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Figure 13: Perforated plate — Global sample response obtained through the global-scale GS-CMSI (a) and GS-CNDI (b)
formulations
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