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Introduction

Solids subjected to loading are often characterized by the initiation and propagation of damaged bands and cracks. Under some circumstances (e.g., for quasi-brittle materials [START_REF] Zdenek | Mechanics of distributed cracking[END_REF]), the strain localization process leads to the formation of discontinuity surfaces (from a kinematic viewpoint) on which energy is dissipated. Since elastic unloading occurs around the regions where damage concentrates, an elastic energy release takes place. When the released energy exceeds the dissipative capacity of the structure, snap-backs may come up in the structural response.

The numerical simulation of structural problems dealing with snap-backs is a challenging task, especially in computational solid mechanics. In particular, due to the simultaneous decrease of the force and displacement in the global structural response (Fig. 1), conventional force and displacement control methods do not ensure achieving convergence in the post-critical regime (i.e., when such instabilities occur). Once the onset of instabilities is achieved the structural response cannot be controlled, and convergence cannot be reached either.

Path-following methods [START_REF] De Borst | Nonlinear finite element analysis of solids and structures[END_REF] enable overcoming these issues. In these formulations, the evolution of the external actions is no more assumed as known a-priori, but is updated along with the deformation process based on a given criterion. From a mathematical viewpoint, this leads to supplement the equilibrium problem with an additional problem unknown, namely the loading factor, which should comply with a dedicated equation, the so-called path-following constraint equation.

Initially introduced for the simulation of unstable responses associated with geometrical non-linearities [START_REF] Riks | The Application of Newton's Method to the Problem of Elastic Stability[END_REF][START_REF] Crisfield | A fast incremental/iterative solution procedure that handles snap-through[END_REF][START_REF] Ramm | Strategies for tracing the nonlinear response near limit points[END_REF], the so-called "arc-length methods" were extensively used to deal with structural instabilities. In these formulations, constraint equations are expressed as functions of the norm of the whole degrees of freedom (DOFs) of the problem. As underlined by many authors, however, this choice is not suitable when dealing with material instabilities [START_REF] De | Computation of post-bifurcation and post-failure behavior of strain-softening solids[END_REF][START_REF] De Borst | Nonlinear finite element analysis of solids and structures[END_REF]. Indeed, due to the highly localized nature of the strain localization process in solids, strong non-linearities are associated with a limited number of DOFs. As a consequence, arc-length methods may fail in evaluating the force in the post-peak regime.

Since the pioneering work of [START_REF] De | Computation of post-bifurcation and post-failure behavior of strain-softening solids[END_REF], many algorithms were proposed in the literature to overcome these limitations. Among them, one should mention path-following constraints on the rate of variation of selected sets of DOFs [START_REF] De | Computation of post-bifurcation and post-failure behavior of strain-softening solids[END_REF][START_REF] Duan | A local arc-length procedure for strain softening[END_REF], on strain measures [START_REF] Chen | A numerical solution scheme for softening problems involving total strain control[END_REF][START_REF] Geers | Enhanced solution control for physically and geometrically non-linear problems. Part I -the subplane control approach[END_REF][START_REF] Pohl | Adaptive path following schemes for problems with softening[END_REF] or on variables directly associated with the energy dissipation occurring in the system during damage propagation [START_REF] Gutiérrez | Energy release control for numerical simulations of failure in quasi-brittle solids[END_REF][START_REF] Verhoosel | A dissipation-based arc-length method for robust simulation of brittle and ductile failure[END_REF][START_REF] Lorentz | A new path-following constraint for strain-softening finite element simulations[END_REF]14,15,[START_REF] Barbieri | A j-integral-based arc-length solver for brittle and ductile crack propagation in finite deformation-finite strain hyperelastic solids with an application to graphene kirigami[END_REF]. Hybrid geometric-dissipative arc-length methods were also proposed (see e.g. [START_REF] Bellora | Hybrid geometric-dissipative arc-length methods for the quasi-static analysis of delamination problems[END_REF]) in order to ensure a continuous variation of the nature of the constraint along with the deformation process.

These techniques were successfully applied to non-linear finite element simulations where material nonlinearities were represented using continuum damage mechanics models [START_REF] Lorentz | A new path-following constraint for strain-softening finite element simulations[END_REF][START_REF] Rastiello | From diffuse damage to strain localization from an eikonal non-local (enl) continuum damage model with evolving internal length[END_REF], phase-field formulations [14], Thick Level-Set (TLS) damage models [START_REF] Moreau | Concurrent development of local and non-local damage with the thick level set approach: Implementation aspects and application to quasi-brittle failure[END_REF]. Path-following methods were also used in strong discontinuity simulations, where cracks were modeled using zero-thickness interface finite elements [START_REF] Alfano | Solution strategies for the delamination analysis based on a combination of local-control arc-length and line searches[END_REF][START_REF] Lorentz | A new path-following constraint for strain-softening finite element simulations[END_REF][START_REF] Bellora | Hybrid geometric-dissipative arc-length methods for the quasi-static analysis of delamination problems[END_REF], in the eXtended Finite Element Method (X-FEM) [START_REF] Massin | Pilotage du chargement en formulation x-fem: application aux lois cohésives. In 10e colloque national en calcul des structures[END_REF] and in the Embedded Finite Element Method (E-FEM) [START_REF] Oliver | An implicit/explicit integration scheme to increase computability of non-linear material and contact/friction problems[END_REF][START_REF] Brank | A path-following method based on plastic dissipation control[END_REF][START_REF] Cazes | Strong discontinuity approaches: An algorithm for robust performance and comparative assessment of accuracy[END_REF]. This latter framework is considered in this work.

According to this approach [START_REF] Simo | An analysis of strong discontinuities induced by strain-softening in rate-independent inelastic solids[END_REF][START_REF] Simo | A new approach to the analysis and simulation of strain softening in solids[END_REF][START_REF] Armero | An analysis of strong discontinuities in multiplicative finite strain plasticity and their relation with the numerical simulation of strain localization in solids[END_REF][START_REF] Oliver | Strong discontinuities and continuum plasticity models: the strong discontinuity approach[END_REF][START_REF] Oliver | Continuum approach to the numerical simulation of material failure in concrete[END_REF][START_REF] Oliver | Continuum approach to material failure in strong discontinuity settings[END_REF], the enhanced displacement field representing the displacement jump associated with the crack is embedded at the elemental level. Thanks to a static condensation procedure, enhanced displacements are computed by solving elemental traction continuity conditions (in weak form), without changing the total number of degrees of freedom of the global equilibrium problem. The resulting numerical implementation is therefore less intrusive than the X-FEM method [START_REF] Belytschko | Elastic crack growth in finite elements with minimal remeshing[END_REF][START_REF] Dolbow | A finite element method for crack growth without remeshing[END_REF][START_REF] Dolbow | Discontinuous enrichment in finite elements with a partition of unity method[END_REF][START_REF] Moës | Extended finite element method for cohesive crack growth[END_REF], while preserving an enhanced kinematics description.

Since constraint equations are generally functions of continuous variables (e.g. total displacement field, total strain field), their integration in standard E-FEM implementations can be achieved in a slightly intrusive way. These methods may, however, fail in some circumstances, in particular when dissipative and elastic equilibrium solutions should be distinguished [START_REF] Lorentz | A new path-following constraint for strain-softening finite element simulations[END_REF].

Given the enhanced kinematics description provided by strong discontinuity formulations, one could therefore think of deriving constraint equations by prescribing the evolution of variables associated with the non-linear (dissipative) response of the elemental discontinuities directly. In the case of the E-FEM, the integration of this kind of constraint equations in the iterative procedure for solving the non-linear mechanical problem has not been formalized yet. Presenting such a kind of path-following methods, describing their numerical implementation and showing some representative results are the main objectives of the present work.

The article is structured as follows. After presenting briefly a finite element formulation with embedded strong discontinuities, a reformulation of path-following methods in this framework is proposed. Then, three constraint equations are formulated to drive the mechanical response at the strong discontinuity level. Finally, simple numerical test cases involving unstable structural responses characterized by one or more snap-backs are presented. Assuming that the bulk always remains in elastic regime and that dissipation occurs at the embedded discontinuity level only, the proposed control constraints are discussed and compared. For this purpose, several well-known path-following constraints classically adopted in continuum finite element simulations are also considered. Some conclusions and perspectives close the paper.

Finite elements with embedded discontinuities

This section presents the E-FEM formulation that is considered in this work. After introducing the enhanced strong discontinuity kinematics, the Boundary Value Problem (BVP) is illustrated. The resulting equilibrium equations are finally discretized in space based on the "Statically and Kinematically Optimal Nonsymmetric" (SKON) formulation first proposed in [START_REF] Dvorkin | Finite elements with displacement interpolated embedded localization lines insensitive to mesh size and distortions[END_REF][START_REF] Simo | A new approach to the analysis and simulation of strain softening in solids[END_REF] and better studied in [START_REF] Jirásek | Comparative study on finite elements with embedded discontinuities[END_REF].

Strong discontinuity kinematics

Consider a n dim -dimensional domain Ω ⊂ R n dim crossed by a discontinuity line/surface Γ ⊂ R n dim dividing the body into two non-overlapping parts Ω -and Ω + (Fig. 2). The displacement field u = u(x, t) : Ω × [0, T ] → R n dim at time t ∈ [0, T ] can be written as:

u = u + H Γ u (1) 
where

u = u(x, t) : Ω × [0, T ] → R n dim is the continuous part of the displacement field, u = u (x, t) : Ω × [0, T ] → R n dim denotes the displacement jump function and H Γ = H Γ (x)
is the Heaviside unit step function centered on Γ (H Γ is equal to unity on Ω + and is null otherwise).

The infinitesimal strain field = (x, t) : Ω × [0, T ] → R n dim ×n dim kinematically compatible with the discontinuous displacement field (1) reads:

= ∇ s u = ∇ s u + H Γ ∇ s u + δ Γ ( u ⊗ n) s (2)
where "∇" is the gradient operator, upper-script s denotes the symmetric part operator, n = n(x) is the normal to the discontinuity line/surface, symbol "⊗" is the dyadic product between second order tensors and δ Γ = δ Γ (x) is the Dirac's delta distribution function on Γ (δ Γ is equal to +∞ on Γ and is null otherwise).
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Discrete strong discontinuity formulation

Two contributions to the strain field (2) can be distinguished. The first one (∇ s u + H Γ ∇ s u ) is bounded whereas the term arising from the displacement jump (δ Γ ( u ⊗ n) s ) is singular in the distributional sense. Such a singularity brings inconsistencies into the continuum constitutive equations. To overcome this issue, a so-called Discrete Strong Discontinuity Approach (DSDA) is considered [START_REF] Garth | A new method for modelling cohesive cracks using finite elements[END_REF][START_REF] Wells | Three-dimensional embedded discontinuity model for brittle fracture[END_REF]. Accordingly, we assume that a continuum stress -strain law holds in the bulk material, whereas a discrete constitutive relationship links the traction vector (t) between the crack surfaces to u on Γ. A traction continuity condition finally ensures fulfilling the equilibrium condition across the cracked region.

Boundary value problem in a strong discontinuity setting

Strong form. Infinitesimal strain and quasi-static loading conditions are considered. In the absence of body forces, solving the BVP consists in finding -at any time t -an admissible displacement field such that:

div σ = 0, on Ω (3) σ = F( ), on Ω (4) 
= ∇ s u, on Ω (5)

u = u imp , on ∂ u Ω (6) σ m = h imp , on ∂ t Ω (7) t = G( u ) on Γ ( 8 
)
σ n = 0, on Γ (9) σ n -t = 0, on Γ (10) 
where "div" denotes the divergence operator, σ = σ(x, t) : Ω × [0, T ] → R n dim ×n dim is the Cauchy stress tensor, F is a continuum constitutive relationship between σ and , ∂Ω ⊂ R n dim denotes the boundary of the domain, m = m(x) is the outward normal to ∂Ω, u imp is the imposed displacements vector on ∂ u Ω ⊂ ∂Ω, h imp is the traction vector prescribed on ∂ t Ω ⊂ ∂Ω. Furthermore, σ = σ (x, t) is the stress jump across the discontinuity and G is the constitutive law describing the response of the discontinuity (i.e., the traction-separation law). The split of the boundary of the domain is such that

∂Ω = ∂ u Ω ∪ ∂ t Ω and ∂ u Ω ∩ ∂ t Ω = ∅
, where the superposed line denotes a closure.

Weak form. The weak form of the BVP is derived by applying the general Hu-Washizu variational principle [START_REF] Hu | On some variational principles in the theory of elasticity and the theory of plasticity[END_REF][START_REF] Washizu | Variational methods in elasticity and plasticity[END_REF]. For this purpose, three independent fields (u, , σ) and the corresponding admissible variations (u * , * , σ * ) are considered. After application of the Green theorem to the term containing u * , and provided the independence of (u * , * , σ * ), the following variational equality is obtained:

∀ (u * , * , σ * ) ∈ (U, E, S) Ω * : σ( ) dv + Ω σ * : (∇ s u -) dv + Ω σ : (∇ s u * - * ) dv - ∂tΩ u * • h imp ds = 0 (11)
where ":" denotes the standard double contraction between symmetric second order tensors, "•" is the Euclidean inner product between vectors in R n dim , σ( ) satisfies the constitutive law (4),

U = {u * | u * ∈ H 1 (Ω), u * = 0 on ∂ u Ω}, E = { * | * ∈ L 2 (Ω)} and S = {σ * | σ * ∈ L 2 (Ω)}.

Embedded discontinuity finite element problem

The domain Ω is discretized through a finite element mesh Ω h comprising n el elements Ω e and n nt nodes.

The discretization is such that

Ω h = n el
e=1 Ω e and

n el e=1 Ω e = ∅.
Inside Ω e ⊂ Ω h , the following nodal interpolations are considered:

u = Nd + N c d c = Bd + Ge σ = Ss ( 12 
)
where d is the nodal displacements vector, d c is the elemental enhanced displacements vector, e denotes the enhanced strains vector and s is the elemental stress vector. Furthermore, N = N(x) is the displacement interpolation (elemental shape functions) matrix, N c = N c (x) denotes the enhanced displacements interpolation operator, B = B(x) = LN is the total strains interpolation matrix (L computes ∇ s ), G = G(x) is the interpolation operator of the enhanced strains associated with e. Similar interpolations are adopted for virtual fields, with the exception of * . For the sake of generality, this latter is approximated as * = Bd * + G * T e * , with G * T denoting the interpolation operator for the enhanced virtual strains e * .

Given the independence of variations (u * , * , σ * ) and assuming d c = e, replacing approximations introduced above into the variational identity [START_REF] Gutiérrez | Energy release control for numerical simulations of failure in quasi-brittle solids[END_REF], after some mathematical manipulations yields:

f int (d, e) -f ext = n el A e=1 Ωe B T σ(d, e) dv - n el A e=1 ∂tΩe N T h imp ds = 0 ( 13 
) Ωe G * σ(d, e) dv = 0 ∀ Ω e ∈ Ω h loc ( 14 
)
where σ(d, e) = F(Bd + Ge), symbol A denotes the assembly operator, and Ω h loc is the set of all localized (cracked) elements:

Ω h loc ⊂ Ω h := {Ω e ∈ Ω h : Ω e ∩ Γ = 0} (15) 
In the following, we will consider that each finite element can be crossed by a single strong discontinuity line/surface (Γ e ). Moreover, linear Constant Strain Triangular (CST) elements will be used for the sake of simplicity. In that case, the numerical integration of elemental operators is performed through a single point located at the gravity center of Ω e and the enhanced displacements are directly evaluated at the same location. Slightly more complex formulations are obtained for other elements, e.g. quadrilateral elements with piece-wise linear jump interpolations [START_REF] Linder | Perforated plate -Pseudo-time evolutions of CODtop, COD bottom and CODmean obtained through the GS-CNDI (a) and GS-CMSI (b) formulations[END_REF][START_REF] Armero | New finite elements with embedded strong discontinuities in the finite deformation range[END_REF].

Statically and Kinematically Optimal Nonsymmetric (SKON) formulation

Different choices are possible concerning the nodal interpolation of the enhanced displacement and strain fields (i.e., concerning the definition of operators G and G * ). A comparative study of existing methods was proposed by [START_REF] Jirásek | Comparative study on finite elements with embedded discontinuities[END_REF]. More recently, [START_REF] Cazes | Strong discontinuity approaches: An algorithm for robust performance and comparative assessment of accuracy[END_REF] performed a detailed numerical comparison of embedded strong discontinuity methods based upon different error norms and evaluated their variational consistency.

According to the classification introduced by [START_REF] Jirásek | Comparative study on finite elements with embedded discontinuities[END_REF], three families of formulations should be distinguished: "Statically Optimal Symmetric" (SOS), "Kinematically Optimal Symmetric" (KOS) and SKON formulations. In particular, for the SOS formulation, G is a matrix with zero mean over the element and G * = G T .
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For the KOS formulation, G = B c = LN c and G * = G T = B T c . Finally, for the SKON formulation, G = B c and matrix G * is chosen to ensure that the element passes the patch-test (zero mean condition). This latter approximation is considered in this work. Accordingly, operator G * is chosen as follows:

G * = δ Γ - meas(Γ e ) meas(Ω e ) P T (16) 
where "meas(Ω e )" denotes the elemental area/volume, "meas(Γ e )" is a measure of the discontinuity line/surface inside Ω e , and matrix P contains the components of n. Finally, interpolation operators N c and G are defined as:

N c = H Γ - na∈Ω + e N a G = B c = LN c = δ Γ P - a∈Ω + e B a ( 17 
)
where N a is the elementary restriction of N to nodes n a ∈ Ω + e and B a = LN a . Notice that, in previous definitions, we supposed that the elemental discontinuity splits Ω e into two sub-elements Ω + e and Ω - e such that vector n is inward Ω + e . By substituting definition ( 16) into (14), and exploiting the properties of the Dirac's delta function, one obtains the following local/discontinuity-scale momentum balance equation: = 0

The latter equation represents the weak averaged traction continuity condition [START_REF] Pohl | Adaptive path following schemes for problems with softening[END_REF] over the finite element crossed by the discontinuity. For CST elements, equation ( 18) can be simplified as follows:

P T σ(d, e) -t(e) = 0 (19) 

Path-following algorithms in the Embedded Finite Element Method

The formulation of path-following algorithms in the E-FEM context is addressed in this section. After deriving the linearized finite element formulation of the augmented equilibrium problem, we show that path-following procedures can be naturally formulated in this framework. Provided the static condensation of the enhanced fields at the elemental level, we demonstrate that decomposing the nodal displacement field in an additive way -as it is classically done in path-following methods -leads to a similar split of the enhanced displacement field. Thanks to the enriched kinematics description proper to the E-FEM, it is therefore possible to prescribe the evolution of both global DOFs and local variables associated with the dissipative response of the strong discontinuity.

Augmented embedded discontinuity finite element problem

In order to introduce path-following constraints into the numerical formulation, the external force vector is rewritten as [START_REF] Riks | The Application of Newton's Method to the Problem of Elastic Stability[END_REF]:

f ext = f ext,0 + f ext,λ = f ext,0 + λ f ( 20 
)
where f ext,0 is known (user-defined) external forces contribution, f ext,λ an unknown (controlled indirectly) external forces contribution, f is a normalized vector defining the direction of f ext,λ and λ ∈ R is a variable loading parameter. In a similar manner, the Dirichlet boundary conditions read:

d imp = d imp,0 + d imp,λ = d imp,0 + λ d ( 21 
)
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where d imp,0 is a known contribution and vector d provides the direction of the unknown (indirectly controlled) displacement d imp,λ . The loading parameter λ is an additional problem unknown which shall comply with a path-following constraint equation.

The augmented E-FEM problem to solve finally consists in finding a triplet (d, e, λ) such that: with the boundary condition [START_REF] Massin | Pilotage du chargement en formulation x-fem: application aux lois cohésives. In 10e colloque national en calcul des structures[END_REF]. In previous equations, r(d, e, λ) is the global residual (global out-ofbalance force) vector, r e loc (d, e) are the local residuals (local out-of-balance forces) associated with the elemental traction continuity conditions, equation ( 24) defines the path-following constraint and τ is the user-defined path-step length. This latter can be regarded as a pseudo-time parameter.

r(d, e, λ) = f int (d, e) -f ext,0 -λ f = 0 (22) 

Linearized problem

Previous equations are discretized in pseudo-time according to an ordered sequence of steps [t 0 , t 1 , . . . , T ], such that t n+1 > t n for all n ∈ N. Given the solution a n = {d n , e n , λ n } at time t n , one looks for the solution variation ∆a = {∆d, ∆e, ∆λ} in the interval [t n , t n+1 ] such that a = a n + ∆a at time t n+1 . Given the nonlinear nature of constitutive equations usually adopted in computations, the incremental problem is solved by means of an iterative procedure. The total solution increment at global iteration k + 1 is thus written as ∆a k+1 = a k+1 -a n = ∆a k + δa k+1 , where δa k+1 = δd k+1 , δe k+1 , δλ k+1 is the solution variation between two successive iterations3 .

Global and local equilibrium equations

By performing a truncated Taylor expansion of equilibrium equations ( 22) and ( 23) around the solution (d k , e k , λ k ), one obtains the following linearized equations:

-r k = K k bb δd k+1 + K k bg δe k+1 -f δλ k+1 (25) -r e,k loc = K e,k gb δd k+1 + K e,k gg δe k+1 ∀ Ω e ∈ Ω h loc ( 26 
)
where r k = r(d k , e k , λ k ) and r e,k loc = r e loc (d k , e k ). Furthermore, the stiffness operators K k bb , K k bg , K e,k gb and K e,k gg read:

K k bb = n el A e=1 K e,k bb = n el A e=1 Ωe B T D k B dv (27) 
K k bg = n el A e=1 K e,k bg = n el A e=1 Ωe B T D k G dv (28) K e,k gb = Ωe G * D k B dv (29) K e,k gg = Ωe G * D k G dv ( 30 
)
with D k = (∂ σ) k denoting the stiffness tensor of the bulk material at iteration k (∂ • = ∂/∂• is the partial derivation with respect to variable •). It should be noticed that any other stiffness tensor could have been considered as soon as it leads to a symmetric, positive-definite stiffness matrix.

Decomposition of total and enhanced displacements. According to the arguments introduced above, the loading factor can be written as λ k+1 = λ k + δλ k+1 . Introducing this decomposition into a standard incremental finite element formulation leads to write δd k+1 = δλ k+1 δd k+1 I + δd k+1 II , where δd k+1 I and δd k+1 II are solved from two independent systems of equations. In the following we show that such decomposition is still valid in a E-FEM framework. Furthermore, a similar decomposition is obtained for δe k+1 .

In order to derive this formulation, let us consider the case of one or more finite elements experiencing strain localization. Solving equation ( 26) with respect to δe k+1 yields:

δe k+1 = -(K e,k gg ) -1 K e,k gb δd k+1 -(K e,k gg ) -1 r e,k loc ∀ Ω e ∈ Ω h loc (31) 
By substituting this expression into [START_REF] Simo | An analysis of strong discontinuities induced by strain-softening in rate-independent inelastic solids[END_REF] and solving with respect to δd k+1 one obtains:

Kk bb δd k+1 = f δλ k+1 -r k + n el A e=1 [ϕ e K e,k bg (K e,k gg ) -1 r e,k loc ] (32) 
with Kk bb denoting the enhanced (condensed) stiffness operator of the bulk:

Kk bb = n el A e=1 [K e,k bb -ϕ e K e,k bg (K e,k gg ) -1 K e,k gb ] = K k bb - n el A e=1 [ϕ e K e,k bg (K e,k gg ) -1 K e,k gb ] (33) 
and where ϕ e = ϕ e (Ω e ) is a binary function indicating if Ω e is localized or not. It is defined as:

ϕ e = 1 if Ω e ∈ Ω h loc 0 otherwise (34) 
The nodal displacement increment can therefore be expressed as:

δd k+1 = δλ k+1 δd k+1 I + δd k+1 II (35) 
where δd k+1 

= -r k + n el A e=1 [ϕ e K e,k bg (K e,k gg ) -1 r e,k loc ] (36) 
Note that decomposition [START_REF] Dvorkin | Finite elements with displacement interpolated embedded localization lines insensitive to mesh size and distortions[END_REF] is usual in path-following methods. Furthermore, a standard continuum mechanics formulation [START_REF] De Borst | Nonlinear finite element analysis of solids and structures[END_REF] is recovered when Ω h loc = ∅. In that case, contributions associated with the enhanced displacement field vanish, and nodal displacement variations are calculated by solving:

K k bb δd k+1 I = f and K k bb δd k+1 II = -r k .
By replacing relationship [START_REF] Dvorkin | Finite elements with displacement interpolated embedded localization lines insensitive to mesh size and distortions[END_REF] into [START_REF] Belytschko | Elastic crack growth in finite elements with minimal remeshing[END_REF]:

δe k+1 = -(K e,k gg ) -1 K e,k gb (δλ k+1 δd k+1 I + δd k+1 II ) -(K e,k gg ) -1 r e,k loc (37) 
and collecting terms multiplied by δλ k+1 , it is easy to verify that a similar additive decomposition holds for the enhanced displacement field too. In particular, one obtains:

δe k+1 = δλ k+1 δe k+1 I + δe k+1 II ∀ Ω e ∈ Ω h loc ( 38 
)
where contributions δe k+1 

Path-following constraint equations

In addition to the above given equations of equilibrium, the constraint equation should also be fulfilled.

Regarding its linearization, however, two main situations should be distinguished depending on the differentiability properties of function P = P (d, e, λ; τ ).
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Case 1. When P is differentiable with respect to (d, e, λ), equation ( 24) can be linearized:

P k+1 = P k + (∂ d P ) k δd k+1 + (∂ e P ) k δe k+1 + (∂ λ P ) k δλ k+1 = 0 (40)
and an explicit formula for the loading factor variation derived. Substituting decompositions ( 35) and ( 38) inside [START_REF] Washizu | Variational methods in elasticity and plasticity[END_REF], and solving for δλ k+1 yields:

δλ k+1 = - P k + (∂ d P ) k δd k+1 II + (∂ e P ) k δe k+1 II (∂ d P ) k δd k+1 I + (∂ e P ) k δe k+1 I + (∂ λ P ) k (41)
Once again, when Ω h loc = ∅, terms associated with the enhanced displacements disappear from ( 41) and a standard formulation [START_REF] De Borst | Nonlinear finite element analysis of solids and structures[END_REF] is recovered.

Differentiability can be guaranteed, for instance, when path-following constraints are written in terms of sets of global DOFs fixed a priori [START_REF] De | Computation of post-bifurcation and post-failure behavior of strain-softening solids[END_REF][START_REF] Duan | A local arc-length procedure for strain softening[END_REF]. Widely used in continuum mechanics computations, these control techniques may reveal very useful for numerically reproducing experimental loading conditions [START_REF] Rastiello | Real-time water permeability evolution of a localized crack in concrete under loading[END_REF][START_REF] Rastiello | Macroscopic probabilistic cracking approach for the numerical modelling of fluid leakage in concrete[END_REF]. However, under complex conditions involving unstable responses characterized by multiple snap-backs (e.g. in the presence of multiple propagating strong discontinuities), these formulations lose much of their robustness and may fail due to the difficulty of choosing a set of controlled DOFs ensuring that a solution to the underlying incremental problem exists.

Case 2. More robust constraint equations can be obtained by allowing λ to evolve based on a condition defined by maximizing a quantity of interest z = z(x) over Ω. For instance, by requiring that the maximum variation of z (e.g. a strain measure, a local energy dissipation) is equal to ∆τ somewhere in the structure. Denoting with α ∈ Ω h a part (or a numerical entity) of the discretized domain (e.g. a finite element, an integration point, an elemental discontinuity), the constraint equation may be written as:

P k+1 = max α∈Ω h (∆z k+1 α ) -∆τ = max α∈Ω h (∆z k α + δz k+1 α ) -∆τ = 0 (42) 
where δz k+1 α = δz k+1 α (δd k+1 I , δd k+1 II , δe k+1 I , δe k+1 II , δλ k+1 ) through decompositions [START_REF] Dvorkin | Finite elements with displacement interpolated embedded localization lines insensitive to mesh size and distortions[END_REF] and [START_REF] Wells | Three-dimensional embedded discontinuity model for brittle fracture[END_REF]. By doing so, entities α potentially experiencing the higher increments of the controlled quantity can be searched automatically and are updated along with the solving process.

The main drawback of this approach is that function [START_REF] Armero | New finite elements with embedded strong discontinuities in the finite deformation range[END_REF] is no more differentiable, and a direct estimation of δλ k+1 is no more possible. However, the computation can be performed through an iterative procedure, e.g. a nested interval algorithm [START_REF] Lorentz | A new path-following constraint for strain-softening finite element simulations[END_REF].

Operator-splitting solution method

Thanks to the static condensation of the enhanced DOFs at the elemental level, equilibrium equations ( 36) and ( 39) can be solved sequentially through an "operator splitting method" [START_REF] Brancherie | Modéles continus et "discrets" pour les problémes de localisation et de rupture fragile et/ou ductile[END_REF] (such strategy is often called staggered static condensation [START_REF] Callari | Finite element methods for the analysis of strong discontinuities in coupled poro-plastic media[END_REF][START_REF] Callari | Localization Analysis in Dilatant Elasto-Plastic Solids by a Strong-Discontinuity Method[END_REF]). In this way, the size of the global problem to solve is unchanged compared to a standard FEM formulation, and the numerical implementation can be achieved in slightly intrusive way. The whole solution procedure can be summarized according to three main steps as follows. Given the solution (d k , e k , λ k ) at iteration k:

(i) The nodal displacement increments (δd k+1 I , δd k+1
II ) are first computed from (36) while keeping the enhanced displacements fixed;

(ii) The enhanced displacement corrections (δe k+1 I , δe k+1 II ) are then calculated by solving traction continuity conditions (39) localized element by localized element, while keeping nodal displacements constant. Since non-linear traction-separation laws are typically adopted in computations, local incremental iterative procedures are used to solve traction continuity conditions at the elemental level.

(iii) Finally, the loading factor increment δλ k+1 is estimated. This calculation is performed after computing the displacement increments. As a consequence, it can be implemented in a dedicated subroutine and easily adapted to deal with different path-following constraint equations.
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Classification of path-following constraint equations

Several constraint equations can be defined based on the displacement decompositions derived above. In the following, they are classified according to three main families depending on the scale (or algorithmic level) corresponding to the controlled variables.

Global-Scale (GS) constraints are written in terms of large-scale/global quantities (e.g. total displacements, total strains). These control methods are classically used in non-linear FEM simulations. Since nodal displacements account indirectly for the strong discontinuities embedded into finite elements, most of these formulations (e.g. [START_REF] De | Computation of post-bifurcation and post-failure behavior of strain-softening solids[END_REF][START_REF] Chen | A numerical solution scheme for softening problems involving total strain control[END_REF][START_REF] Geers | Enhanced solution control for physically and geometrically non-linear problems. Part I -the subplane control approach[END_REF][START_REF] Pohl | Adaptive path following schemes for problems with softening[END_REF]) may be used in E-FEM computations without major modifications.

In this work, however, attention is focused on Discontinuity-Scale (DS) constraints. With this term, we refer to constraint equations where the prescribed quantities are relative to the response of the discontinuity itself (e.g. enhanced displacements, internal variables of the traction-separation law):

P k+1 = P k+1 (e k , λ k , δe k+1 I , δe k+1 II , δλ k+1 ; ∆τ ) = 0 (43) 
In this way, one can imagine to drive the propagation of a crack based on the dissipation occurring on the crack tip or inside a fracture/damaging process zone.

Multi-Scale (MS) constraints may also be obtained by combining large-and discontinuity-scale quantities. They could be useful for controlling, for instance, numerical simulations where a transition from damage to fracture is represented by coupling continuum and strong discontinuity models [START_REF] Oliver | From continuum mechanics to fracture mechanics: the strong discontinuity approach[END_REF]. Their formulation is not investigated further in this work.

Discontinuity-Scale path-following constraints

Drawing from methods previously proposed in continuum mechanics contexts (e.g. [START_REF] Lorentz | A new path-following constraint for strain-softening finite element simulations[END_REF][START_REF] Moreau | Concurrent development of local and non-local damage with the thick level set approach: Implementation aspects and application to quasi-brittle failure[END_REF]), three DS pathfollowing constraints are obtained. They are based upon prescribing: (i) the maximum value of the elastic predictor of the yield (damage) criterion function driving the dissipative response of the discontinuity; (ii) the maximum rate of variation of the internal variables of the traction-separation law; (iii) a scalar measure of the enhanced displacement increment.

Dissipative model

We assume that dissipation occurs on Γ only, while the response of the bulk always remains linear elastic. At the elemental level, the traction-separation law [START_REF] Chen | A numerical solution scheme for softening problems involving total strain control[END_REF] is formulated according to a rate-independent constitutive model with a single internal variable κ α . Its evolution satisfies the Kuhn-Tucker and consistency conditions:

f α ≤ 0 κα ≥ 0 κα f α = 0 κα ḟα = 0 ∀ α ∈ Ω h loc ( 44 
)
where

f α = f α (Y α , e α , κ α ) is a damage (plastic) criterion function and Y α = Y α (e α , κ α )
is the thermodynamic force associated with κ α . In the following we will always refer to f α as the damage criterion function for the sake of homogeneity with test cases illustrated in the next section. Similar considerations hold, however, for plasticity models.

Constraint on the Maximal Elastic Predictor (DS-CMEP) of the damage criterion function

Initially proposed for rate-independent continuum models [START_REF] Lorentz | A new path-following constraint for strain-softening finite element simulations[END_REF], a path-following Constraint on the Maximal Elastic Predictor (CMEP) of the damage criterion function (i.e., the value of function f α when considering an incrementally elastic response) is well suited to capture localized phenomena resulting from strain localization. Furthermore, it allows to distinguish between elastic unloading and dissipative equilibrium solutions. As shown by the cited authors, a positive value of the elastic predictor is associated with a dissipative branch of the equilibrium path. For more details concerning the properties of the CMEP method, the interested reader can refer to [START_REF] Lorentz | A new path-following constraint for strain-softening finite element simulations[END_REF].

DOI: https://doi.org/10.1016/j.cma.2019.02.030

Constraint equation

The path-following CMEP can be adapted easily to problems involving embedded strong discontinuities to obtain the DS-CMEP. In that context, one looks for ∆λ k+1 = ∆λ k + δλ k+1 such that the elastic predictor (f elas,k+1 α ) of the damage function is equal to ∆τ > 0 on at least one localized element (and is lower elsewhere). The constraint equation thus reads:

P k+1 = max α∈Ω h loc f elas,k+1 α (δλ k+1 ) -∆τ = 0 ( 45 
)
where:

f elas α (δλ k+1 ) = f (Y α (e k+1 α (δλ k+1 ), κ α,n ), e k+1 α (δλ k+1 ), κ α,n ) α ∈ Ω h loc ( 46 
)
with κ α,n denoting the internal variable at time t n and:

e k+1 α (δλ k+1 ) = e α,n + ∆e k α + δλ k+1 δe k+1 α,I + δe k+1 α,II α ∈ Ω h loc ( 47 
)
Notice that, due to the use of an operator splitting method, the only unknown in ( 46) is δλ k+1 . As a consequence, one can write f elas α (δλ k+1 ; λ k , e k , δe k+1 I , δe k+1 II ) or, in a more concise form, f elas α (δλ k+1 ). The same nomenclature will be used in the following.

First loading factor increment

Since solving equation [START_REF] Brancherie | Modéles continus et "discrets" pour les problémes de localisation et de rupture fragile et/ou ductile[END_REF] requires that Ω h loc = ∅, this control method cannot be used as long as the deformation process is in elastic regime. A first initialization phase is thus needed. It may consist in computing the loading factor λ 1 (at time t 1 > t 0 ) such that at least one element satisfies the localization condition.

A simple choice to identify the onset of localization consists in using a Rankine's criterion [START_REF] Alfaiate | On the use of embedded discontinuity elements with crack path continuity for mode-I and mixed-mode fracture[END_REF][START_REF] Oliver | Continuum approach to the numerical simulation of material failure in concrete[END_REF][START_REF] Cervera | A crack-tracking technique for localized damage in quasi-brittle materials[END_REF]. Accordingly, one computes λ 1 such that the maximum elastic principal stress (σ max prin = σ max prin (λ 1 )) equals the tensile strength of the material (σ t ) somewhere in the bulk. Alternatively, one could have considered, for instance, a criterion based on the loss of ellipticity of the governing equations [START_REF] Runesson | Discontinuous bifurcations of elastic-plastic solutions at plane stress and plane strain[END_REF][START_REF] Oliver | Strong discontinuities and continuum plasticity models: the strong discontinuity approach[END_REF].

Loading factor variation δλ

Since f α is commonly chosen to be a convex function of e α , f elas α is also convex. Furthermore, given the convexity of the "max" function, the path-following constraint [START_REF] Brancherie | Modéles continus et "discrets" pour les problémes de localisation et de rupture fragile et/ou ductile[END_REF] preserves the same convexity property. As a consequence, it may admit up to two distinct real or complex (inadmissible) roots. Their direct determination however is often impossible, because function f elas α is generally non-linear and the "max" operator represents a further source of non-linearity. As mentioned in previous sections, a possible solution strategy may consist in using a "nested interval algorithm". According to this method, the computation of δλ k+1 is performed in three phases as follows:

(i) Initialization. One initializes the space of admissible solutions as L δλ := (-∞, +∞) and starts looping over α ∈ Ω h loc ; (ii) Computation. For each α ∈ Ω h loc , a loading factor δλ k+1 α is computed by assuming that (45) is locally satisfied:

P k+1 α = f elas α (δλ k+1 α ) -∆τ = 0 (48) 
When closed-form solutions to [START_REF] Oliver | From continuum mechanics to fracture mechanics: the strong discontinuity approach[END_REF] are not available, iterative root-finding algorithms may be adopted. For this purpose, function f elas α is approximated as:

f elas α (δλ α ) = f elas α (δλ ref ) + ∂ δλ f elas α (δλ ref ) (δλ α -δλ ref ) ( 49 
)
where upper-script "ref" denotes the reference state for the linearization. The simplest choice consists in using an explicit solution procedure to avoid further local sub-iterations. In that case, δλ ref = 0 (i.e., λ ref = λ k ) and δλ k+1 α can be calculated from:

a α,0 + δλ k+1 α a α,1 -∆τ = 0 ( 50 
)
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where:

a α,0 = f elas α (0) a α,1 = ∂ δλ f elas α (0) (51) 
with

f elas α (0) = f (Y α (e k+1 α (0), κ α,n ), e k+1 α (0), κ α,n
) and e k+1 α (0) = e α,n + ∆e k α + δe k+1 α,II . The interval L δλ is then updated based on the solution just calculated and the sign of a α,1 (to check if the linearization is performed on the ascending or descending branch of the function f elas α ):

L δλ := L δλ ∩ (-∞, δλ k+1 α ] if a α,1 > 0 [δλ k+1 α , +∞) otherwise (52) 
If L δλ = ∅, no solutions exist. In that case, one should reduce ∆τ and restart the iteration process from a known equilibrium condition.

(iii) Selection. If at the end of the procedure L δλ = ∅, a single value δλ k+1 ∈ L δλ is selected based on a user-defined criterion. A possible choice consists in minimizing the global residual [START_REF] Hellweg | A new arc-length method for handling sharp snap-backs[END_REF][START_REF] Lorentz | A new path-following constraint for strain-softening finite element simulations[END_REF]:

δλ k+1 = arg min δλ k+1 ∈L δλ (r k ) T r k+1 ( 53 
)
where r k = r k (d k , e k , λ k ) and r k+1 = r k+1 (. . . , λ k + δλ k+1 ). According to [START_REF] Lorentz | A new path-following constraint for strain-softening finite element simulations[END_REF], such a criterion is stabilizing regarding the convergence of the Newton-Raphson algorithm. A comparative study between different convergence criteria was performed by [START_REF] Massin | Pilotage du chargement en formulation x-fem: application aux lois cohésives. In 10e colloque national en calcul des structures[END_REF] in the X-FEM context.

Constraint on the Internal Variables Increment (DS-CIVI)

Based on the linearization of the damage criterion function, it is possible to formulate different dissipative path-following constraints. To illustrate this case, we consider a simple traction-separation law and derive a constraint equation based on controlling the rate of variation (∆κ α ) of the internal variable. The loadingunloading conditions discretized in time are now written as:

f α ≤ 0, ∆κ α ≥ 0, f α ∆κ α = 0 (54)
where, in a continuum damage mechanics context, κ α may be an equivalent measure of the displacement jump (i.e., of vector e α ) across the discontinuity line/surface. These developments were motivated by the recent implementation by [START_REF] Moreau | Concurrent development of local and non-local damage with the thick level set approach: Implementation aspects and application to quasi-brittle failure[END_REF] of the TLS damage model by [START_REF] Moës | A level set based model for damage growth: The thick level set approach[END_REF]. In the cited work, a linearized damage criterion was used to drive the strain localization process by imposing the maximum rate of variation of the level-set function controlling damage evolution.

Constraint equation

The constraint equation is written requiring that ∆κ k+1 α reaches the maximum value ∆τ > 0 on one localized element and is lower elsewhere:

P k+1 = max α∈Ω h loc (∆κ k+1 α (δλ k+1 )) -∆τ = 0 (55)

Loading factor variation δλ

The procedure for computing δλ k+1 is the same as with the DS-CMEP method. In that case, a δλ k+1 α value should be computed for each elemental discontinuity by solving:

P k+1 α = ∆κ k+1 α (δλ k+1 α ) -∆τ = 0 (56) 
Such problem can be, however, restated in a different way. Indeed, since ∆τ > 0, fulfilling conditions [START_REF] Richard | Castlab: an object-oriented finite element toolbox within the matlab environment for educational and research purposes in computational solid mechanics[END_REF] implies that f α (e k+1 α , κ k+1 α ) = 0 for any dissipative process such that ∆κ k+1 α = ∆τ . As a consequence, increments δλ k+1 α can be equivalently computed from:

P k+1 α = f α (δλ k+1 α ) = f α (e k+1 α (δλ k+1 α ), κ k+1 α ) = 0 ( 57 
)
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with the constraint:

κ k+1 α = κ k α + δκ k+1 α = κ k α + ∆τ -∆κ k α (58)
Once again, since the damage criterion function is non-linear, equation ( 57) should be solved iteratively. Performing a truncated Taylor expansion of f α around (δλ ref , δκ ref ), and enforcing the incremental constraint δκ α = ∆τ -∆κ ref α , one obtains:

f α (δλ α ) = f α (δλ ref , δκ ref ) + ∂ δλ f (δλ ref , δκ ref ) (δλ α -δλ ref ) + ∂ δκ f (δλ ref , δκ ref ) (∆τ -∆κ ref α -δκ ref ) = 0 (59)
Using an explicit solution procedure (δλ ref = 0, δκ ref = 0, ∆κ ref = ∆κ k α ), for the sake of comparison with the DS-CMEP method, yields the following linearized equation to solve at each iteration:

a α,0 + δλ k+1 α a α,1 -∆τ = 0 (60) 
where:

a α,0 = ∆κ k α - f α (0, 0) ∂ δκ f α (0, 0) a α,1 = - ∂ δλ f α (0, 0) ∂ δκ f α (0, 0) (61) 
It should be notice that, since κ α is updated throughout convergence iterations, function [START_REF] Ventura | Vector level sets for description of propagating cracks in finite elements[END_REF] no more corresponds to the linearized elastic predictor of the damage criterion.

Constraint on the Enhanced Displacement Increment (DS-CEDI)

Since a derivation of functions f α and f elas α with respect to some variables is needed, the implementation of the DS-CMEP and DS-CIVI methods depend on the chosen model (i.e., slight modifications are needed for each model used). An alternative and physically consistent choice, that can be made to avoid case-by-case changes to the numerical formulation, may consist in controlling the simulation through a scalar measure of ∆e k+1 α (i.e., the displacement jump variation). In that case, the constraint equation can be written as:

P k+1 = max α∈Ω h loc (c T α ∆e k+1 α ) -∆τ = 0 ( 62 
)
where ∆τ > 0, c α = e α,n / e α,n is the direction of vector e α at time t n and:

∆e k+1 α (δλ k+1 ) = ∆e k α + δλ k+1 δe k+1 α,I + δe k+1 α,II (63) 
Equation ( 62) is again solved through a "nested interval procedure". The equation to solve localized element by localized element reads:

P k+1 α = c T α ∆e k+1 α -∆τ = c T α (∆e k α + δλ k+1 α δe k+1 α,I + δe k+1 α,II ) -∆τ = 0 (64)
or, in a more concise form:

a α,0 + δλ k+1 α a α,1 -∆τ = 0 (65) 
with:

a α,0 = c T α (∆e k α + δe k+1 α,II ) a α,1 = c T α δe k+1 α,I (66) 

Numerical test cases

Path-following methods developed in the previous sections are studied through one-and two-dimensional quasi-brittle fracture simulations involving unstable structural responses. Although attention is focused on DS methods, two standard GS formulations are also considered for the sake of comparison. They consist in imposing the increment of the linear combination of selected global DOFs (GS-CNDI, Control by Nodal Displacement Increment [START_REF] De | Computation of post-bifurcation and post-failure behavior of strain-softening solids[END_REF]) and the maximal strain variation over the domain (GS-CMSI, Control by Maximal Strain Increment [START_REF] Chen | A numerical solution scheme for softening problems involving total strain control[END_REF][START_REF] Geers | Enhanced solution control for physically and geometrically non-linear problems. Part I -the subplane control approach[END_REF][START_REF] Pohl | Adaptive path following schemes for problems with softening[END_REF]). Numerical developments were performed using the "CastLab" toolbox [START_REF] Richard | Castlab: an object-oriented finite element toolbox within the matlab environment for educational and research purposes in computational solid mechanics[END_REF].
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Constitutive laws

A linear elastic stress-strain constitutive relationship is assumed inside the bulk. The onset of localization is identified based on a Rankine's criterion. For the strong discontinuity, a cohesive traction-separation law is formulated according to a Continuum Damage model with a single scalar variable D α ∈ [0, 1). In the local reference system of the elemental discontinuity, the traction force normal to the discontinuity (t α = n T α t α ) reads:

t α = t α (e α , D α ) = (1 -D α )Ke α ( 67 
)
where e α = n T α e α is the normal displacement jump to Γ e and K is the initial stiffness of the discontinuity. Its value is defined according to a penalty formulation as K = σ t /κ α,0 , with κ α,0 ≈ 0 denoting the normal displacement jump at damage initiation.

The damage criterion function is written in the enhanced displacements space as:

f α = f α (e α , κ α ) = e α -κ α ≤ 0 ( 68 
)
where the internal variable κ α starts at κ α,0 and is updated as the historical maximum of e α .

The damage variable rises from zero (not localized element) to unity (fully developed crack) according to the exponential evolution law:

D α = r(κ α ) = 1 - κ 0 κ α exp - σ t G f κ α (69)
where G f is the fracture energy.

This model was chosen for the sake of simplicity. More advanced constitutive laws, accounting for complex physical mechanisms, can be found in the literature [START_REF] Alfaiate | On the use of embedded discontinuity elements with crack path continuity for mode-I and mixed-mode fracture[END_REF][START_REF] Konstantinos | A novel traction-separation law for the prediction of the mixed mode response of ductile adhesive joints[END_REF][START_REF] Richard | Strong discontinuity analysis of a class of anisotropic continuum damage constitutive models-part i: Theoretical considerations[END_REF][START_REF] Kishta | Strong discontinuity analysis of a class of anisotropic continuum damage constitutive models-part ii: Concrete material application[END_REF]. They can be used in conjunction with path-following methods without significant modifications.

One-dimensional test case: bar under tension

A one-dimensional body, L = 1 m in length and A = 0.01 m 2 in constant transversal cross-section, is submitted to tensile loading (Fig. 3). An indirectly controlled external force (f ext = f ext,λ = λ) is applied at x = L, whereas the displacement is blocked at x = 0. The computational domain is discretized through n el = 20 linear Bar finite elements. Mechanical parameters are assigned as follows: E = 30 GPa (Young's modulus of the bulk), σ t = 2.8 MPa and G f = 100 N/m. Strain localization is forced to occur on the element comprised between nodes n 1 and n 2 , the weakened element (denoted with letter w). In this way, the set Ω h loc contains the weakened element only, the maximum operator can be removed from constraint equations and a first validation of the numerical implementation can be obtained. The loading increment correction can be computed explicitly as:

Path-following constraint equations DS-CMEP and

δλ k+1 = δλ k+1 w = ∆τ -a w,0 a w,1 (71) 
where:4 a w,0 = ∆e k w + δe k+1 w,II

a w,1 = δe k+1 w,I (72) 
As mentioned before, solving (70) implies that the weakened element is localized. For that reason, the first loading factor λ 1 (at time t 1 > t 0 = 0) is computed from the Rankine's initiation criterion. This yields:

λ 1 = ∆λ 1 = σ t A > 0.
DS-CIVI. When used to control the evolution of κ w , the DS-CIVI method is very similar to the DS-CMEP.

For that reason, it is here adapted to drive the growth of the damage variable D w . This can be obtained by linearizing the damage criterion function (68) around δλ ref and δD ref (instead of δκ ref ), and enforcing the constraint δD w = ∆τ -∆D ref w . Employing an explicit solution method for the sake of comparison with the previous case, δλ k+1 can be obtained from equation ( 71) with:

a w,0 = ∆D k w - f w (0, 0) ∂ δD f w (0, 0) a w,1 = - ∂ δλ f w (0, 0) ∂ δD f w (0, 0) ( 73 
)
where

∂ δD f w = (∂ δκ f w ) (∂ δD κ w ) and ∂ δD κ w = ∂ δD (r -1 (D)).

GS-CNDI.

In addition to these discontinuity-scale constraints, a well-known global-scale indirect control method is used to prescribe the relative displacement of the nodes n 1 and n 2 . Given the considered boundary conditions (i.e., d 1 = 0), the constraint equation reads:

P k+1 = ∆d k+1 2 (δλ k+1 ) -∆τ = ∆d k 2 + δλ k+1 δd k+1 2,I + δd k+1 2,II -∆τ = 0 (74) 
The loading factor increment δλ k+1 can be thus calculated as:

δλ k+1 = ∆τ -a 0 a 1 ( 75 
)
with coefficients:

a 0 = ∆d k 2 + δd k+1 2,II a 1 = δd k+1 2,I (76) 
GS-CMSI. Finally, a global-scale indirect control method based on prescribing the strain rate of the weakened element is analyzed. Given the assumed loading/geometrical conditions and linear interpolation of the elemental displacement field, the constraint equation almost coincides with (74). Denoting with h w = x 2 -x 1 the size of element w, one can write:

P k+1 = ∆ε k+1 w (δλ k+1 ) -∆τ = (∆d k 2 + δλ k+1 δd k+1 2,I + δd k+1 2,II )/h w -∆τ = 0 (77)

Results

Global responses. The global structural response is represented through the total applied force (F = λ) and sample elongation (∆L). Figure 4 compares results obtained using the DS and GS formulations introduced above. A direct displacement controlled (DDC) simulation was also performed. For the sake of comparison, a fixed number of N τ = 200 pseudo-time steps was considered for each method. The corresponding ∆τ values were chosen to obtain the same bar elongation (∆L = 120 µm) at the end of the simulation. As expected, the DDC loading does not allow to properly describe the force-displacement response in the phase post-peak of load. Indeed, once the localization condition is achieved, an uncontrolled elastic energy release occurs in the system and convergence is lost. This results in a sudden force reduction.

Conversely, indirect control methods allow to follow the structural response throughout the localization process in the whole range of ∆L levels. Concerning the DS constraints, given the adopted localization criterion, the first computed loading factor corresponds to the peak load. Once this condition is reached, the structural response becomes unstable and a clear snap-back is observed. Since a large number of pseudo-time steps is considered in simulations, the (F, ∆L) responses provided by the tested DS and GS formulations are very similar.

Total displacement, enhanced displacement and damage evolutions. To better illustrate the evolution of the localization process, Fig. 5 compares the pseudo-time evolutions of representative local quantities (the total displacement d 2 , the enhanced displacement e w and the damage variable D w ) calculated using all the constraint equations previously introduced. As expected:

(i) The enhanced displacement is always lower than the total displacement (d 2 > e w ) and progressively tends to its value when D w → 1. In this phase, no more load transfer is possible through the strong discontinuity. As a consequence, any displacement increase imposed to the system induces an increase in the displacement jump across the cracked element.

(ii) When a DDC loading method is used, the global displacement evolves linearly (elastic phase) whereas the enhanced displacement remains null till σ ≤ σ t . Once the localization condition is attained, convergence is lost, an instantaneous damage increase occurs and abrupt variations of the total and enhanced displacements of the weakened element are obtained. This corresponds to the previously observed brutal decrease of the external force.

(iii) When using path-following methods, the controlled quantities always evolve linearly with respect to the pseudo-time whereas other quantities non-linearly grow.

For the GS-CNDI (or equivalently the GS-CMSI) formulation, e w and D w remain null till the localization condition is attained. Then, they start increasing non-linearly up to the end of the simulation.

Different evolutions are observed when using the DS-CMEP (or equivalently the DS-CEDI) and DS-DOI: https://doi.org/10.1016/j.cma.2019.02.030 CIVI formulations. Indeed, provided the loading factor initiation procedure, d 2 sharply grows at the very beginning of the simulation (i.e., the elastic phase is not reproduced). The enhanced displacement then starts to gradually increase. In that phase, the total and enhanced displacements evolve nonlinearly for both methods.

Their evolutions are, however, quite different. In particular, when using the DS-CIVI method, their rates of variation progressively increase when D w → 1. During this phase, controlling the simulation becomes more difficult because very small (imposed) damage increments (i.e., ∆τ → 0) would be required in order to obtain an admissible displacement variations. The structural response may thus become unstable. Indeed, due to the bounded character of the damage variable (i.e., D w < 1), controlling the damage growth makes difficult to reproduce the tail of the softening curve accurately. This issue will be more clear in the two-dimensional case test illustrated in the following section.

DOI: https://doi.org/10.1016/j.cma.2019.02.030

Two-dimensional test case: eccentrically perforated plate

A perforated plate L = 2 m in width (along the x-axis), H = 2 m in height (along the y-axis) and T = 0.1 m in thickness is submitted to a tensile loading in the horizontal direction (Fig. 6). The hole (R = 0.5 m in radius) is centered horizontally and eccentrically placed in the vertical direction. The computational domain is discretized through two finite element meshes comprising, respectively, 808 and 1338 CST elements. Horizontal displacements (d imp = d imp,λ = λ i x , i x = (1, 0)) are imposed on the vertical right surface (x = L), whereas the left surface (x = 0) is blocked. Two-dimensional computations are performed under the plane stress assumption. Material parameters are: E = 30 GPa, ν = 0.2 (Poisson's ratio), σ t = 3 MPa and G f = 100 N/m.

In order to compare the different methods, ∆τ values were assigned to ensure approximately the same first computed enhanced displacement (≈ 0.4 µm) for each method. Given the localized nature of the cracking process at the strong discontinuity level and the illustrative purpose of the comparison, this criterion seemed acceptable and quite consistent from a physical viewpoint.

A very similar test was simulated by [START_REF] Lorentz | A new path-following constraint for strain-softening finite element simulations[END_REF] and [START_REF] Pohl | Adaptive path following schemes for problems with softening[END_REF]. Accordingly, two vertical cracks are expected to propagate from the hole's boundary toward the upper and lower free-edges of the plate. Furthermore, since the hole is eccentrically placed, an unstable global response characterized by two snap-backs in the phase post-peak of load will be obtained.

Crack-path definition

Given the considered geometrical (symmetry) and loading conditions, the determination of the crack path is done a-priori by enforcing the crack propagation through the symmetry axis of the specimen. In other words, the Rankine's criterion is adopted to detect the onset of localization only. Once this condition is satisfied, elemental cracks are assumed vertically oriented (n α = i x for all α ∈ Ω h loc ) and fixed. Under more complex cracking conditions involving curved cracks, global/local crack tracking algorithms [START_REF] Oliver | On strategies for tracking strong discontinuities in computational failure mechanics[END_REF][START_REF] Ventura | Vector level sets for description of propagating cracks in finite elements[END_REF][START_REF] Mosler | Embedded crack vs. smeared crack models: a comparison of elementwise discontinuous crack path approaches with emphasis on mesh bias[END_REF][START_REF] Meschke | Energy-based modeling of cohesive and cohesionless cracks via X-FEM[END_REF][START_REF] Riccardi | A step-by-step global crack-tracking approach in e-fem simulations of quasi-brittle materials[END_REF] should be used in order to ensure the continuity of the crack-path, thus avoiding stresslocking issues that may be encountered when no tracking methods are used. These formulations could be used in conjunction with path-following methods without requiring significant modifications to the numerical formulation. Although one could expect a moderate impact on the algorithmic robustness of the proposed path-following methods, such a study is not performed in this work for the sake of compactness.

Path-following constraint equations DS-CMEP.

Provided the considered loading conditions, the constraint equation is:

P k+1 = max α∈Ω h loc (e α,n + ∆e k α + δλ k+1 δe k+1 α,I + δe k+1 α,II -κ α,n ) -∆τ = 0 (78) 
A loading factor increment δλ k+1 α is thus computed for each localized element as:

δλ k+1 α = ∆τ -a α,0 a α,1 (79) 
where:

a α,0 = e α,n + ∆e k α + δe k+1 α,II -κ α,n a α,1 = δe k+1 α,I (80) 
It should be noticed that, since localized elements can experience re-closure during crack propagation, κ α,n = e α,n . As a consequence, the DS-CMEP no more leads to exactly prescribe the rate of variation of the enhanced displacement field.

DS-CEDI.

The constraint equation for controlling the enhanced displacement variation is written exactly as in [START_REF] Riccardi | A step-by-step global crack-tracking approach in e-fem simulations of quasi-brittle materials[END_REF]. It can be, however, slightly simplified by observing that c α = n α = i x for all α ∈ Ω h loc .
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GS-CNDI.

This method is used to control the mean Crack Opening Displacement (COD mean ) at the hole's boundary, where crack initiation is expected. This can be obtained by controlling the rate of variation of the mean relative horizontal displacements of two pairs of nodes (n t+ , n t-) and (n b+ , n b-) located close to the hole (Fig. 6). Following [START_REF] De | Computation of post-bifurcation and post-failure behavior of strain-softening solids[END_REF], the constraint equation reads:

P k+1 = p T ∆d k+1 -∆τ = p T (∆d k + δd k+1 I δλ k+1 + δd k+1 II ) -∆τ = 0 ( 82 
)
where p is a selection vector defining a linear combination of the global DOFs. In the considered case, p contains values 1/2 and -1/2 at positions corresponding to the horizontal displacements of nodes (n t+ , n b+ ) and (n t-, n b-) respectively, and is null elsewhere. As a consequence, δλ k+1 can be computed from (75) with:

a 0 = p T (∆d k + δd k+1 2,II ) a 1 = p T δd k+1 2,I (83) 
GS-CMSI. Since strains are evaluated at the Gauss points level, this constraint equation can be written as:

P k+1 = max gp∈Ω h gp (q T gp ∆ε k+1 gp ) -∆τ = 0 (84)
where "gp" denotes now a Gauss integration point, Ω h gp is the set of all the integration points of the mesh, versor q gp = ε gp,n / ε gp,n provides the direction of the strain vector at time t n and: with B gp = B(x gp ) denoting the strain-displacement matrix at the location x gp of gp ∈ Ω h gp . The nested interval algorithm is still used, but equation ( 84) is now solved Gauss point by Gauss point. In this way, one has to solve n el linear equations of the kind (79) with coefficients:

a gp,0 = q T gp B gp (∆d k + δd k+1 2,II ) a gp,1 = q T gp B gp δd k+1 2,I (86) 

Results

The global structural response is represented through the displacement (∆L = λ) of the bearing surface and the corresponding force (F ). As shown in Fig. 7, a good agreement between the (F, ∆L) responses obtained through the path-following methods discussed above can be observed. The only exceptions are the GS-CNDI formulation (this aspect will be discussed in the following) and, as expected, the DDC method.

As already pointed out by several authors in other numerical contexts [START_REF] Lorentz | A new path-following constraint for strain-softening finite element simulations[END_REF][START_REF] Massin | Pilotage du chargement en formulation x-fem: application aux lois cohésives. In 10e colloque national en calcul des structures[END_REF][START_REF] Pohl | Adaptive path following schemes for problems with softening[END_REF], the structural response is unstable and characterized by two clear snap-backs. Furthermore, small snap-backs corresponding to the strong discontinuity propagation through consecutive finite elements are also observed [START_REF] Crisfield | Snap-through and snap-back response in concrete structures and the dangers of under-integration[END_REF][START_REF] Bosco | Discontinuous constitutive response of brittle matrix fibrous composites[END_REF][START_REF] Alfano | Finite element interface models for the delamination analysis of laminated composites: mechanical and computational issues[END_REF][START_REF] Lorentz | A new path-following constraint for strain-softening finite element simulations[END_REF].

Discontinuity-scale path-following constraints: representative response. For illustrating the main features of the observed structural behaviors, attention is first focused on the (F, ∆L) response computed through the DS-CMEP formulation (Fig. 8a). Figure 8b provides the discontinuity-scale damage field (D α ) for six representative phases of the simulation. The corresponding enhanced displacement (e α ) and damage distributions along a vertical line aligned with the mean-crack path (see Fig. 6) are also given in Fig. 9.

These results allow putting into evidence that once the peak load is reached, two cracks start propagating from the hole's boundary through the upper and lower ligaments. Since the hole is eccentrically placed, the lower crack reaches the bottom free-edge of the plate, while the tip of the other crack is still far from the upper boundary. Once this condition is attained, an elastic energy release takes place in the system and the structural response exhibits a first snap-back. Further loading steps correspond to the simultaneous opening of the lower crack and propagation of the upper one. When all the elements pertaining to the upper ligament are localized too, a novel elastic energy release occurs. This leads to a second snap-back. Finally, both cracks progressively open till the end of the simulation.

As mentioned before, small instabilities associated with elemental cracks activation are present in the structural response. These instabilities are thus strictly associated with the spatial discretization of the con-DOI: https://doi.org/10.1016/j.cma.2019.02.030 sidered problem. Figure 10 compares (F, ∆L) curves obtained considering two different mesh refinement levels. This illustration allows showing that the "rough" branch of the force-displacement curve progressively becomes smoother when refining the mesh, whereas the two major (physically motivated) snap-backs are preserved.

Discontinuity-scale path-following constraints: comparison among formulations. Very similar global and local responses can be obtained by controlling the simulation through the DS-CIVI (Fig. 11a) and DS-CEDI (Fig. 11b) methods. As shown in Fig. 11a, however, the DS-CIVI formulation does not allow to properly reproduce the structural response for high ∆L levels. This limitation stems directly from the upper-boundedness of the damage variable. Indeed, when all the finite elements pertaining to the upper and lower ligaments are localized and D min = min α (D α ) > 1 -∆τ , finding an admissible solution (i.e., such that D α ≤ 1 ∀ α ∈ Ω h loc ) to (81) becomes no more possible.5 This becomes even more clear when studying the pseudo-time evolutions of the maximum damage increase (∆D max = max α (∆D α ), Fig. 12a) and the maximum enhanced displacement increments (∆e max = max α (∆e α ), Fig. 12b). The evolutions of the maximum (D max = max α (D α )) and the minimum (D min ) damage values over the upper and lower ligaments (for the three considered DS methods) are also given in Fig. 12c. 6 As expected: (i) When using the DS-CIVI method, ∆D max remains almost constant and equal to the chosen ∆τ value. Furthermore, when D min exceeds the limit value 1 -∆τ , convergence is lost and the simulation prematurely ends.

(ii) This issue is not observed when controlling the simulation through unbounded variables (DS-CEDI and DS-CMEP formulations). Provided the chosen damage criterion function, the DS-CMEP pathfollowing constraint almost leads to control the normal enhanced displacement variation. As a consequence, the DS-CMEP and DS-CEDI formulations provide very similar results. In both cases, ∆e max (obtained/imposed) is approximately constant whereas the maximum damage nonlinearly evolves. At the end of the simulation, imposing almost constant enhanced displacement increments leads to compute progressively vanishing damage variations (i.e., ∆D max → 0 for e α → +∞).

Limited unwanted/parasite unloading-reloading paths can be observed in the global responses of Figs. 8a and 11a-b, as well as in the curves of Fig. 12. They are mainly associated with small instabilities occurring when elemental cracks propagate from a finite element to the adjacent one. From a numerical viewpoint, this issue could be further enhanced by the explicit procedure adopted to solve the path-following constraint equations at the elemental level, or by the use of too large ∆τ values. Although a convergence study on the path-step length is not performed in this work, it should be noticed that higher the ∆τ , the lower the quality of the global response in representing the small instabilities mentioned above.

A further possible explication for these elastic unloadings should be mentioned for the DS-CEDI method. Indeed, since localized elements may experience crack re-closure during the strong discontinuity propagation, increases in the enhanced displacement may be predicted both in the elastic and dissipative regimes. Such issue does not affect the DS-CMEP and DS-CIVI formulations, since they are designed to select dissipative solutions only.

Discontinuity-scale vs global-scale path-following constraints. The interest of using DS constraints in the E-FEM context becomes more clear when comparing previous responses with those obtained through the GS-CMSI and GS-CNDI methods. As shown in Fig. 13, these formulations are not fully satisfactory for needed to attain ∆L = 200 µm. The sole exception concerns the DS-CIVI method. Since the simulation stops prematurely, t/tmax is evaluated as the ratio of the time step (t) to the total number of computed time steps, multiplied by the ratio of the maximum attained ∆L level to 200 µm.

DOI: https://doi.org/10.1016/j.cma.2019.02.030 different reasons. In particular, due to the chosen control variable, the GS-CNDI method allows describing local instabilities due to elemental cracks localization. However, the two snap-backs corresponding to the complete localization of the upper and lower cracks are not followed properly. At the price of a more time expensive computation (due to the nested interval algorithm) the GS-CMSI formulation yields improving this aspect. However, since solutions can be found in both elastic and dissipative regimes [START_REF] Lorentz | A new path-following constraint for strain-softening finite element simulations[END_REF], several elastic unloading-reloading equilibrium paths are obtained.

These "less controlled" responses are also clear when analyzing the pseudo-time evolutions of ∆D max and ∆e max throughout the simulations (Fig. 14). In both cases, these quantities exhibit more important variations than those observed using discontinuity-scale constraints. In particular:

(i) For the GS-CNDI formulation, ∆D max ranges between approximately null values and about 0.95. The higher damage variations are attained in correspondence of the abrupt force decreases observed in the structural responses.

(ii) In the case of the GS-CMSI, ∆D max and ∆e max evolve in a more controlled way. The presence of non-dissipative unloading-reloading equilibrium paths is, however, again clear: null maximum damage increases are obtained (∆D max = 0) for several time intervals. Elastic unloading paths induce abrupt reductions in ∆e max , whereas elastic reloading take place with approximately constant enhanced displacement variations (∆e max = cst.). This clearly put into evidence that the enhanced displacement of the elemental discontinuity experiencing ∆D max = 0 increases linearly, following the damaged elastic branch of the traction separation-law.

Another comparison can be established by analyzing the COD mean = p T ∆d evolution respect to the sample elongation. As shown in Fig. 15, when snap-backs occur, ∆L and COD mean both decrease for all the control methods. The only exception is the GS-CNDI method, because (82) prescribes that ∆(COD mean ) = ∆τ > 0.

Since the COD mean variation is not allowed to become negative, the capability of the GS-CNDI method to follow these instabilities cannot therefore be enhanced by reducing ∆τ . The only way for improving numerical results could consist, in that case, in considering a different set of DOFs to compute the controlled displacement variable. However, such a choice is not straightforward, because the a-priori knowledge of the cracks opening mechanism is required.

Previous considerations can be further corroborated by studying the pseudo-time evolutions of COD top , DOI: https://doi.org/10.1016/j.cma.2019.02.030 COD bottom and COD mean (Fig. 16). The sole GS-CNDI and GS-CMSI methods are considered for the sake of simplicity. As expected, COD bottom is larger than COD top for both methods in the first phase of the test. When using the GS-CMSI method, the two physically motivated snap-backs correspond to a simultaneous decrease in the COD measures. In other words, both cracks re-close when snap-backs occur. This is not, however, possible when using the GS-CNDI method, because fulfilling the path-following constraint (82) implies that at least one COD measure continues increasing throughout the entire deformation process.

Conclusive remarks

Path-following methods for post-critical structural responses induced by the localization of strong discontinuities were discussed in the framework of the E-FEM. Given the static condensation of the enhanced fields at the elemental level, we showed that additively decomposing the nodal displacement field -as it is classically done in path-following methods -leads to a similar decomposition of the enhanced displacement field. Thanks to the enriched kinematics description proper to the E-FEM, it is therefore possible to formulate constraint equations where the controlled quantities refer to the global problem (nodal displacements, total strains,. . . ) as well as the discontinuity-scale problem (displacement jump, internal variables of the traction-separation law, . . . ). In this way, it is possible to control the localization process occurring at the embedded discontinuity level directly.

Several Discontinuity-Scale (DS) constraint equations were presented and their numerical implementation, based on an operator splitting method, was discussed (DS-CMEP, DS-CIVI and DS-CEDI methods). The simulation of simple structural test cases involving unstable structural responses allowed validating the proposed formulations. Although attention was mainly focused on DS formulations, two well known Global-Scale (GS) path-following constraints (commonly used in nonlinear finite element simulations) were considered for the sake of comparison. A deep comparative study of the illustrated formulations is still needed. However, these first analyses showed that DS constraints are quite effective in E-FEM simulations. In particular, despite what is obtained when considering modified arc-length algorithms based upon prescribing a combination of global DOFs [START_REF] De | Computation of post-bifurcation and post-failure behavior of strain-softening solids[END_REF], or when controlling the maximum strain increment over the computational domain [START_REF] Chen | A numerical solution scheme for softening problems involving total strain control[END_REF][START_REF] Geers | Enhanced solution control for physically and geometrically non-linear problems. Part I -the subplane control approach[END_REF][START_REF] Pohl | Adaptive path following schemes for problems with softening[END_REF], it seems possible to obtain a more accurate representation of dissipative equilibrium solutions.

Further works are needed in order to study these DS methods and their implementation. Indeed, in the present work, explicit root-finding algorithms were used to solve the constraint equations at the elemental DOI: https://doi.org/10.1016/j.cma.2019.02.030 At the price of increasing the computational cost associated with the resolution of the control equation, this could increase accuracy in the determination of the dissipative solution. A convergence analysis with respect to the loading parameter ∆τ could also be extremely useful to achieve this goal. Finally, the study of more complex quasi-static strain localization problems involving curved, branching and geometrically complex cracks should be performed. 

Figure 1 :

 1 Figure 1: Dissipative and non-dissipative solutions for a simple unidimensional damage mechanics localization problem exhibiting an unstable structural response characterized by a snap-back.

Figure 2 :

 2 Figure 2: Domain Ω crossed by a discontinuity line Γ and definition of the quantities of interest

  r e loc (d, e) = P T σ(d, e) -t(e) = 0 ∀ Ω e ∈ Ω h loc

Figure 3 :

 3 Figure 3: Bar under tension -Geometry, finite element discretization, boundary conditions and quantities of interest

  DS-CEDI. Given the considered geometrical/loading conditions and damage criterion function (68), function f elas w = e k+1 w (δλ k+1 ) -e w,n coincides with the total enhanced displacement variation of the weakened element. The DS-CMEP and DS-CEDI constraints thus coincide: P k+1 = ∆e k+1 w (δλ k+1 ) -∆τ = ∆e k w + δλ k+1 δe k+1 w,I + δe k+1 w,II -∆τ = 0 (70) DOI: https://doi.org/10.1016/j.cma.2019.02.030

Figure 4 :

 4 Figure 4: Bar under tension -Force-displacement responses obtained using the DS-CIVI, DS-CMEP, DS-CEDI, GS-CNDI, GS-CMSI and DDC formulations

Figure 5 :

 5 Figure 5: Bar under tension -Pseudo-time evolutions of the total displacement of node n 2 (d 2 ), of the enhanced displacement (ew) computed at the gravity center of the weakened element and of the damage variable (Dw) computed at the same location: (a) DS-CMEP and DS-CEDI methods; (b) DS-CIVI method; (c) GS-CNDI and GS-CMDI methods; (d) DDC formulation

Figure 6 :

 6 Figure 6: Perforated plate -Geometry of the computational domain, boundary/loading conditions, finite element discretization (808 CST elements), identification of the four nodes (n t+ , n t-, n b+ , n b-) used to compute Crack Opening Displacements (CODtop = (d k+1 x,t+ + d k+1 x,t-)/2, COD bottom = (d k+1 x,b+ + d k+1 x,b-)/2, CODmean = (CODtop + COD bottom )/2), and illustration of the chosen elemental strong discontinuities schematization

  ∆ε k+1 gp = B gp ∆d k+1 = B gp (∆d k + δd k+1 II ) + δλ k+1 B gp δd k+1 I (85) DOI: https://doi.org/10.1016/j.cma.2019.02.030

Figure 7 :

 7 Figure 7: Perforated plate -Comparison among global responses obtained using the DS-CMEP, DS-CIVI, DS-CEDI, GS-CMSI, GS-CNDI and DDC formulations

Figure 8 :

 8 Figure 8: Perforated plate -Global sample response obtained using the DS-CMEP formulation (a) and damage fields (at the strong discontinuity level) corresponding to six phases of the simulation (b)

Figure 9 :

 9 Figure 9: Perforated plate -Enhanced displacement eα (a) and damage Dα (b) distributions along a vertical line aligned with the mean crack path (computation performed using the DS-CMEP formulation)

Figure 10 :

 10 Figure 10: Perforated plate -Global sample responses obtained using the DS-CMEP formulation for two different finite element meshes containing 34 (coarse mesh) and 72 (finer mesh) elements along the upper and lower ligaments. The total number of finite elements is 808 and 1338, respectively

Figure 11 :

 11 Figure 11: Perforated plate -Global sample responses obtained through the DS-CIVI (a) and DS-CEDI (b) formulations

Figure 12 :

 12 Figure 12: Perforated plate -Pseudo-time evolutions of the maximum damage variation (∆Dmax) (a), the maximum enhanced displacement variation (∆emax) (b), the maximum (Dmax) and minimum (D min ) damage (c) computed through the DS-CMEP, DS-CIVI and DS-CEDI formulations

Figure 13 :

 13 Figure 13: Perforated plate -Global sample response obtained through the global-scale GS-CMSI (a) and GS-CNDI (b) formulations

  

  

  

In previous equations, down-script n + 1 was omitted for the sake of compactness. The same nomenclature will be used in the following. As a consequence of this, any quantity without down-script should be intended as referring to pseudo-time t n+1 .

Coefficients a w,0 and a w,1 were obtained by collecting terms in (70). Since f elas α (0) = ∆e k w +δe k+1 w,II and ∂ δλ f elas α (0) = δe k+1 w,I , it is straightforward checking that expressions (72) can be equivalently obtained from definitions[START_REF] Runesson | Discontinuous bifurcations of elastic-plastic solutions at plane stress and plane strain[END_REF].

To remove this limitation, one could imagine to progressively reduce ∆τ from the initial (user-defined) value to zero. This kind of technique is not, however, implemented and studied in this work.

Dimensionless pseudo-time t/tmax is computed, for all control methods, as the ratio of the time step to the number of steps DOI: https://doi.org/10.1016/j.cma.2019.02.030
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