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Nonstoichiometric uranium dioxide experiences a shrinkage of its lattice constant with increasing oxygen
content, in both the hypostoichiometric and the hyperstoichiometric regimes. Based on first-principles calculations
within the density functional theory (DFT)+U approximation, we have developed a point defect model that
accounts for the volume of relaxation of the most significant intrinsic defects of UO2. Our point defect
model takes special care of the treatment of the charged defects in the equilibration of the model and in the
determination of reliable defect volumes of formation. In the hypostoichiometric regime, the oxygen vacancies
are dominant and explain the lattice constant variation with their surprisingly positive volume of relaxation. In
the hyperstoichiometric regime, the uranium vacancies are predicted to be the dominating defect,in contradiction
with experimental observations. However, disregarding uranium vacancies allows us to recover a good match
for the lattice-constant variation as a function of stoichiometry. This can be considered a clue that the uranium
vacancies are indeed absent in UO2+x , possibly due to the very slow diffusion of uranium.

DOI: 10.1103/PhysRevMaterials.2.023801

I. INTRODUCTION

Uranium dioxide, the most prevalent nuclear fuel over
the globe, exists for a wide range of stoichiometries around
the ideal UO2. The crystal structure of hypostoichiometric
(UO2−x) and hyperstoichiometric (UO2+x) uranium dioxide
has been studied extensively over the years, in particular
using x-ray diffraction (XRD) [1–7]. All the studies have
unanimously concluded to a contraction of the lattice constant
as a function of x. However, at the atomic scale, the identifi-
cation of the defects responsible for the lattice contraction of
the fluorite structure has been a matter of debate for a long
time. For instance, in the hyperstoichiometric region of the
phase diagram, the shrinkage is ascribed to oxygen interstitial
atoms that may cluster with different proposed geometries: the
so-called 2:2:2 Willis clusters [8,9], the oxygen cuboctahedra
[10], or the recently computer-discovered clusters I4

X [11,12].
But the uranium vacancies cannot be excluded either [13].

To elucidate which defects are present in uranium dioxide,
a point defect model could be built [14–16]. Based on
formation energies obtained from first-principles calculations,
the point defect model evaluates the defect concentration at
thermodynamic equilibrium at infinite dilution. With these
pieces of information and the volume of relaxation associated
to each defect, numerical simulations can in principle calculate
the lattice change as a function of the stoichiometry. However,
UO2 is an insulating oxide and its defects are charged. This
statement has two consequences that make the problem
more complex. First of all, the point defect model has to
be extended to consider all the possible charge states of the
intrinsic defects and to ensure the overall charge neutrality

[17,18]. Second, only very recently has it been shown how to
extract a meaningful volume of relaxation for charged defects
out of periodic first-principles calculations [19,20]. Indeed,
due to the impossibility to define an absolute electrostatic
potential in periodic systems [21,22], the pressure and the
stress tensor obtained from any periodic calculations are
meaningless for non-neutral cells. In Ref. [20], we proposed
methods to circumvent the issue and produce well-defined,
transferable stresses and therefore volumes of relaxation.

In this article, we address the modeling of the lattice-
constant variation of UO2 with the use of a point defect model
that incorporates all the stable charge states of the intrinsic
defects. The point defect model relies on first-principles
calculations within the density-functional theory “+U” for-
malism (DFT + U ) [23,24] as is customary for correlated
oxides. By combining well-defined volumes of relaxation for
intrinsic defects and their equilibrium concentrations, we offer
a satisfactory comparison to the available experimental data.

The article is organized as follows: In Sec. II, we review
how volumes of relaxation can be obtained from periodic
calculations of charged defects; in Sec. III, we describe the
DFT+U parameters, the resulting defect formation energy,
and how they are included in the point defect model; and
finally, Sec. IV discusses the lattice-constant variation in the
hypostoichiometric and hyperstoichiometric regimes.

II. VOLUME OF RELAXATION OF CHARGED DEFECTS
FROM FIRST PRINCIPLES

Periodic boundary conditions make the evaluation of
the electrostatic potential a mathematically ill-defined
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problem [21]. The impossibility to evaluate the electrostatic
potential in quantum-mechanical calculations with periodic
boundary conditions has many undesired consequences. Just
to name one, the formation energy of charged systems (with
an unbalanced number of electrons and protons) as evaluated
from the calculations needs to be corrected [25–27].

In Ref. [22], we had clarified the role of the average
electrostatic potential 〈vH 〉 in the total energy E(q) as a
function of the charge q = Z − N , with Z being the number of
protons and N the number of electrons in the simulation cell.
In periodic calculations, two different codes or setups may use
different conventions for the average electrostatic potential,
say, convention A and convention B, and we had shown [22]
that the corresponding total energies are related through

EA(q) + q〈vH 〉A = EB(q) + q〈vH 〉B. (1)

Changing code or changing pseudopotentials or projector-
augmented atomic data makes two total energy calculations
impossible to compare directly. Only at q = 0 are the energies
EA(0) and EB(0) indeed the same.

As a consequence, the pressures, the negative first derivative
of the energy with respect to the cell volume �, calculated in
the periodic approach are convention dependent,

P A(q) − q
∂〈vH 〉A

∂�
= P B(q) − q

∂〈vH 〉B

∂�
, (2)

and the resulting volume of relaxation is convention dependent
as well. In the quadratic region around the minimum energy,
the volume of relaxation, ��, is simply proportional to the
pressure:

��A = P A

B
�, (3)

where B is the bulk modulus of the host material. We have
shown in a previous article [20] that the bulk modulus of
the charged defective cell can be conveniently approximated
by the bulk modulus of the pristine solid. The superscript A
emphasizes that the obtained quantities are still convention
dependent at this stage. The connection to the volume of
relaxation within another convention B is easily done using
Eq. (2):

��B = P B

B
�

= ��A − q�

B

∂

∂�
[〈vH 〉A − 〈vH 〉B]. (4)

From this last equation, we see that it is impossible to obtain
the volume of relaxation for charged systems from a single
periodic calculation. However, the derivative ∂〈vH 〉A/∂� can
be connected to the absolute deformation potential [28–30]
or can be made harmless by compensating with opposite
charge species [20]. The latter approach does not require
further interface calculations and is sufficient under the mild
hypothesis of the overall charge neutrality of the macroscopic
sample.

Let us exemplify how the compensation of charged defects
with free holes, denoted h+, allows us to define unam-
biguous volumes of relaxation. It should be understood that
free holes are simply a convenient charge compensator. Any
other choice—free electrons (labeled e−), self-trapped holes,

charged vacancies—could play the same role. Let us consider
a uranium vacancy bearing a −4 charge, V4−

U , and let us form
the volume of relaxation of these vacancies together with four
free holes. These five objects are noninteracting and have to
be calculated separately in independent periodic calculations.
They have been chosen to form a charge-neutral group. Using
Eq. (4), their total volume of relaxation reads

��B(
V4−

U

) + 4��B(h+)

= ��A
(
V4−

U

) + 4��A(h+)

+ 4
�

B

∂

∂�

[〈
vH

(
V4−

U

)〉
A − 〈

vH

(
V4−

U

)〉
B

]

− 4
�

B

∂

∂�
[〈vH (h+)〉A − 〈vH (h+)〉B], (5)

where the average electrostatic potentials of a supercell includ-
ing a vacancy 〈vH (V4−

U )〉 or including a free hole 〈vH (h+)〉 have
been introduced.

In Ref. [20], it has been argued that the difference between
the electrostatic potential of supercells containing dilute de-
fects vanishes to the first order. As a consequence, one can
approximate the electrostatic potential averages with their bulk
values:

〈
vH

(
V4−

U

)〉
A ≈ 〈vH (h+)〉A ≈ 〈vH (bulk)〉A, (6a)〈

vH

(
V4−

U

)〉
B ≈ 〈vH (h+)〉B ≈ 〈vH (bulk)〉B. (6b)

With these equalities correct to first order, the last two terms
on the right-hand side of Eq. (5) cancel out and the announced
result is obtained: The volume of relaxation of neutral groups
is independent of the electrostatic convention.

We just chose to compensate the charged defects with free
holes. Though arbitrary, this choice is very handy since the free
hole volume of relaxation can be obtained from bulk primitive
cell calculations according to

��A(h+) = �

B

∂εA
VBM

∂�
, (7)

where εA
VBM is the energy of the valence-band maximum in

convention A. This last result is a consequence of the Janak
theorem [31]. Its derivation is detailed in Ref. [20].

In the rest of the article, we always combine the charged
defects with free holes in order to form neutral groups whose
volume of relaxation is well defined and comparable with
others’ work. All the compensated volumes of relaxation are
gathered in the Appendix. Let us insist again that the volume
of relaxation of a group is obtained from distinct charged-cell
calculations that have individually meaningless pressures and
volumes of relaxation.

III. INTRINSIC POINT DEFECTS OF UO2

In this section, we present the technical details of the DFT
calculations and of the point defect model. We also discuss a
few selected formation energies relevant for the comparison
with the few available experimental data. The comprehensive
list of the formation energies and of the volumes of relaxation
is given in the Appendix.
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A. First-principles DFT+U parameters

The first-principles calculation of the intrinsic point de-
fects of UO2 has been the topic of numerous earlier works
[11,16,17,32–43]. However, it is necessary to perform these
calculations again here, since we are interested not only in
formation energies but also in volumes of relaxation.

Our first-principles total energy and pressure calculations
follow the most standard procedure for UO2. The setup is
identical to the one described in Ref. [41]. We employ the
VASP code [44] with projector-augmented atomic data [45].
Density-functional theory is approximated within the general-
ized gradient approximation (GGA)+U exchange correlation
in the formulation proposed by Liechtenstein and co-workers
[23]. The on-site Coulomb repulsion U and the exchange
integral J are set to the commonly accepted values for UO2,
respectively U = 4.50 eV and J = 0.51 eV [46]. We take
particular care with the starting density matrix as devised
in the occupation matrix control technique [47] in order to
mitigate the local minima issue of DFT+U . As discussed
in detail in the review by Dorado and co-authors [40], we
neglect the spin-orbit coupling, since it has been constantly
shown to have little effect on the energetic properties of UO2

[48–50]. We also approximate the low-temperature magnetic
ordering with a collinear 1k antiferromagnetic order, instead
of the experimental noncollinear 3k antiferromagnetic order.
These two magnetic orderings have very close energies and are
expected by all authors to yield similar formation energies for
defects [40].

The defects are inserted into 2 × 2 × 2 supercells based on
the conventional cubic cell, resulting in 96-atom supercells.
The supercell shape and volume are kept fixed to their bulk
geometry with Jahn-Teller distortion. We employ a 2 × 2 × 2
Monkhorst-Pack k-point grid. Uranium is considered to have
14 valence electrons and oxygen 6. The plane-wave cutoff
energy is set to 500 eV.

With these calculation parameters, the equilibrium crys-
talline structure for UO2 is an orthorhombic cell with lattice
constants 5.503, 5.584, and 5.537 Å. This is the so-called
Jahn-Teller distorted cell. The obtained Kohn-Sham band gap
is 2.41 eV.

Finally, the charged supercells need to be corrected for the
spurious image interactions. Here we simply use the Madelung
monopole correction [25–27] without introducing the potential
alignment term, as we have verified that this term is very weak.
The monopole correction uses the experimental static dielectric
constant of UO2, ε0 ≈ 25.

B. Formation energies

With this quantum-mechanical machinery, we can have
access to the formation energy of each defect. The formation
energy Ef of a defect that introduces m additional uraniums,
n additional oxygens, and q positive charges in a 32-UO2-
formula supercell is defined as

E
m,n,q

f (μe) = E(U32+mO64+n)

− 32 + m

32
E(U32O64) − n − 2m

2
E(O2)

+ q(εVBM + μe) + �EMadelung. (8)

The energies are referred to the oxygen molecule in its triplet
ground state E(O2) within the Perdew-Burke-Ernzerhof GGA-
PBE [51]: these are the so-called oxygen-rich conditions. We
chose to refer all the formation energies to this well-defined
reference. This makes our values easily comparable with future
works (see the Appendix). Note that the precise value of the
oxygen chemical potential does not matter for the properties
we are interested in here. The formation energy is a function
of the electron chemical potential μe considered as an external
parameter at this stage.

In this study, we have considered the most comprehensive
list of intrinsic defects in UO2 known today. First, we have
calculated the hole polaron, i.e., a U5+ ion in UO2, and the
electron polaron, a U3+ ion. Second, we have considered
the uranium defects: the uranium vacancy and the uranium
self-interstitial in an octahedral site. Third, the simple oxygen
defects, oxygen vacancy and oxygen self-interstitial in an octa-
hedral site, have been evaluated. Fourth, we have calculated the
oxygen clusters described by Andersson and co-authors [11]:
the two-oxygen interstitials I2

X and the four-oxygen interstitials
I4
X. And finally, we have evaluated the five-oxygen interstitial

cluster in cuboctahedral shape, I5
C, which is the building block

for the U4O9 crystalline structure [10].
We obtained formation energies in line with Ref. [41], with

which we share a similar technical setup. All the formation
energies are given in the Appendix. Let us just describe here a
few selected formation energies.

Figure 1 presents the formation energy for the stoichiomet-
ric groups: the Schottky defect, one isolated uranium vacancy
and two isolated oxygen vacancies, the uranium Frenkel pair,
one isolated uranium self-interstitial and one isolated uranium
vacancy, and the oxygen Frenkel pair, one isolated oxygen self-
interstitial and one isolated oxygen vacancy. These energies do
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FIG. 1. Formation energies (eV) of the Schottky trio (dashed blue
line), of the uranium Frenkel pair (dash-dotted orange line), and of
the oxygen Frenkel pair (solid red line) as a function of the electron
chemical potential μe in eV. The electron chemical potential is
referred to the valence-band maximum energy of bulk UO2. However,
due to the formation of hole and electron polarons, the actual range
for μe is limited and cannot enter the gray shaded areas in the dilute
limit. The experimental estimates from Ref. [15] are symbolized by
the horizontal colored areas.
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FIG. 2. Reaction energies per extra oxygen atom (eV) for the I2
X

(dashed green line), the I4
X (dash-dotted blue line), and the I5

C oxygen
(solid red line) clusters as a function of the electron chemical potential
μe in eV. The electron chemical potential is referred to the valence-
band maximum energy of bulk UO2. However, due to the formation
of hole and electron polarons, the actual range for μe is limited and
cannot enter the gray shaded areas in the dilute limit.

not depend on the oxygen chemical potential but are a function
of the electron chemical potential μe. The reachable values for
μe are bounded by the formation of isolated U5+ and U3+ ions.
The energies can be compared to the experimental estimates
obtained from self-diffusion measurements as summarized by
Matzke [15]. The agreement with respect to experiment is
good even though the experimental values have no dependence
on μe.

Most noticeably, we observe, in agreement with our pre-
vious studies [16,17], that the formation energy of uranium
vacancies is very low and that this defect is likely to be domi-
nant for hyperstoichiometric UO2+x . Unfortunately, UO2+x is
usually thought as being devoid of uranium vacancies from
density measurements [2,52] and from neutron diffraction
[8,53], which is sensitive to oxygen interstitials. This question
is addressed in detail in the discussion in Sec. IV B.

Also relevant to the hyperstoichiometric regime are the
reaction energies of oxygen self-interstitials when they form
clusters. In Fig. 2, we plot these energies as a function of
the electron chemical potential μe. In the lower part of the
band gap, typical conditions for UO2+x , the oxygen clusters
are strongly bound with negative reaction energies. It appears
that the I2

X clusters are much less favorable than the I4
X and I5

C
clusters and that I4

X is indeed the most stable oxygen cluster
in agreement with Andersson and co-workers [12]. These
energies are independent of the oxygen chemical potential and
can be easily compared to other theoretical studies.

With these calculated formation energies, we can feed the
point defect model built to evaluate the equilibrium defect
concentrations.

C. Point defect model

First introduced by Matzke [15] and Lidiard [14], the point
defect model in UO2 allows one to calculate the concentration

of the different point defects assuming thermodynamic equi-
librium with an O2 atmosphere at a given temperature and a
given partial pressure and assuming the point defects have no
interactions (dilute limit). Here we extend the regular point
defect model to oxygen clusters considered as point defects
themselves and to charged defects following Ref. [17]. This is,
to the best of our knowledge, the most comprehensive point
defect model built for UO2 as of today.

Let us exemplify the use of the law of mass action for one
particular defect, say, I4

X with charge state q. The formation
chemical reaction reads

∅ + 2O2 → I4q

X + qe−, (9)

and the corresponding law of mass action states
[
I4q

X

] = 3
(
PO2

)2
exp

[ − E
0,4,q

f (μe)/kBT
]
, (10)

where the formation energy defined in Eq. (8) has been
introduced. In this work, the notation for concentrations with
brackets [·] refers to a concentration per UO2 formula unit. The
prefactor 3 accounts for the three possible configurations of an
I4
X cluster for each formula unit. Note that when stating Eq. (10)

in terms of formation energy and not formation free energy, we
neglect all the sources of entropy besides the configurational
one. In particular, all the point defect models we are aware of
for UO2 neglect the vibrational entropy of the defects. Going
beyond this approximation is nowadays way beyond the reach
of the first-principles DFT+U method.

Equations similar to Eq. (10) can be written for each defect
type Xq (polarons, vacancies, self-interstitials, and clusters).
The only remaining unknown is the electron chemical potential
μe that can be determined by imposing the overall charge
neutrality of the UO2 sample:∑

Xq

q[Xq ] + [h+] − [e−] = 0, (11)

with [h+] and [e−] being the concentrations (per formula unit)
of the delocalized valence holes and the delocalized conduction
electrons, respectively [54]. These two last quantities only de-
pend on the bulk density of states, on the imposed temperature,
and on μe.

Finally, the stoichiometry x is calculated by accounting for
the oxygen and uranium change introduced by each defect type
weighted by its actual concentration. The same approach gives
access to the overall volume change of a formula unit ��:

�� =
∑
Xq

��(Xq)[Xq] + ��(e−)[e−] + ��(h+)[h+].

(12)

The volumes of relaxation introduced in Eq. (12) are the
absolute volumes of relaxation that we would like to avoid
calculating. Following Sec. II, let us subtract from Eq. (12) the
volume of relaxation of the free holes times the left-hand side
of Eq. (11). This does not affect the total volume change thanks
to electroneutrality and we obtain our working equation:

�� =
∑
Xq

{��(Xq) − q��(h+)}[Xq]

+{��(e−) + ��(h+)}[e−]. (13)
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FIG. 3. Concentration per formula unit of the different species
as a function of the stoichiometry of UO2+x for negative x (hypos-
toichiometric regime) at 1200 K (upper panel) and at 300 K (lower
panel). Only the dominant species are reported: delocalized holes and
electrons (thin green lines), localized polarons (thick blue lines), and
oxygen vacancies for different charge states (red lines).

The volumes of relaxation grouped in each curly bracket are
independent of the electrostatic potential convention as we
desired. Note that the choice of compensating free holes is
completely arbitrary. Finally, the relative change of lattice
constant will be obtained as one-third of the relative change
of the cell volume.

With this, we are now able to address the first-principles
calculation of the lattice-constant variation.

IV. LATTICE-CONSTANT CHANGE
IN NONSTOICHIOMETRIC UO2

A. Hypostoichiometric regime

In the hypostoichiometric regime, the measurements of
the lattice-constant variation are quite scarce. This statement
owes much to the challenge of synthesizing good quality
samples with no metallic uranium. In Ref. [1], Kapshukov
and co-workers proposed a route to reach hypostoichiometry
through the reduction of UO2 at relatively high temperature
(1200 K). Then they quenched their sample and performed
XRD determination of the lattice constant at room temperature.
It is not clear at this stage which temperature is most relevant
(the synthesis temperature or the analysis temperature). We

applied our point defect model for the two temperatures
then.

The calculated defect concentrations are reported in Fig. 3
as a function of the stoichiometry at 1200 K (upper panel) and
at 300 K (lower panel). First of all, whatever the temperature,
among all the defects considered in the model, only the
localized polarons and the oxygen vacancies are present with
non-negligible concentrations. Delocalized charge carriers
have much lower concentrations. However, the prevailing
charge state of the oxygen vacancies is strongly dependent
on the temperature. At high temperature, the main occurring
defect is the 2+ oxygen vacancy in the intrinsic regime,
log10(−x) ≈ −4. The charge compensation is ensured by a
slightly unbalanced proportion of the positive and negative
polarons. For stoichiometries comprised in between UO1.993

and UO1.89, the 1+ oxygen vacancies are prevailing. Their
charge is almost fully compensated by negative polarons, U3+.
The neutral vacancies become dominant only for very strong
departure from stoichiometry (x < −0.11). The importance
of the singly positively charged oxygen vacancies at high
temperature had already been emphasized in Ref. [17].

At room temperature, the intrinsic regime is very narrow
as very few charges (be they delocalized or localized) are
thermally generated. Already with a stoichiometry as low as
log10(−x) > −4.5, the sample becomes dominated by neutral
vacancies. The negative polarons U3+ precisely compensate
the rarely occurring V+

O. Note that most point defect models
available in the literature only consider V2+

O , which would miss
the physics we just described.

Let us now report in Fig. 4 the lattice-constant variation for
the two considered temperatures. Our data are compared to the
measurements of Ref. [1]. The agreement between the XRD
lattice constant and our model at room temperature is strikingly
good. The dependence of the lattice constant with respect to x

is almost linear according to the point defect model and can be
modeled by the relation

a(x) ≈ a0 − 0.263x Å, (14)
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Expt: Kapshukov et al. (1990)
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FIG. 4. Relative change in lattice constant as a function of x in
UO2+x for negative x (hypostoichiometric regime). The point defect
model at 1200 K (dashed blue line) and at 300 K (solid green line) is
compared to the XRD data from Ref. [1] (red circles).
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TABLE I. GGA+U formation energies Ef and volume of relax-
ation �� for all the charged defects considered in the point defect
model.

Ef �� − q��(h+)

Defect Charge, q (eV) (Å
3
)

h+ +1 0.000 0.00
e− −1 2.414 −0.44
U5+ +1 −0.096 0.52
U3+ −1 1.807 0.73
VO +2 2.544 7.57
VO +1 3.856 6.27
VO 0 5.382 6.13
IO +1 0.581 −3.26
IO 0 0.798 −3.80
IO −1 1.203 −0.26
IO −2 1.758 0.77
I2
X +1 0.668 0.28

I2
X 0 1.191 −0.09

I2
X −1 1.406 0.72

I2
X −2 2.208 2.09

I2
X −3 2.832 2.49

I2
X −4 3.672 2.58

I4
X +1 −0.351 −2.82

I4
X 0 −0.127 −4.29

I4
X −1 0.355 −4.67

I4
X −2 1.210 −4.49

I4
X −3 1.945 −3.28

I4
X −4 3.487 −3.92

I4
X −5 4.921 −2.98

I4
X −6 6.707 −2.13

I4
X −7 7.897 −2.94

I4
X −8 9.254 −2.67

I5
C 0 0.090 −0.57

I5
C −1 0.900 −0.49

I5
C −2 1.358 0.18

I5
C −3 2.404 −1.89

I5
C −4 3.447 −2.31

IU +4 8.922 39.18
IU +3 10.343 36.51
IU +2 11.954 35.58
VU −1 −0.420 −9.24
VU −2 0.084 −9.89
VU −3 0.322 −9.74
VU −4 0.680 −18.56

which matches nicely the slope coefficient reported by Kap-
shukov et al., −0.255 [1].

Calculations and experiment both agree on the dilatation
of the lattice with x. The lattice-constant dilation is almost
entirely due to the oxygen vacancies. It is quite remarkable
that the oxygen vacancies have a large positive volume of
relaxation. Intuitively, one would have expected that removing
atoms from UO2 would induce a shrinkage of the structure.
This is the case, for instance, for the uranium vacancies
(see Table I). Let us propose that in the absence of a small
oxygen atom the largely charged uranium ions repel each other
strongly.

Concerning the experimental interpretation, we conclude
that the oxygen vacancies are generated during the high-
temperature synthesis. Then during the quenching, the oxygen
vacancy concentration remains constant; however, the charge
equilibration is given enough time to happen. The vacancies
V+

O and polarons U3+ are then converted into neutral vacancies
V0

O. The lattice constant is then modified as shown in Fig. 4,

since the volume of relaxation of V0
O is around 6Å

3
, whereas the

combined volume of relaxation of V1+
O and U3+ is somewhat

larger (∼7 Å
3
).

The outstanding agreement with experimental lattice-
constant variation is a strong support to the predictive power
of the point defect model based on DFT+U data.

B. Hyperstoichiometric regime

For hyperstoichiometric UO2, there are many experimental
determinations of the lattice constant in the literature [2–7].
At low temperature, the range of stability of the solid so-
lution UO2+x is very narrow because the U4O9 crystalline
phase forms [55]. In the following, we then focus on high-
temperature experiments only (∼1400 K). At these tempera-
tures, the UO2+x stoichiometry can achieve x = 0.23 without
turning into the U4O9 phase, which allows us to employ our
point defect model of UO2. The experimental XRD data we
refer to in the following were either measured directly at high
temperature [2,4] or measured at room temperature but with a
rapid quench after the high-temperature synthesis [3].

The upper panel of Fig. 5 shows the species concentrations
as a function of the stoichiometry x as obtained from the point
defect model at 1400 K. For the sake of clarity, only the total
concentration for each defect type is reported: the competing
charge states have been summed up. As stated above in Sec. III,
the uranium vacancies have a very low formation energy in
DFT+U and it is not a surprise that it is predicted to be the
dominating defect whatever the stoichiometry. However, as
mentioned earlier, there is a consensus that the oxidation of
UO2 is mediated through the insertion of oxygen interstitial
atoms, not through the formation of uranium vacancies. But
the clues are only indirect:

(i) From neutron diffraction [8,53], UO2+x is known to
incorporate oxygen interstitials. This is of course not a proof
that uranium vacancies are absent.

(ii) From density measurements [2,52], U4O9 has been
proven to have a higher density than UO2, therefore ruling
out the creation of uranium vacancies in U4O9.

Again these measurements were performed on U4O9 and
not on a direct observation of UO2+x . The only experimental
work concluding with the occurrence of some uranium vacan-
cies that we are aware of is Ref. [13]. The discrepancy between
the calculated stability of uranium vacancies and their absence
in the actual samples, the “uranium vacancy problem,” had
been already mentioned in the past [16]. It appears to be a
common feature of all the first-principles simulations of point
defects in uranium dioxide.

The consequence of incorporating uranium vacancies is
better appraised from their role in the lattice constant, as
plotted in Fig. 6. There, the lattice constant is shown to shrink
much more in the point defect model than in the experimental
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FIG. 5. Concentration per formula unit of the different species
as a function of the stoichiometry of UO2+x for positive x (hyper-
stoichiometric regime) at 1400 K including (upper panel) or not
(lower panel) uranium vacancies. Only the dominant species are
reported: delocalized holes and electrons (thin green lines), localized
polarons (thick blue lines), uranium vacancies (solid red line), oxygen
interstitials (dashed orange line), and oxygen clusters (short dashed
brown line for I2

X, dashed-double-dotted cyan line for I4
X, and dashed-

triple-dotted pink line for I5
C).

measurements. Indeed, among the calculated defects (see the
Appendix), the uranium vacancies have the most negative
volume of relaxation.

We would like here to follow a speculative path: Let us
assume, as experiments encourage us to do, that, for some
reason, the uranium vacancies are not present in uranium
dioxide. We can simply disregard them in the point defect
model. The population of defects then calculated is reported in
the lower panel of Fig. 5. The isolated oxygen self-interstitial
dominates up to x = 0.01, and then the very stable oxygen
cluster I4

X prevails. As a consequence, the dependence of the
lattice constant as a function of x is much weaker as shown in
Fig. 6 and as fitted through

a(x) ≈ a0 − 0.046x Å. (15)

This is in very good agreement with Dodé and Touzelin’s slope
of −0.059 [4] and in reasonable agreement with Lynds and
co-workers’ value of −0.094 [3].
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FIG. 6. Relative change in lattice constant as a function of x in
UO2+x for positive x (hyperstoichiometric regime) at 1400 K. The
point defect models (lines) are compared to the high-temperature
XRD data (symbols).

The comparison with respect to experiment therefore sup-
ports the assumption that the UO2+x samples are indeed devoid
of uranium vacancies.

We can propose an explanation for the absence of uranium
vacancies in oxidized UO2 even though these defects are
predicted to be thermodynamically dominant. The formation of
uranium vacancies inside the sample requires uranium cation
transport from the sample to its surfaces. As reviewed by
Matzke in Ref. [15], the self-diffusion of uranium in UO2 and
UO2+x is extremely slow—orders of magnitude slower than
the self-diffusion of oxygen. Matzke proposes an Arrhenius fit
to represent the diffusion coefficient for stoichiometric UO2

with an activation energy of 5.6 eV. A more recent review and
data analysis by Moore and co-authors [56] proposes similar
fits for DU

UO2+x
, however, extended to the hyperstoichiometric

regime:

DU
UO2

= 0.171 exp(−5.30 eV/kBT ) cm2/s, (16a)

DU
UO2.1

= 0.078 exp(−4.09 eV/kBT ) cm2/s. (16b)

These diffusion activation energies are in line with the range
of values derived from first principles in Ref. [57].

Let us exemplify their consequence on a macroscopic scale.
Consider a Gaussian solution to the one-dimensional diffusion
equation and find how much time is required to experience
a 0.1% change of uranium concentration 1 mm away from
the distribution center. A change of 0.1% in concentration is
a realistic target to account for hyperstoichiometric UO2+x

with x = 0.01. One millimeter is a reasonable length scale
for a small macroscopic UO2 sample. Even at an elevated
temperature around 2000 K, though measurable on the length
scale of diffusion experiments (∼0.5 μm) [58,59], the uranium
self-diffusion coefficient is still very low: DU

UO2.1
= 3.8 ×

1012 cm2/s. Hence, the concentration 1 mm away would
start to change with a 0.1% magnitude after a time scale of
about a year. At a lower temperature around 1000 K, the

023801-7



BRUNEVAL, FREYSS, AND CROCOMBETTE PHYSICAL REVIEW MATERIALS 2, 023801 (2018)

age of the earth [60] would be still too short to observe any
change! As a consequence, we conclude that the formation of
uranium vacancies is diffusion limited. It is impossible that
the uranium sublattice reaches thermodynamic equilibrium in
a macroscopic sample and it is not a contradiction that the
uranium vacancies have a very low formation energy in the
first-principles calculations, and yet they are not observed in
the actually synthesized samples.

The UO2 grown samples are then better accounted for
with a point defect model that does not consider uranium
vacancies. This is confirmed by the lattice variation observed in
Fig. 6.

V. CONCLUSION

In this article, on the one hand, we have developed a
new point defect model for uranium dioxide based on first-
principles GGA+U calculations. This point defect model
considers an unprecedented variety of species: it contains
electron and hole polarons, the intrinsic point defects, and
the stable oxygen interstitial clusters. For all these objects,
all their relevant charge states have been incorporated. This
point defect model has allowed us to evaluate the equi-
librium concentrations for both hypo- and hyperstoichio-
metric UO2.

On the other hand, we have evaluated the volumes of
relaxation of all the defects for all their significant charge
states. This task relies on the recent theoretical advances
reported in Ref. [20]. Weighting the volumes of relaxation
of the defects with their equilibrium concentrations yields the
lattice contraction or dilation as a function of the stoichiometry
x in UO2+x .

With the point defect models and the volume of relaxation,
we have been able to nicely reproduce the experimental
lattice-constant variation. In the hypostoichiometric regime,
the UO2 stoichiometry is governed by the oxygen vacancies,
which become charge neutral at room temperature. The oxygen
vacancies present a large and positive volume of relaxation,
which is quite unexpected.

In the hyperstoichiometric regime, the lattice variation is
clearly incompatible with the presence of uranium vacancies

as predicted by the complete point defect model, which
assumes thermodynamical equilibrium. Based on experimental
diffusion data, we argue that the transport of uranium cations
is extremely slow and, thus, that the concentration of uranium
vacancies in the actual samples is diffusion limited and cannot
reach the thermodynamic equilibrium on the experimental time
scale. When discarding VU from the point defect model, the
predicted lattice constant as a function of stoichiometry varies
in rather good agreement with experiment.

The machinery presented here is by no means limited to
uranium dioxide. It could be transposed to address the lattice
variation of other nonstoichiometric semiconducting crystals.
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APPENDIX: FORMATION ENERGIES AND VOLUMES OF
RELAXATION USED IN THE POINT DEFECT MODEL

In Table I, we provide the formation energies evaluated
according to Eq. (8) for an electron chemical potential μe set
at the valence-band maximum of bulk UO2, for an oxygen
chemical potential μO set at half the O2 molecule energy
(within the GGA-PBE in the triplet ground state), and the
uranium chemical potential μU imposed by UO2 and O2,
μU = E(UO2) − E(O2) (oxygen-rich conditions).

The volumes of relaxation are given for charge-neutral
groups using compensating delocalized holes as explained in
Sec. II. In practice, the volumes reported in Table I have been
obtained through

��(Xq) − q��(h+) = �

B

[
P A(Xq) − q

∂εA
VBM

∂�

]
, (A1)

where P A(Xq) is the pressure obtained at the end of a fixed
supercell calculation containing the defect Xq . The convention
dependence of P and of εVBM have been emphasized through
the use of superscript A.
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