
HAL Id: cea-02052632
https://cea.hal.science/cea-02052632

Submitted on 11 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Uranie platform: an open-source software for
optimisation, meta-modelling and uncertainty analysis
Jean-Baptiste Blanchard, Guillaume Damblin, Jean-Marc Martinez, Gilles

Arnaud, Fabrice Gaudier

To cite this version:
Jean-Baptiste Blanchard, Guillaume Damblin, Jean-Marc Martinez, Gilles Arnaud, Fabrice Gaudier.
The Uranie platform: an open-source software for optimisation, meta-modelling and uncertainty anal-
ysis. EPJ N - Nuclear Sciences & Technologies, 2019, 5, pp.4. �10.1051/epjn/2018050�. �cea-02052632�

https://cea.hal.science/cea-02052632
https://hal.archives-ouvertes.fr

EPJ Nuclear Sci. Technol. 5, 4 (2019)
© J.-B. Blanchard et al., published by EDP Sciences, 2019
https://doi.org/10.1051/epjn/2018050

Nuclear
Sciences
& Technologies

Available online at:
https://www.epj-n.org
REGULAR ARTICLE
The Uranie platform: an open-source software for optimisation,
meta-modelling and uncertainty analysis
Jean-Baptiste Blanchard*, Guillaume Damblin, Jean-Marc Martinez, Gilles Arnaud, and Fabrice Gaudier

Den-Service de thermo-hydraulique et de mécanique des fluides (STMF), CEA, Université Paris-Saclay,
91191 Gif-sur-Yvette, France
* e-mail: j

This is an O
Received: 26 June 2018 / Received in final form: 27 November 2018 / Accepted: 6 December 2018

Abstract. The high-performance computing resources and the constant improvement of both numerical
simulation accuracy and the experimental measurements with which they are confronted bring a new
compulsory step to strengthen the credence given to the simulation results: uncertainty quantification. This can
have different meanings, according to the requested goals (rank uncertainty sources, reduce them, estimate
precisely a critical threshold or an optimal working point), and it could request mathematical methods with
greater or lesser complexity. This paper introduces the Uranie platform, an open-source framework developed at
the Alternative Energies and Atomic Energy Commission (CEA), in the nuclear energy division, in order to deal
with uncertainty propagation, surrogate models, optimisation issues, code calibration, etc. This platform
benefits from both its dependencies and from personal developments, to offer an efficient data handling model, a
C++ and Python interface, advanced graphi graphical tools, several parallelisation solutions, etc. These
methods can then be applied to many kinds of code (considered as black boxes by Uranie) so to many fields of
physics as well. In this paper, the example of thermal exchange between a plate-sheet and a fluid is introduced to
show how Uranie can be used to perform a large range of analysis.
1 Introduction

Uncertainty quantification is the science of quantitative
characterisation and reduction of uncertainties in both
computational and real world applications. This procedure
usually requests a great number of code runs to get reliable
results, which has been a real drawback for a long time. In
the past few years, many interesting developments have
been brought to try to overcome this, these improvements
coming both from the methodological and computing side.
Among the interesting features often used to perform
uncertainty quantification, one can state, for instance,
sensitivity analysis (SA) to get a rough ranking of
uncertainty sources and surrogate model generation to
emulate the code and perform a complete analysis on it
(uncertainty propagation, optimisation, calibration, etc.).
Knowing this and with the increasing number of resources
available to assess complex computations (fluid evolution
with a fine mesh, for instance), physicists should know
whether or not it might be useful to increase the mesh
resolution. It could instead be more relevant to reduce a
ean-baptiste.blanchard@cea.fr

pen Access article distributed under the terms of the Creative Com
which permits unrestricted use, distribution, and reproduction
specific uncertainty source, or add new locations to be
included in a learning database for building a surrogate
model.

1.1 The Uranie platform

The Uranie platform has been developed in order to gather
the methodological developments coming both from the
academic and the industrial world and provides them to the
broadest audience possible. It is an open-source software
dedicated to perform studies such as uncertainty propaga-
tion, SA, surrogate model generation and calibration,
optimisation issues, etc. Given this wide range of
possibilities provided by the platform (in terms of
methodologies available), it can be compared to few other
software, being either commercial (COSSAN [1]) or free
(Dakota [2], Open-Turns [3], UQLab [4], etc.). Its evolution
has been driven keeping in mind few important aspects
such as:

–

m
in
Open-source: the platform can be used by anyone, and
every motivated person can investigate the code and
propose improvements or corrections.
–
 Accessibility: the platform is developed on Linux but a
windows-porting is performed. Also, even though it is
written in C++, it can be used either though a C++

interface or through Python one.
ons Attribution License (http://creativecommons.org/licenses/by/4.0),
any medium, provided the original work is properly cited.

mailto:jean-baptiste.blanchard@cea.fr
https://www.edpsciences.org
https://doi.org/10.1051/epjn/2018050
https://www.epj-n.org
http://creativecommons.org/licenses/by/4.0

DataServer

Optimizer

Modeler

ReOptimizer

UncertModeler

Sampler

Sensitivity

ReLauncher

Launcher

Reliability

FFTW

MPI

Opt++

NLopt

PCL

CUDA+boost

Fig. 1. Organisation of the Uranie-modules (green boxes) in
terms of inter-dependencies. The external dependencies are
shown as lightpurple boxes.

2 J.-B. Blanchard et al.: EPJ Nuclear Sci. Technol. 5, 4 (2019)
–

1

F

Modularity: the platform is organised in modules so that
one should only load requested modules and that analysis
can be organised as a compilation of fundamental bricks.
The modules are introduced in Figure 1 and discussed
later on.
–
 Genericity: the platform can work on an explicit
function but it can also handle a code considering it
as a black-box (as long as communications can be done
through file, for instance). This assures that Uranie’s
methods are non-intrusive and that it can be applied to
all science fields.
–
 Universality: the platform is able to export data but also
surrogatemodels in different formats (ascii, XML, JSON,
etc.) so that they can be used by Uranie’s user but also
other platform’s users (for cross-check and validation for
instance).

Developed by the nuclear energy division of the CEA1 and
written in C++, it is based on the ROOT [5] platform
(discussed along with its advantage in Sect. 3.1). It
consists in a set of so-called technical libraries, usually
referred as modules (represented as the green boxes in
Fig. 1), each performing a specific task. Some of them are
considered low-level, in the sense that they are the
foundation bricks upon which rely the rest of the modules,
which can be considered more methodologically oriented
(dedicated to a specific kind of analysis, see the discussion
in Sect. 2.3).

Uranie has the particularity of storing both samples
and results in a common object, namely the TDataServer,
which is the centre of all the statistical treatments made by
users. As stated above, the platform is able to launch
different kinds of evaluators: functions (Python and C++

ones) and all kinds of codes (as long as one can communicate
Alternative Energies and Atomic Energy Commission, Saclay,
rance. The nuclear energy division is usually referred as Den.
with them). On top of this, any combination of these
evaluators can be created to define an estimation chain: the
outputs of the ith evaluator being available as input
arguments to the rest of the chain uphill.
1.2 Paper layout

This paper will describe several typical analysis that can
be run using the Uranie platform. It is not only meant to be
fully exhaustive concerning the methodology behind the
introduced techniques, but also concerning the methods
and options implemented in Uranie. The next few sections
will complete the general description of our problem, from
the general methodology used (see Sect. 2), the way the
platform is constructed (see Sect. 3) to the use-case
presentation (see Sect. 4).

The first introduced concept will be the generation of
design-of-experiments and the way to take into account the
uncertainties introduced in various input variables and
see how to propagate them into uncertainty on the
quantity of interest (see Sect. 5). Surrogate models will
then be introduced (see Sect. 6) to show how to mimic a
code or function with a simpler process. Three different
techniques will be applied on a pre-produced design-of-
experiments, called the training database, describing the
lowest level of complexity of the use-case. The impact of
every uncertainty source will be ranked but also numeri-
cally estimated thanks to various sensitivity analyses in
Section 7. Finally, a calibration of some of the model
parameters is performed using different techniques in
Section 8, also questioning the fact that the thermal
exchange coefficient h can be considered constant.

From Sections 5 to 8, some of the methods under
consideration will contain a sub-part called To go further
to present briefly the important, yet not discussed, options
that can be offered to the user. In these sections, a final
sub-part called More methodology and ongoing inves-
tigations will introduce other already implemented
solutions as well as the improvement and new methods
currently under investigation. Finally, some important
left-over concepts are discussed along with the actual
perspectives in Section 9 before getting to a conclusion in
Section 10.

The code used to produce the figures of this paper can
be found in https://sourceforge.net/projects/uranie/
along with the sources of the platform.
2 The uncertainty general methodology

2.1 Notation used throughout this paper

The following notation conventions will be used when
dealing with generic methodology description.

–
 Bold letters represent vectors.

–
 Upper case letters represent random variable, so our
general problem might be written as Y= f(X, d), where
Y is the output variable under consideration, while X is
the vector of uncertain input variables (whose dimension
is set to nX) and d a set of fixed parameters (whose
dimension is set to nd).

https://sourceforge.net/projects/uranie/

Fig. 2. Diagram that represents in few boxes the different steps that can compose an uncertainty propagation or quantification
analysis [6]. (This figure is subject to copyright protection and is not covered by a Creative Commons license.)

J.-B. Blanchard et al.: EPJ Nuclear Sci. Technol. 5, 4 (2019) 3
–
 Lower case letters are realisation of a random variable:
y= f(x, d) is a given output value when considering a
realisation x of the input variable vectorX, and the set of
input parameters d.
–
 xi represents the ith coordinate (i=1, . . . , nX) of a
realisation x of the random vectorX (x=(x1, . . . , xnX)).
–
 When considering a set of realisations, one can write it as
follow: L ¼ fðxj; yjÞ; j ¼ 1; . . . ;nSg, where xj is the jth
realisation of X and nS is the size of this set.

2.2 Schematic description

Many issues related to uncertainty treatment of computer
code simulations share the same framework. It can be
sketched in a few key steps, gathered for illustration
purpose in Figure 2 [6] and described below.

The problem specification (A): This step is the starting
point of a great deal of study as it is when the number of
input variable is defined, along with the variable of interest
and the corresponding quantity of interest (a quantile, a
mean, a standard deviation, etc.). All these are linked
through a model that can be a function, a code or even a
surrogate model (which can use instead of the code).

The quantification of uncertainty source (B): In this
step, the statistical laws followed by the different input
variables are chosen along with their characteristics (mean,
standard deviation, etc.). The possible correlations be-
tween inputs can also be defined here.

The propagation of uncertainty sources (C): Given the
choice made in steps A and B, the uncertainties on the
input variables are propagated to get an estimation of
the resulting uncertainty on the output under study. This
can be performed, for instance, with analytic computation,
using Monte-Carlo approach through a design-of-
experiments, and so on.
The inverse quantification of sources (Bʹ): Given the
definition of the problem in step A and a provided set of
experiments, one can measure the mean value and/or the
uncertainty of the input variables, in order, for instance, to
spot which experiment should be run to constrain the
largest one, or to calibrate the model.

The SA (Cʹ): Given the choice made in steps A and B,
this analysis can be used to rank the input variables with
respect to the impact of their uncertainty on the
uncertainty of the variable of interest. Some methods
even provide a quantitative illustration of this impact, for
instance as a percentage of the output standard deviation.

This is a very broad description of the kind of analysis
usually performed when discussing uncertainty quantifica-
tion. All these steps can indeed be combined, or replaced,
once or in an iterative way, to get a more refined analysis.
2.3 Corresponding modules the Uranie platform

As discussed in the introduction, the Uranie platform is
constructed as a set of library, called modules, which are
often dedicated to specific tasks. The rest of this section
introduces the main ones, used throughout this paper
starting with the DataServer one, which is the spine of the
Uranie project, as shown in Figure 1.
2.3.1 DataServer module

The DataServer library is the core of the Uranie platform.
It contains all the necessary information about the variables
of a problem (such as the names, units, probability laws,
data files, and so on), the data itself (if information have
been brought or generated) and it allows for very basic
statistical operations (computing averages, standard devi-
ations, quantiles, etc.).

4 J.-B. Blanchard et al.: EPJ Nuclear Sci. Technol. 5, 4 (2019)
2.3.2 Sampler module

The Sampler library allows to create a large variety of
design-of-experiments depending on the problem to deal
with (uncertainty propagation, surrogate model construc-
tion, etc.). Some of these methods are mainly present to be
embedded by more complicated methods (such as designs
developed in the Fourier-conjugate space, discussed later
on in Sect. 7.3.1).

2.3.3 Modeler module

The Modeler library allows the construction of one or more
surrogate models. The idea is to provide a simpler, and
hence faster, function to emulate the specified output of a
complex model (which is generally costly in terms of
resources) for a given set of input factors. In this paper, the
following surrogate models will be introduced: chaos
polynomial expansion, artificial neural network, and
Gaussian process, also known as kriging.

2.3.4 Optimizer and Reoptimizer modules

The Optimizer and Reoptimizer libraries are dedicated to
optimisation and model calibration. Model calibration
basically consists in setting up the degree-of-freedom of a
model such that simulations are as close as possible to an
experimental database. The optimisation is a complex
procedure and several techniques are available to perform
single-criterion or multi-criteria analysis, with and without
constraint, using local or global approaches.

2.3.5 Sensitivity module

The Sensitivity library allows to perform SA of one or
several output responses of a code, with respect to the
chosen input factors. A glimpse of the very basic concepts
of SA is introduced along with the method used throughout
this paper: a screening one (the Morris method) and two
different estimations of the Sobol coefficients.
3 Architecture and dependencies

This section introduces the different dependencies of the
Uranie platform but also the way Uranie is developed,
tested, and documented.

3.1 The Uranie platform dependencies

The dependencies to external packages (shown as light
purple boxes in Fig. 1) are sorted in two categories: the
compulsory and optional ones. The latter will only
prevent, if not there, some methods from being used.
Uranie, on the other hand, cannot work without the
compulsory ones. Both types are listed and briefly
discussed below.

3.1.1 Compulsory dependencies

2 European Organisation for Nuclear Research, Geneva, Switzer-
–

land.
ROOT: Discussed thoroughly below, the version used
here is v6.14/00.
–
 Cmake: Free and open-source software for managing the
build process of compiled software, the version used here
is v3.7.1 [7].

The ROOT system is an open-source object oriented
framework for large scale data analysis. It started as a
private project in 1995 at CERN2 and grew to be the
officially supported LHC analysis toolkit. ROOT is written
in C++, and contains, among others, an efficient hierarchi-
cal object-oriented database, a C++ interpreter, advanced
statistical analysis (multi-dimensional histogramming,
fitting, minimisation, cluster finding algorithms), and
visualisation tools. The user interacts with ROOT via a
graphical user interface, the command line or batch scripts.
The object-oriented database design has been optimised for
parallel access (reading as well as writing) by multiple
processes.

Uranie is built as a layer on top of ROOT and, as a
result, it benefits from numerous features of ROOT, among
which:

–
 the C++ on-the-fly compiler (CLING);

–
 the Python automatic transcription;

–
 an access to SQL databases;

–
 an efficient and optimised data handling model;

–
 many advanced data visualisation features;

–
 and much more…

The new C++ inline-compiler provides a free speedup of
every macros that can be written line-by-line as any
Python one, and it comes along with a Jupyter kernel.
This means that Uranie can be used in both languages by
writing scripts, but also using the Jupyter notebook
framework [8], benefiting from all its advantages (fast
prototyping, rapid access to documentation, auto-comple-
tion, visual representation, etc.). Finally, as ROOT’s
community is very large (beyond 10 000 users), its
documentation is very complete and many examples are
provided either locally or in its very reactive web-forum.
3.1.2 Optional dependencies
–
 CPPUnit: Unit testing framework for C++ programming,
the version used here is v1.13.1 [9]. Allows to run unitary
test to check the quality of an installation.
–
 OPT++: Libraries that include nonlinear optimisation
algorithms written in C++, the version used here is v2.4
[10]. As this package is not maintained anymore, a
patched (and recommended) version is included in the
Uranie archive.
–
 FFTW: Library that computes the discrete Fourier
transform (DFT) in one or more dimensions, of arbitrary
input size, the version used here is v3.3.4 [11].
–
 NLopt: Library for nonlinear optimisation, the version
used here is v2.2.4 [12].
–
 PCL (Portable Coroutine Library): Implements the low
level functionality for coroutines, the version used here is
v2.2.4.

y

x0−e e

Ti = T (x,0)

T ∞ T ∞

Fig. 3. Simplified sketch of the thermal exchange problem.

J.-B. Blanchard et al.: EPJ Nuclear Sci. Technol. 5, 4 (2019) 5
–

3

MPI (Message Passing Interface): Standardised and
portable message-passing system needed to run parallel
computing, the version used here is v1.6.5 [13].
–
 CUDA (Compute Unified Device Architecture): Parallel
computing platform and programming model invented
by NVIDIA to harness the power of the graphics
processing unit (GPU), the version used here is v8.0 [14].
If requested, it should be usedwith the boost library, with a
version greater than v1.47.

3.2 Uranie documentation and installation

In order to check and guarantee the best portability
possible, theUranie (the versionunder discussionhere being
4.1.0) platform is tested daily on seven different Linux
distributions and also onWindows 10. Getting the source of
the Uranie platform can be done at the Sourceforge web
page: https://sourceforge.net/projects/uranie/.

Once the sources have been retrieved, it is highly
advised to follow the instruction listed in theREADME file
to perform the installation. In addition to the code itself,
this installation brings Uranie documentation, among
which:

–
 a methodological manual (both html and pdf format). It
gives a shallow introduction to the main methods and
algorithms, from a mathematical point of view, and
provides references for the interested reader, to get a
deeper insight on these problematics.
–
 a user manual (both html and pdf format). It gives
explanations on the implementations of methods along
with a large number of examples.
–
 a developer manual. This is a description of methods,
from the computing point of view, obtained thanks to the
Doxygen platform [15].
–
 more than 100 examples of self-working macros, to show
how to run different kind of analysis, both in C++ and
Python.

In the case of the Windows version, an installation can be
done from the previously introduced archive, but a
dedicated free standing archive is specifically produced
by the Uranie support team for every new release and is
provided on request.3
mailto: support-uranie@cea.fr
4 Use case

4.1 The thermal exchange model

In this part, the physical equations of the use-case used
throughout this paper are laid out in a simple way,
discussing first the physical equations. This model will be
more precisely detailed and also refined as required by the
studies performed in the following sections.
4.1.1 Introduction

The experimental setup is depicted in Figure 3 and is
composed of a planar sheet whose width is 2e (along the
x-direction) while its length is considered infinite (repre-
sented without boundaries along the y-direction). At t=0
this sheet, whose initial temperature is set to Ti, is exposed
to a warmer fluid (whose temperature is written as T∞).
The aim of this problem is to represent the temperature
profiles, depending on the time and the position within the
sheet, using different materials for the sheet, and to
investigate the impact of various uncertainty sources these
temperature profiles.

Studying the evolution of the temperature within the
sheet in fact consists in solving the heat equation which can
be written as follows, if we consider the mono-dimensional
problem as depicted in Figure 3:

∂T
∂t

¼ a
∂2T
∂x2

: ð1Þ

In this equation a [m2 s�1] is the thermal diffusivity which
is defined by

a ¼ l

rCr
ð2Þ

where l is the thermal conductivity [W m�1 K�1], Cr is
the massive thermal capacity [J kg�1 K�1], and r is
the density [kg m�3]. There are three conditions used to
resolve the heat equation, the first one being the initial
temperature

T ðx; t ¼ 0Þ ¼ Ti ð3Þ
the second one relies on the flow being null at the centre of
the sheet

∂T
∂x

����
x¼0

¼ 0 ð4Þ

while the last one relies on the thermal flow equilibrium at
the surface of the sheet

�l
∂T
∂x

����
x¼e

¼ hðT ðx ¼ e; tÞ � T∞Þ: ð5Þ

Usually, the thermal coupling between a fluid and a
solid structure is characterised by the thermal exchange
coefficient h [Wm�2 K�1]. This coefficient makes it possible
to dispense with a complete description of the fluid, when

https://sourceforge.net/projects/uranie/
mailto:support-uranie@cea.fr

Table 1. Summary of both PTFE and iron characteristics. The last column shows the relative uncertainty found in the
literature (or chosen in the case of the width) for the iron case. They will be applied as well on the PTFE.

PTFE Iron Uncertainty (%)

Thickness (m): e 10 � 10�3 20 � 10�3 0.5
Thermal conductivity (Wm�1 K�1): l 0.25 79.5 0.6
Massive thermal capacity (J kg�1 K�1): Cr 1300 444 1.2
Density (kgm�3): r 2200 7874 0.2
Thermal diffusivity (m2 s�1): a 8.7 � 10�8 2.27 � 10�5

Diffusion thermal time (s): tD 287 4.4
Biot number (for h = 100), [ø]: Bi 4 0.025

6 J.-B. Blanchard et al.: EPJ Nuclear Sci. Technol. 5, 4 (2019)
one is only interested in the thermal evolution of the
structure (and vice versa). Its value depends on the
dimension of the complete system, on thephysical properties
of both the fluid and the structure, on the liquid flow, on the
temperature difference, etc. The thermal exchange coeffi-
cient is characterised by the Nusselt number (Nu), from the
fluid point of view, and by the Biot number (Bi), from the
structurepointofview. Intherestof thispaper, the latterwill
be discussed and used thanks to the relation

Bi ¼ he

l
ð6Þ

4.1.2 Analytic model

In the specific case where the thermal exchange coefficient,
h and the fluid temperatureT∞ can be considered constant,
equation (1) has an analytic solution for all initial con-
ditions (all the more so for the one stated in Eq. (3)), when
it respects the flow conditions defined in equations (4) and
(5). The resulting analytic form is usually express in terms
of thermal gauge u, which is defined as

uðx; tÞ ¼ T ðx; tÞ � Ti

T∞ � Ti
: ð7Þ

The complete form is the following infinite series

uðxds; tdsÞ ¼ 2
X∞
n¼1

bncos ðvnxdsÞ exp
�
� 1

4
v2
ntds

�
ð8Þ

where the original parameters have been changed to
dimensionless ones

xds ¼ x=e ð9Þ

tds ¼ t

tD
¼ t � 4a

e2
¼ t � 4l

e2rCr
: ð10Þ

Given this, the elements in the series (Eq. (8)) can be
written

bn ¼ gnsinðvnÞ
vnðgn þBiÞ ð11Þ
where

gn ¼ v2
n þB2

i ð12Þ
and vn are solutions of the following equation

vntanðvnÞ ¼ Bi: ð13Þ
This model has been implemented in Uranie and tested

with two kinds of material to get an idea of the temperature
profile in the structure. To do so, the infinite series in
equation (8) has been truncated, keeping only the 41st
elements.
4.1.3 Looking at PTFE and iron

In this part, two very different kinds of plate-sheets are
compared: a composite one, made out of PTFE (whose best
known brand name is Teflon) and an iron one. The main
properties (of interest for our problem) of the sheets are
gathered in Table 1 side-by-side for both PTFE and iron.
The last column shows the relative uncertainty found
in the literature (or chosen in the case of the thickness) for
the iron case. They will be applied as well on the PTFE.
The last three lines are the properties that are computed
from the first four ones and once the thermal exchange
coefficient has been set to a constant value (here 100), as
stated in Section 4.1.2.

Given these properties (using the nominal values as
reference), several plots have been produced to characterise
the evolution of the temperature profiles in the sheet
matter and are gathered in Figure 4. Looking at these plots,
a major difference can be drawn between the two sheets:
in the PTFE case, the gauge is very different between two
positions at a same time and this difference also varies
through time (see Figs. 4a and 4c). For the iron, on the
other hand, the differences through time and space are very
small. This is even more important when considering that
the range over which the gauge is displayed is significantly
reduced. The iron thermal gauge is actually far from
reaching the value 1, even after 10 diffusion thermal time,
whereas this is the case for PTFE.

These differences could have been foreseen, looking
at the properties gathered in Table 1: the previously
discussed observations are the expected ones once one
considers the value of the Biot number. For a material

Fig. 4. Evolution of the thermal gauge as a function of either the position for different time steps (a,b), the time for different positions
(c,d), or depending on both parameters (e,f), for PTFE (left) and iron (right).

J.-B. Blanchard et al.: EPJ Nuclear Sci. Technol. 5, 4 (2019) 7
with a Biot number greater than 1, as the PTFE sheet, the
thermal conduction is small within the sheet, leading to
temperature gradient within the structure. On the other
hand, when the material has a Biot number significantly
smaller than 1, as the iron plate, the temperature is
expected to be quite similar at the surface and in the
centre of the sheet.
PTFE will be considered as the main use-case for the
rest of this paper. This means that, using the convention
defined Section 2.1 and unless specified otherwise (for
instance in Sect. 6), a realisation of the input variable
vector will be written as xj ¼ ðej; lj;Cj

r; r
jÞ and the set of

fixed parameter is simply d=(h) (see Sect. 4.1.2). The
corresponding realisation of our output variable (that

Table 2. List of continuous available statistical laws in
Uranie, along with their corresponding adjustable para-
meters.

Law Adjustable parameters

Uniform Min, max
Log-uniform Min, max
Triangular Min, max, mode
Log-triangular Min, max, mode
Normal (Gaussian) Mean, sigma
Log-normal Mean, sigma
Trapezium Min, max, low, up
Uniform by parts Min, max, median
Exponential Rate, min
Cauchy Scale, median
GumbelMax Mode, scale
Weibull Scale, shape, min
Beta alpha, beta, min, max
GenPareto Location, scale, shape
Gamma Shape, scale, location
Inverse gamma Shape, scale, location

8 J.-B. Blanchard et al.: EPJ Nuclear Sci. Technol. 5, 4 (2019)
depend on position and time) will be written as
yjðx; tÞ ¼ uðx; t; ej; lj;Cj

r; r
j;hÞ.

5 Uncertainty propagation

As already stated in Section 2.2, many analysis will start in
the same way, by defining the problem investigated in
terms of number of input variables and their character-
istics, setting their possible correlations, etc. From there,
unless one has an already computed set of experiments (as
it will the case in Sect. 6), it is common to generate a design-
of-experiments as being a set of input locations to be
assessed by the code/function and that should be the most
representative of the input phase space with respect to aim
of the study.

This section introduces the various mechanisms
available in Uranie for sampling design-of-experiments,
which could lead to the uncertainty propagation from the
input parameters to the quantity of interest, as shown in
Figure 2.
5.1 Random variable definition
5.1.1 Defining a variable

Uranie implements more than 15 parametric distributions
(continuous ones) to describe the behaviour of a given
random variable. The list of available continuous laws is
given in Table 2, along with their corresponding adjustable
parameters. For a complete description of these laws and a
set of variations of all these parameters, see [16]. The
classes, implementing these laws, give access to the main
mathematical properties (theoretical ones) and they have
been made to be an interface with the sampling methods
discussed in Section 5.2, to get a dedicated design-of-
experiments.

These classes also offer methods to compute the
probability density function (PDF), the cumulative
distribution function (CDF), and its inverse-CDF. Figure 5
shows example of PDF distributions in Figure 5a, CDF
distributions in Figure 5b, and inverse-CDF distribution in
Figure 5c, using a uniform (black), a normal (red), and a
gumbelmax (blue) law.

On top of these definitions, it is also possible to create a
new variable through a combination of already existing
ones, for instance with simple mathematical expression.
This can be done independently of the origin of the original
variables: either read from a set-of-experiments without
any knowledge of the underlying law, or generated from
well-defined stochastic law.

5.1.2 Correlating the laws

Once the laws have been defined, one can introduce
correlation between them. This, in Uranie, can be done
with different methods. Starting from the simplest one, one
can introduce a correlation coefficient between two
variables or providing the complete correlation matrix.

Instead of using correlation matrix to get intricate
variables, one can use methods relying on copula, in order
to describe the dependencies. The idea of a copula is to
define the interaction of variables using a parametric
function that can allow a broader range of entanglement
than only using a correlation matrix (various shapes can be
done). The copulas provided in the Uranie platform are
archimedian ones, with 4 pre-defined parametrisation: Ali–
Mikhail–Haq, Clayton, Frank, and Plackett. Bothmethods
will be illustrated in the next section.

5.2 Design-of-experiments definition
5.2.1 Stochastic methods

In Uranie, different kind of random-based algorithms can
be used to generate design-of-experiments. Here is a brief
introduction of the three main types which are illustrated
in Figure 6 where two independent uniformly distributed
variables are used. This kind of plot (called Tufte one) is an
example of Uranie-implemented visualisation tool. The
main pad, in the centre of the canvas, shows the
dependence of the two variables under consideration,
while the two other pads show projection along one of the
dimension, as a mono-dimensional histogram.

Simple random sampling (SRS): This method consists
in independently generating the samples for each parame-
ter following its own probability density function. An
example of this sampling when having two independent
uniformly distributed variables is shown in Figure 6b. The
random drawing is performed using a uniform law between
0 and 1 and getting the corresponding value by calling the
inverse CDF function corresponding to the law under
study.

Latin hypercube sampling (LHS): This method [17]
consists in partitioning the variation interval of each
variable to obtain equiprobable segments and then get, for

Fig. 5. Example of PDF (a), CDF (b), and inverse-CDF (c) for a uniform law (defined between�1 and 1, in black), a normal law (with
m=0 and s=0.5, in red) and a gumbelmax one (with m=�0.4 and b=0.4 in blue).

J.-B. Blanchard et al.: EPJ Nuclear Sci. Technol. 5, 4 (2019) 9
each segment, a representative value. An example of this
sampling when having two independent uniformly distrib-
uted variables is shown in Figure 6a. The random drawing
is performed using a uniform law between 0 and 1, split
into the requested number of points for the design-of-
experiments. Thanks to this, a grid is prepared, assuring
equi-probability in every axis-projection. Finally, a
random drawing is performed in every sub-range. The
obtained value is computed by means of the inverse CDF
function corresponding to the law under study.

Maximin LHS: Considering the definition of an LHS
sampling, it is clear that permuting a coordinate of two
different points creates a different design-of-experiments
that is still an LHS one. In Uranie, a new kind of LHS
sampling, called maximin LHS, has been recently intro-
ducedwith the purpose of maximising theminimal distance
calculated between every pair of two design locations [18].
The criterion under consideration is the mindist criterion:
let D={xj} be a design-of-experiments of size nS. It is
written as

min
i;j

kxi � xjk2 ð14Þ

where k ⋅ k 2 is the Euclidean norm. The designs which
maximise the mindist criterion are referred to as maximin
LHS. It has been observed that the best designs in terms of
maximising equation (14) can be constructed by minimis-
ing its Lp regularisation instead, fp, which can be written:

fp :¼
X
i<j

kxi � xjkp2
" #1

p

: ð15Þ

The permutations done to go from a first LHS design-of-
experiments to its maximin version are made through a
simulated annealing method. An example is displayed,
starting from the design-of-experiments in Figure 6a and
resulting in the one in Figure 6c. Both have uniform
projections along each axis but the locations are clearly
more space filling in Figure 6c.

The SRS method is a pure-random method which
populates the region following the inverse-CDF of the
considered probability law. In other words, if the objective
is to obtain quantiles for extreme probability values, the
size of the sample should be large for this method to be
used. However, one should keep in mind that it is rather
trivial to double the size of an existing SRS sampling, as no
extra caution has to be taken apart from the random seed.
On the other hand, the LHS method is built in a way that
ensures that the domain of variation of each variable is
totally covered in a homogeneous way. The drawback of
this construction is that it is absolutely not possible to
remove or add points to an LHS sampling without having
to regenerate it completely.

From a theoretical perspective, using a maximin LHS
to build a GP emulator can reduce the predictive
variance when the distribution of the GP is exactly
known. However, it is not often the case in real
applications where both the variance and the range
parameters of the GP are actually estimated from a set of
learning simulations run over the maximin LHS.
Unfortunately, the locations of maximin LHS are far
from each other, which is not a good feature to estimate
these parameters with precision. That is why maximin
LHS should be used with care. Relevant discussions
dealing with this issue can be found in [19,20].

Finally, as introduced in Section 5.1.2, an example of
correlation is provided in Figure 7, both using correlation
coefficient and copula. In the first case, instead of relying
on the “Bravais–Pearson” correlation coefficient definition,
that exclusively reflects both the degree and sign of
linearity between two variablesXi andXj, the method used
in Uranie [21] takes into account the correlation on ranks,
i.e. the “Spearman” definition:

rS Xi;Xj

� � ¼ r RXi
;RXj

� �

¼
Cov RXi

;RXj

� �
ffi
Var RXi

� �q
Var RXj

� � : ð16Þ

In this expression, rS is the Spearman coefficient, r is
the usual Bravais–Pearson definition but applied here onR
which is the rank of the information under consideration.
This method can be applied only if the correlation matrix
provided by the user is positive definite. Figure 7a shows an

Fig. 6. Drawing of the design-of-experiments for two uniformly distributed variable x1 and x2, with an LHS sampling (a), an SRS one
(b), and a maximin LHS one (c). Deterministic sampling are also shown with the Halton sequence (d), the Sobol one (e), and a Petras
sparse grid (f).

10 J.-B. Blanchard et al.: EPJ Nuclear Sci. Technol. 5, 4 (2019)

Fig. 7. Example of correlation introduced between two uniform
distributions, using either the Spearman coefficient (a) or the
Ali–Mikhail–Haq copula (b).

Table 3. Summary of the PTFE uncertain physical para-
meters and their corresponding uncertainty. The absolute
value of the uncertainty is computed from the values in
Table 1 (where units are also provided).

Value Uncertainty

Thickness: e 10 � 10�3 5 � 10�5

Thermal conductivity: l 0.25 1.5 � 10�3

Massive thermal capacity: Cr 1300 15.6
Density: r 2200 4.4

J.-B. Blanchard et al.: EPJ Nuclear Sci. Technol. 5, 4 (2019) 11
example of correlation (set to a value of 0.9) between two
uniform distributions.

The copula, introduced in Section 5.1.2, depends only
on the input variables and a parameter j. An example using
two uniform distributions is given in Figure 7b for the Ali–
Mikhail–Haq copula.

5.2.2 Quasi Monte-Carlo methods

The deterministic samplings can produce design-of-experi-
ments with specific properties that can be very useful in
cases such as:

–
 cover at best the space of the input variables;

–
 explore the extreme cases;

–
 study combined or nonlinearity effects.

There are two kinds of quasi Monte-Carlo sampling
methods implemented in Uranie: the regular ones and
the sparse grid ones. The former can be generated using two
different sequences:
1.
 Sequences of Halton [22]

2.
 Sequences of Sobol [23].

Figures 6d and 6e show the design-of-experiments obtained
when having two independent uniformly distributed
variables and can be compared with the stochastic ones
(from Fig. 6a to c) already discussed in Section 5.2.1. The
coverage is clearly more regular in the case of quasi Monte-
Carlo sequences, but these methods can suffer from weird
pattern appearance when nX is greater than 10. On the
other hand, the sparse grid sampling can be very useful for
integration purposes and can be used in some of the meta-
modelling definition, see, for instance, in Section 6.1.4. In
Uranie, the Petras algorithm [24] can be used to produce
these sparse grids (shown when the level is set to 8, in
Fig. 6f, that can be compared to the rest of the design-of-
experiments in Fig. 6).

In practice, the main steps used to get one of the
plot shown in Figure 6 are gathered in the following
block:
5.3 Focusing on the PTFE case

In this section, the basic building blocks introduced in
Sections 5.1 and 5.2 are put together to perform the
uncertainty propagation. The following steps are then:

1.
 create the input variables by specifying for each and

every one of them a probabilistic law and their
corresponding parameters. Here, all the input variables
have been modelled using normal distributions and their
nominal values and standard deviations have been
estimated and gathered in Table 3.

Fig. 8. Evolution of the thermal gauge (top pad) and its
standard deviation (bottom pad), as a function of the absolute
time, for four different values of depth within the sheet.

12 J.-B. Blanchard et al.: EPJ Nuclear Sci. Technol. 5, 4 (2019)
2.
 sample an LHS to be as much representative of the
full input phase space as possible. No correlation
between the parameters has been assumed. The
size of this design-of-experiments has been set to 100
points.
3.
 compute 11 absolute time steps for every locations and
for 4 different depths in the sheet. Every configuration
(a configuration being a precise value of the time and
depth) consists of 100 measurements where the mean
and standard deviation have been computed. These
values are then represented in Figure 8.

Given the distribution obtained in Figure 8, the user should
decide what would be the next step in his analysis. The
following list of actions gives an illustration of the various
possibilities (but it is not meant to be exhaustive, because
only provided for illustration purpose):

–
 Compare this to already existing measurements:

* check that the hypothesis are consistent with themodel
(in case of very surprising results for instance).

* move forward to a calibration or the determination
of the uncertainty of physical model’s parameters
(through the Circe [25] method for instance in Uranie).
Move to a SA on the code or on a surrogate model if this
–

one is too resource consuming (as discussed in Sect. 7) to
understand which input’s uncertainty impacts the most
the quantity of interest.

5.4 More methodology and ongoing investigations

This introduction to the design-of-experiments sampling is
very brief with respect to the underlying complexity and
possibility. It is indeed also possible to produce with
Uranie:

–
 design-of-experiments for integration in the conjugate
Fourier space (used for instance in Sect. 7.3);
–
 a representative set-of-points smaller than a given
database to keep the main behaviour without having
to run too many computations;
–
 adaptive design-of-experiments. Unlike the previously
discussed one, new locations can sequentially be added,
the value of these locations depending on previous
iterations (usually based on the use of surrogate models
for instance).

6 Surrogate model generation

In this part, different surrogate models will be introduced
to reproduce the behaviour of a given code or function. The
aim of this step is to obtain a simplified model able to
mimic, within a reasonable acceptance margin, the output
of both a training and a test database, along with an
important improvement in terms of time and memory
consumption [26].

The full analytic model, detailed in equation (8), plays
the role of the complexmodel that should be approximated.
To do so, a training database L will be produced (as
discussed in Sect. 2.1) for which nS is set to 40 points. In the
case of our specific thermal example, xj ¼ ðxj

ds; t
j
dsÞ and

yj ¼ uðxj
ds; t

j
dsBi ¼ 4Þ. The Biot number is set to 4 as only

the PTFE case will be considered (see Tab. 1).
Three different techniques will be applied: the polyno-

mial chaos expansion, the artificial neural network, and the
kriging approximation. Each and every method will have a
brief introduction before being applied to our use-case. The
interested readers are invited to go through the references
for a more meticulous description. In all cases, the
estimated values from the model will be called û and it is
possible to have a first estimation of the quality of the
model by looking at criteria such asR2 or mean square error
(MSE), defined on L as

MSE ¼
XnS
j¼1

uj � û̂ðxjÞ� �2
nS

; R2 ¼ 1�
PnS

j¼1 uj �̂ûðxjÞ� �2
PnS

j¼1 uj � u
� �2 ;

where u is the mean of the quantity of interest on L.
Another quality criteria, called predictivity coefficient

Q2, is estimated using a test basis, meaning another set of
realisations called hereafter P{ (xj, yj), j=1, . . . ,nS },
whose size is nP:

Q2 ¼ 1�
PnP

j¼1 ðuj �ûðxjÞÞ2PnP
j¼1 ðu � ujÞ2 ;xj∈P:

This solution will be applied to the three techniques below,
fixing nP to 2000.

Finally, intermediate methods can be used to estimate
the validity and the quality of the surrogate model, using
the training database in a specific way. Among these, one
can find the K-fold approach (which is used for instance in
the training of neural network, see Sect. 6.2) or the Leave-
One-Out approach (discussed for instance in Sect. 6.3).

The starting point will always be the loading of the
training database in a TDataServer object which is the
spine of Uranie.

J.-B. Blanchard et al.: EPJ Nuclear Sci. Technol. 5, 4 (2019) 13
Fig. 9. Distribution of the thermal gauge values estimated by the
surrogate model (û) as a function of the ones computed by the
complete model (u) in a test database, not used for the training
(with the estimated Q2).
6.1 Polynomial chaos expansion

6.1.1 Introduction

The concept of polynomial chaos development relies on the
homogeneous chaos theory introduced by Wiener [27] and
further developed by Cameron and Martin [28]. Using
polynomial chaos (later referred to as PC) in numerical
simulation has been brought back to the light by Ghanem
and Spanos [29]. The basic idea is that any square-
integrable function can be written as

fðxÞ ¼
X
a

faCaðxÞ ð17Þ

where {fa} are the PC coefficients, {Ca} is the orthogonal
polynomial-basis. The index over which the sum is done, a,
corresponds to a multi-index whose dimension is equal to
the dimension of the input vector x (i.e. here nX) and whose
L1 norm ðjaj1 ¼

PnX

i¼1 aiÞ is the degree of the resulting
polynomial.

From this development, it becomes clear that a
threshold must be chosen on the order of the polynomials
used, as the number of coefficient will growing quickly,
following this rule nC ¼ ðnXþpÞ!

nX !p!
, where p is the cut-off chosen

on the polynomial degree.

6.1.2 Implementation in Uranie

In Uranie, the implementation of the polynomial chaos
expansion method is done through the NISP library [30],
NISP standing for Non-Intrusive Spectral Projection.
Originally written to deal with normal laws, for which
the natural orthogonal basis is Hermite polynomials, this
decomposition can be applied to few other distributions,
using other polynomial orthogonal basis, such as Legendre
(for uniform and log-uniform laws), Laguerre (for expo-
nential law), Jacobi (for beta law), etc.

The PC coefficients are estimated through a regression
method, simply based on a least-squares approximation:
given the training database L, the vector of output y(nS) is
computed with the code. The regression are estimated,
given that one calls the correspondence matrix H(nS, nC)
and the coefficient-vector b, by a minimization of
ky�Hbk2, where

y ¼ ðy1y2 ⋯ ynS Þ; ð18Þ

H ¼

C1ðx1Þ ⋯ CnC ðx1Þ
C1ðx2Þ ⋯ CnC ðx2Þ
..
.

⋱ ..
.

C1ðxnS Þ ⋯ CnC ðxnS Þ

0
BBBBB@

1
CCCCCA; ð19Þ
b ¼

b1

b2

..

.

bnC

0
BBB@

1
CCCA: ð20Þ

This leads to write the general form of the solution as
b ¼ ðHTHÞ�1HTy which means that the estimation of the
points using the surrogate model are given through
ŷ ¼Hb ¼HðHTHÞ�1HTy ¼ Py, where P ¼ HðHTHÞ�1

HT . Here, the P matrix links directly the output variable
and itsestimationthroughthesurrogatemodel: this formula is
useful as it can be used to compute the Leave-One-Out
uncertainty.

6.1.3 Application to the use-case

Figure 9 represents the distribution of the thermal gauge
values (as defined in Eq. (7)) estimated by the surrogate
model (û) as a function of the ones computed by the
complete model (u) in a test database containing 2000
locations, not used for the training. A nice agreement is
found on the overall range.

In practice, the main steps used to get the PC expansion
are gathered in the following block:
6.1.4 To go further

There are several points not discussed in this section but
which can be of interest for users:

Fig. 10. Schematic description of a formal neuron [31]. (This
figure is subject to copyright protection and is not covered by a
Creative Common license.)

14 J.-B. Blanchard et al.: EPJ Nuclear Sci. Technol. 5, 4 (2019)
–
 Based on regression method explained in Section 6.1.2,
Uranie also provides amethod to estimate the best degree
possible, relying on the Leave-One-Out estimation,
limiting the range of tested degree, given the learning
database size (nS).
–
 PC coefficients can be estimated using an integration
methods (instead of the regression) which relies on
specific design-of-experiments (usually sparse-grids) that
are often smaller, in terms of computations, than the
regularly tensorised approaches [30].
–

Fig. 11. Example of transfer functions: the hyperbolic tangent
(top) and the logistical one (bottom).
When the PC development is done on the natural
polynomial basis of the stochastic laws (listed in Sect.
6.1.2), the PC coefficients can be combined and trans-
formed into Sobol coefficients (discussed in Sect. 7)
providing both a surrogate model and a SA.

6.2 Artificial neural networks

The artificial neural networks (ANN) in Uranie are
multilayer perceptron (MLP) with one or more hidden
layer (containing nH neurons) which are not limited to one
output variable.

6.2.1 Introduction

The concept of formal neuron has been proposed after
observing the way biological neurons are intrinsically
connected [31]. This model is a simplification of the various
range of functions dealt by a biological neuron, the formal
one (displayed in Fig. 10) being requested to satisfy only
the two following purposes:
–
 summing the weighted input values, leading to an output
value, called neuron’s activity, a ¼PnX

i¼i vixi, where
v1; . . .vnX

are the synaptic weights of the neuron.

–
 emitting a signal (whether the output level goes beyond a
chosen threshold or not) s= f(a+ u) where f and u are
respectively the transfer function and the bias of the
neuron.

One can introduce a shadow input defined as x0= 1 (or
�1), which is a way to consider the bias as another
synaptic weight v0 = u. The resulting emitted signal is
written as

s ¼ f
XnX
i¼0

vixi

 !
:

There are a large variety of transfer functions
possible, and an usual starting point is the sigmoid
family, defined with three real parameters, c, r, and k, as
fc;k;rðxÞ ¼ c ekx�1

ekxþ1
þ r. Setting these parameters to peculiar

values leads to known functions such as the hyperbolic
tangent and the logistic function, shown in Figure 11 and
defined as

f1;2;0ðxÞ ¼
e2x � 1

e2x þ 1
¼ ex � e�x

ex þ e�x
¼ tanhðxÞ

and

f1=2;1;1=2ðxÞ ¼
1

2

ex � 1

ex þ 1
þ 1

2
¼ 1

1þ e�x
:

The first artificial neural network conception has been
proposed and called the perceptron [32]. The architecture
of a neural network is the description of the organisation of
the formal neurons and the way they are connected
together. There are two main topologies:

–
 complete: all the neurons are connected to the others.

–
 by layer: neurons on a layer are connected to all those on
the previous and following layer.

Fig. 12. Schematic description of the working flow of an ANN as
used in Uranie. Fig. 13. Distribution of the thermal gauge values estimated by

the surrogate model (û) as a function of the ones computed by the
complete model (u) in a test database, not used for the training
(with the estimated Q2).

J.-B. Blanchard et al.: EPJ Nuclear Sci. Technol. 5, 4 (2019) 15
6.2.2 Implementation in Uranie

The general organisation of Uranie’s ANN is detailed in
three steps in the following part and displayed in Figure 12.
The first layer, where the vector of entries is stored, is called
the input layer. The last one, on the other hand, is called
the output layer while in between lies the single hidden
layer, composed of nH hidden neurons.

The first step is the definition of the problem: what are
the input variables under study, how many neurons will be
created in the hidden layer (or the layers if there is more
than one hidden layer), what is the chosen activation
function.

The second step is the training of the ANN. Using the
full database L, two mechanisms are run simultaneously:
– the learning itself. By varying all the synaptic weights
contained in the parameter J, the aim is to produce the
output set ŷ ¼ fJðxÞ, that would be as close as possible to
the output stored in L then keep the best configuration
(denoted as J*). The difference between the real output
and the estimated one is measured through a loss function
which could be, in the case of regression, a quadratic loss
function such as

Lðy; ŷÞ ¼ 1

2
ky� ŷk2:

From there, one can define the risk functionR(J) used to
transform the optimal parameters search into a mini-
misation problem. The empirical risk function can indeed
be written as

RðJÞ ¼ 1

nS

XnS
i¼1

L yi; fJðxiÞ
� �

:

–
 the regularisation. Since the ANN is trained only on the L
ensemble, the surrogate model could be trained too
specifically for this sub-part of the input space which
might not be representative of the overall input space. To
avoid this, the learning database is split into two sub-
parts: one for the training (see previous bullet), and one
to prevent the over-fitting to happen. For every newly
tested parameter set Ξ, the generalised error (computed
as the average error over the set of points not used in the
training procedure) is determined. While it is expected
that the risk function is becoming smaller when the
number of optimisation steps is getting higher, the
generalised error is also becoming smaller at first, but
then it should stabilise and even get worse. This
flattening or worsening is used to stop the optimisation.

This procedure is stochastic: the splitting of the L
ensemble is done using a random generator, so does the
initialisation of the synaptic weights for all the formal
neurons. It is important then to export the constructed
neural network as running twice the same methods will not
give the same performances. Both the splitting and
initialisation are reproduced many times, meaning that a
resulting neural network from Uranie is the best network
from all the tested models.

6.2.3 Application to the use-case

Figure 13 represents the distribution of the thermal gauge
values (as defined in Eq. (7)) estimated by the surrogate
model (ûÞ as a function of the ones computed by the
complete model (u) in a test database containing 2000
points, not used for the training. A nice agreement is found
on the overall range.

In practice, the main steps used to get the neural
network trained are gathered in the following block:

16 J.-B. Blanchard et al.: EPJ Nuclear Sci. Technol. 5, 4 (2019)
6.2.4 To go further

There are several points not discussed but which can be of
interest for users:

–
 The learning step can be run in parallel on GPUs which
can boost it considerably.
–
 It is possible to construct an ensemble of neural networks,
with one global ANN which embeds the results of all the
others.

6.3 Kriging

First developed for geostatistic needs, the kriging method,
named after D. Krige and also called Gaussian process
method (denotedGP hereafter) is another way to construct
a surrogate model (a large description of their usage can be
found in [33]). It recently became popular thanks to a series
of interesting features:

–
 it provides a prediction along with its uncertainty, which
can then be used to plan simulations and therefore
improve predictions of the surrogate model;
–
 it relies on relatively simple mathematical principle;

–
 some of its hyper-parameters can be estimated in a
Bayesian fashion to take into account a priori knowledge.

Kriging is a family of interpolation methods developed for
the mining industry [34]. It uses information about the
“spatial” correlation between observations to make pre-
dictions along with a confidence interval at new locations.
In order to produce the prediction model, the main task is
to produce a spatial correlation model. This is done by
choosing a correlation function and search for its optimal
set of parameters, based on a specific criterion.
–

6.3.1 Introduction

The metamodelling relies on the assumption that the
deterministic output y(x) can be written as a realisation
of a Gaussian process Y(x) that can be decomposed as
Y(x)=m(x)+Z(x) where m(x) is the deterministic part,
called hereafter deterministic trend, that describes the
expectation of the process and Z(x) is the stochastic part
that allows the interpolation. This method can also take
into account the uncertainty coming from the measure-
ments. In this case, the previously written Y(x) is referred
to asYReal(x) and the Gaussian process is then decomposed
into YObs(x)=m(x)+Z(x)+ e(x), where e(x) is the
uncertainty introduced by the measurement.

To construct the model from the training database L, a
parametric correlation function can be chosen along with a
deterministic trend (to bring more information on the
behaviour of the output expectation). These steps define
the list of hyper-parameters to be estimated (Ξ) by the
training procedure. The best estimated hyperparametres
(Ξ*) constitute then the kriging model that can then be
used to predict the value of new points.

To end this introduction, it might be useful to show a
very-general correlation function: the Matern function,
called hereafter Kn. It uses the Gamma function G and the
modified Bessel function of order n. This n parameter
describes the regularity (or smoothness) of the trajectory
(the larger, the smoother) which should be greater than 0.5.
In one dimension, with dx the distance, this function can be
written as

cðdxÞ ¼ 1

GðnÞ2n�1
2
ffiffiffi
n

p dx

l

� �n

Kn 2
ffiffiffi
n

p dx

l

� �
: ð21Þ

In this function, l is the correlation length parameter,
which has to be positive. The larger the l, the more the Y
correlated between two fixed locations x1 and x2 and hence,
the more the trajectories ofY vary slowly with respect to x.

6.3.2 Implementation in Uranie

The kriging approximation in Uranie is provided through
the gpLib library. Based on theGaussian process properties
of the kriging [35], this library can estimate the hyper-
parameters of the chosen correlation function in several
possible ways, then build the prediction model.

The first step is to construct the model from a training
database L, by choosing a parametric correlation function,
amongst the list below, for which l is the vector of
correlation lengths and n is the vector of regularity
parameters:

–
 Gauss: defined with one parameter per dimension, as

cðdxÞ ¼ exp �PnX

k¼1
dxk
lk

� �2
 �
.

–
 Isogauss: defined with one parameter only, as

cðdxÞ ¼ exp � jdxj2
l2

h i
.

–
 Exponential: definedwith two parameters per dimension,

as cðdxÞ ¼ exp �PnX

k¼1
jdxkj
lk

� �pkh i
, where p are the power

parameters. If p=2, the function is equivalent to the
Gaussian correlation function.
–
 MaternI: the most general form, defined with two
parameters per dimension, as cðdxÞ ¼ PnX

k¼1
1

GðnkÞ2nk�1

2
ffiffiffiffiffi
nk

p dxk

lk

� �nk
Knk 2

ffiffiffiffiffi
nk

p dxk
lk

� �
.

–
 MaternII: defined as maternI, with only one smoothness
(leading to nX+1 parameters). ffir

MaternIII: the distance d ¼ PnX

k¼1
dxk
lk

� �2
is put in

equation (21) instead of dx (leading to nX +1
parameters).
–
 Matern3/2: equivalent to maternIII, when n=3/2.

–
 Matern5/2: equivalent to maternIII, when n=5/2.

–
 Matern7/2: equivalent to maternIII, when n=7/2.

The next step is to find the optimal hyper-parameters
(Ξ*) of the correlation function and the deterministic trend
(if one is prescribed), which can be done in Uranie by
choosing:

–
 an optimisation criterion (in the example: the log-
likelihood function);
–
 the size of the design-of-experiments used to define the
best starting point for the optimisation;
–
 an optimisation algorithm configured with a maximum
number of runs.

Once the “best” starting point is found, the chosen
optimisation algorithm is used to seek for an optimal

Fig. 14. Distribution of the thermal gauge values, in a test
database, computed with the code (in blue) and estimated by a
kriging model (in red) whose training database is shown as black
points (a). Distribution of the thermal gauge values estimated by
the surrogate model (̂u) as a function of the ones computed by the
complete model (u) in a test database, not used for the training
(with the estimated Q2, in (b)).

J.-B. Blanchard et al.: EPJ Nuclear Sci. Technol. 5, 4 (2019) 17
solution. Depending on various conditions, convergence
can be difficult to achieve. Once done, the kriging surrogate
model can be applied to the testing database to get
predicted output values and their corresponding
uncertainties.

It is, however, possible, even before using a testing
database, to check the specified covariance function at hand,
using the Leave-One-Out technique (Loo). This method
consists in the prediction of a value for yi using the rest of the
knownvalues inthetraining site, i.e.y1, . . . ,yi�1,yi+1, . . . ,
ynS

for i=1, . . . , nS. From there, it is possible to use the
Leave-One-Out prediction vector yLooi

� �
i ¼ 1; : : : ; nS

and
the expectation y to calculate two criteria: the MSE and
the quality criteria Q2

Loo defined as

MSELoo ¼ 1

nS

XnS
i¼1

yi � yLooi

� �2
and

Q2
Loo ¼ 1�

XnS
i¼1

yi � yLooi

� �2
yi � yð Þ2 :

The first criterion should be close to 0 while, if the
covariance function is correctly specified, the second one
should be close to 1. Another possible test to check whether
the model seems reasonable consists in using the predictive
variance vector ðs2

yLooi

Þi¼1;...;nS
to look at the distribution of

the ratio ðyi � yLooi Þ2=s2
yLoo
i

for every point in the training

site. A good modelling should result in a standard normal
distribution.
6.3.3 Application to the use-case

The kriging technique has been applied twice to illustrate
its principle and the results are gathered in Figure 14. In the
first case, it is used on a mono-dimensional thermal gauge
evolution as a function of the dimensionless time, see
Figure 14a. In this figure, the black points represent the
trainingdatabasewhile theblueandredonesare respectively
the real output values and their estimated counterpart from
the kriging model using the testing database. A good
agreement is found and confirmed by the MSE and Q2

criteria. The red band represents the uncertainty on the
estimation.The kriging approximationhas alsobeen applied
toL, as for theANNandPC,andaniceagreement is foundon
the overall range, as shown in Figure 14b.

In practice, the main steps used to get the kriging model
gathered in the following block:
6.3.4 To go further

There are several points not discussed in this section but
which can be of interest for users:

–
 other optimisation criteria. Thanks to the linear nature of
the kriging model, the Leave-One-Out error has an
analytic formulation;
–
 on top of the deterministic trend, an a priori knowledge
on the mean and variance of the trend parameters can be
used to perform a Bayesian study;
–
 one can take into account measurement errors when
looking for the optimal hyper-parameters.

18 J.-B. Blanchard et al.: EPJ Nuclear Sci. Technol. 5, 4 (2019)
6.4 More methodology and ongoing investigations

On top of the already introduced surrogate models, Uranie
can provide few other solutions among which:

–
 the regression method;

–
 the k-nearest neighbour method;

–
 the kernel method.

There are several kind of evolution under investigation
for this module, based on the following observations:

–
 the prediction of a neural network does not provide an
uncertainty on the estimated parameters so far. It is
possible to use a specific kind Markov Chain (called
Hamiltonian or Hybrid Markov chain [36]) to determine
the synaptic weight, not as a single value, but as a
distribution, bringing a statistical interpretation of the
provided estimations.
–

Fig. 15. Schematic view of two trajectories drawn randomly in
the discretised hyper-volume (with p=6) for two different values
of the elementary variation (the optimal one in black and the
smallest one in pink).
the development of “deep learning” capacities. Several
possible developments are considered, such as the use of
recurrent neural network (RNN [37]) or deep belief
network (DBN [38]), but also the usage of dedicated
external deep learning package (TensorFlow [39], N2D2,
etc.).

7 Sensitivity analysis

In this section, we will briefly remind different ways to
measure the sensitivity of the output of a model to its
inputs starting from a screening method. A brief recap of
the concept of SA will be done, before investigating the
evolution of the Sobol indexes of our use-case through time,
for two dimensionless positions: xds=0.3 and xds=0.8. For
more complete methodological reviews, see [40–42] for
instance.

The starting point will always be the definition of the
input variables as Gaussian-modelled objects, stored in the
TDataServer.
7.1 Screening method

A screening method is a constrained version of dimensional
reduction where a subset of the original variables is
retained. There are more than one screening method
allowing to rank the impact of input variables with respect
to one another, either based on dependence measurements
[43], on sequential bifurcation [44], etc. The one presented
in this section is the Morris method.
7.1.1 Introduction to the Morris method

The Morris method [18] is an effective screening procedure
that extends more robustly the One-factor-At-a-Time
protocol (OAT). Instead of varying every input parameter
only once (leading then to a minimum of nX+1 assess-
ments of the code/function, with an OAT technique), the
Morris method repeats this OAT principle r times
(practically, it is between 5 and 10 times), each time
being called a trajectory or a replica. Every trajectory
begins from a randomly chosen starting point (in the input
parameters space). In order to do so, it computes
elementary effects (later on called EE), defined as

EEt
i ¼ EEiðxtÞ

¼ yðxt
1; . . . ;x

t
iþDt

i; . . . ;x
t
nX

Þ�yðxt
1; . . . ;x

t
i; . . . ;x

t
nX

Þ
Dt
i

where Dt is the chosen variation in the trajectory t. The
resulting cost (in terms of assessments) is then r(nX+1).
This method is schematised in Figure 15 for a problem with
three inputs. The hyper-volume is normalised and trans-
formed into a unit hyper-cube. The resulting volume is
discretised with the requested level (here, p=6) and two
trajectories are drawn for different values of the elementary
variation.

With the repetition of this procedure r times, it is
possible to compute basic statistics on the elementary
effects, for every input parameter, as

mi ¼
1

r

Xr
t¼1

EEt
i; m�

i ¼
1

r

Xr
t¼1

jEEt
ij ð22Þ

J.-B. Blanchard et al.: EPJ Nuclear Sci. Technol. 5, 4 (2019) 19
and

s2
i ¼

1

r� 1

Xr
t¼1

EEt
i � mi

� �2
: ð23Þ

The variables mi and si represent respectively the mean
and standard deviation of the elementary effects of the ith
input parameters. In the case where the model is not
monotonic some EEt

i may cancel each other out, resulting
in a low mi value even for an important factor. For that
reason, a revised version called m�

i has been created and
defined as the mean of the absolute values of the EEt

i [45].
The results are usually visualised in the (m�; s) plane.

Even though the numerical results are not easily
interpretable, their values can be used to rank the effect of
one or several inputs with respect to others, the point being
to spot a certain number of inputs that can safely be thrown
away, given the underlying uncertainty model assessed.

7.1.2 Implementation in Uranie

The Morris method has been implemented as explained
previously. The variation parameter D can be set by the
user, but the default (recommended, because it is said to be
optimal [46]) value is D ¼ p

2ðp�1Þ, where p is the level that
describes in how many intervals, the range should be split
(see Fig. 15 that illustrates this).
7.1.3 Application to the use-case

The method has been applied to the thermal exchange
model introduced in Section 4.1 which has been slightly
changed here for illustration purpose: a new input variable
has been added, with the explicit name “useless”. The idea is
to show that it is possible to spot an input whose impact on
the output can be considered so small that it can be
discarded through the rest of the analysis.

Figures 16a and 16c represent the (m*, s) plane
introduced in Section 7.1.1, respectively, for xds=0.3 and
xds=0.8, measured when the time is set to 572 sec (about 2
thermal diffusion time). In both cases, it is possible to split
the plot in three parts:
–
 factors that have negligible effect on the output: both m∗
and s are very small. The “useless” input enters this
category.
–
 factors that have linear effects, without interaction with
other inputs: m∗ is larger (all variations have an impact)
but s is small (the impact is the same independently of
the starting point). The massive thermal capacity is a
very good illustration of this (as the thermal conductivity
or the density at a smaller scale).
–
 factors that have nonlinear effects and/or interactions
with other inputs: both m∗ and s are large. The thickness
of the sheet is a perfect illustration of this.

Figures 16b and 16d, on the other hand, show the
evolution of both the m∗ and s as a function of the time for
the different inputs. Here also, the “useless” inputs can
clearly be spotted as negligible through time. Comparing
all the other curves, one has to decide the number of other
inputs that can be kept into consideration, given the time
and memory consumption of a single calculation, but also
the physics underlying this behaviour. For the thermal
exchange example, considering that the code is fast and the
number of inputs is small, the only variable dropped thanks
to this method is the “useless” one.

In practice, the main steps used to obtain these results
are gathered in the following block:
7.2 Introduction to Sobol indexes

If one can consider that the inputs are independent one to
another, it is possible to study how the output variance
changes when fixing Xi to a certain value x�

i .
This variance denoted by VarðY jXi ¼ x�

i Þ is called the
conditional variance and depends on the chosen value of
Xi. In order to study this dependence, one should
consider Var(Y|Xi), the conditional variance over all
possible x�

i value, which is a random variable and, as
such, it can have an expectation, E(Var(Y|Xi)). As the
theorem of the total variance states that Var(Y) =Var(E
(Y|Xi)) +E(Var(Y|Xi)) under the assumption of having
Xi and Y two jointly distributed random variables, it
becomes clear that the variance of the conditional
expectation can be a good estimator of the sensitivity
of the output to the specific input Xi. The more common
and practical normalised index in order to define this
sensitivity is given by

Si ¼ VarðEðY jXiÞÞ
VarðY Þ : ð24Þ

This normalised index is often called the first order
Sobol index and quantifies the part of variance of Y only
explained byXi, but does not take into account the amount
of variance explained by interactions between inputs. It
can actually be made with the crossed impact of this
particular input with any other variable or combination of
variables, leading to a set of 2nX� 1 indexes to compute. A
full estimation of all these coefficients is possible and would
lead to a perfect break down of the output variance. It has
been proposed by many authors in the literature and is
referred to with many names, such as functional decompo-
sition, ANOVA method (ANalysis Of VAriance), HDMR
(High-Dimensional Model Representation), Sobol’s decom-
position, Hoeffding’s decomposition... A much simpler
index, which takes into account the interaction of an input
Xiwith all other inputs, is called the total order Sobol index
or STi

([47] and can be computed as

STi
¼ 1� Si ¼ 1� VarðEðY jXiÞÞ

VarðY Þ ; ð25Þ

Fig. 16. Measurement of the Morris m* and s for xds=0.3 (top) and xds=0.8 (bottom). The (a) and (c) parts represent this
measurement for a single value of the time, while the (b) and (d) parts show the evolution of m* (top pad) and s (bottom pad) as a
function of the time.

20 J.-B. Blanchard et al.: EPJ Nuclear Sci. Technol. 5, 4 (2019)
where i represents the group of indexes that does not
contain the i index. These two indexes (the first order and
total order) are referred to as the Sobol coefficients. They
satisfy several properties and their values can be
interpreted in several ways:P

–
 Si� 1: should always be true.
–

P

Si ¼ 1 ¼PSTi
: the model is purely additive, or in

other words, there are no interaction between the inputs
and Si ¼ STi

∀i ¼ 1; . . . ;nX.
–
 1�PSi is an indicator of the presence of interactions.

–
 STi

� Si is a direct estimate of the interaction of the ith
input with all the other factors.
7.3 The fast method
7.3.1 Introduction

The Fourier amplitude sensitivity test, known as FAST
[48,49], provides an efficient way to estimate the first order
sensitivity indexes. Itsmainadvantage is that the evaluation
of sensitivity can be carried out independently for each
input factor, using just a dedicated set of runs, because all
the terms in a Fourier expansion are mutually orthogonal.
To do so, it transforms the nX-dimensional integration into
a single-dimension one, by using the transformation

Xi ¼ Giðsinðvi � sÞÞ;

Fig. 17. Measurement of the first order coefficients, with the
FAST method, for xds=0.3 (a) and xds=0.8 (b), as a function of
time.

J.-B. Blanchard et al.: EPJ Nuclear Sci. Technol. 5, 4 (2019) 21
where ideally, {vi} is a set of angular frequencies said to be
incommensurate (meaning that no frequency can be
obtained by linear combination of the other ones when
using integer coefficients) and Gi is a transformation
function chosen in order to ensure that the variable is
sampled accordingly with the PDF of Xi. The parametric
variable s evolves in [�∞ , ∞] and the vector (X1(s), … ,
XnX

(s)) traces out a curve thatfills the entirenX-dimensional
research volume. When bothGi and vi are properly chosen,
one can approximate the following relations:

EðY Þ ¼ 1

2p

Z p

�p

fðsÞds ð26Þ

VarðY Þ ¼ 1

2p

Z p

�p

f2ðsÞds� E2ðY Þ≈ 2
X∞
k¼1

A2
k þB2

k

� �
;

ð27Þ
where fðsÞ ¼ fðG1ðsinðv1sÞÞ; . . . ;GnX
ðsinðvnX

sÞÞ and Ak
and Bk are the Fourier coefficients:

Ak ¼ 1

2p

Z p

�p

fðsÞcosðksÞds ð28Þ

Bk ¼ 1

2p

Z p

�p

fðsÞsinðksÞds: ð29Þ

7.3.2 Implementation in Uranie

This method is implemented in Uranie. The first order
coefficient is obtained by estimating the variance for a
fundamental vi and its harmonics, which can be done by
using the second half of equation (27) running over p
instead of k and replacing the index by p ⋅vi. A cut-off M
has to be chosen for the sum and is called the interference
factor. Knowing that, the contribution to the output
variance of a certain frequency, i.e. the first order
sensitivity index, can be expressed from equations (28)
and (29) as

Si ¼
PM

p¼1 A2
p⋅vi þB2

p⋅vi

� �
PnX

i¼1

PM
pi¼1 A2

pivi
þB2

pivi

� � : ð30Þ

7.3.3 Application to the use-case

Once applied to the thermal exchange model, the results
are gathered in Figure 17 which shows the evolution of the
first order coefficients, as a function of the time, for the four
input variables of the model. The histograms are stacked,
which means that the contribution of every inputs can be
seen as the area represented by the corresponding colour,
while the upper limit of the histograms is the sum of all the
contributions. Figures 17a and 17b show the evolution as a
function of time respectively for xds=0.3 and xds=0.8. The
conclusions drawn here are in agreement with the ones from
the Morris method in Section 7.1.2:
–
 the impact of the density uncertainty is negligible;

–
 the two most important contributions are coming
from the massive thermal capacity and thickness
uncertainties;
–
 the relative importance of the impact of the massive
thermal capacity uncertaintywith respect to the thickness
one seems to increase once we are getting closer to the
centre of the sheet.

On the other hand, by investigating the results in Figure 16,
the only possible statement about the impact of the
thickness uncertainty was that this factor had either a
nonlinear effect and/or interaction with other inputs. Here,
as the sum of the first order coefficients is equal to 1 for both
dimensionless position, it seems reasonable to state that
the model has no strong interaction but that the impact of
the thickness uncertainty might be a nonlinear effect.

Fig. 18. Description of the method used to compute the Sobol coefficients from two matrices.

22 J.-B. Blanchard et al.: EPJ Nuclear Sci. Technol. 5, 4 (2019)
In practice, the main steps used to obtain these results
are gathered in the following block:
7.4 The Sobol method
7.4.1 Introduction

The Sobol method is a Monte-Carlo-based estimation that
provides the first and total order sensitivity indexes
(respectively introduced in Eqs. (24) and (25)) at the cost
of requiring a total of nS(nX+2) code assessments. Instead
of generating a single design-of-experiments, the idea is to
produce two of them, called M and N whom size is set to
nS× nX (both matrices are different and independent
random samplings). A schematic view of this method,
called the pick-and-freeze method, can be found in
Figure 18.

The first step is to compute the first order sensitivity
index, based on the measurement of the numerator,
Var(E(Y|Xi)), which can be written E(E(Y|Xi)

2)�E(E
(Y|Xi))

2. Since the second part of previous formula is
equivalent to the output expectation, the calculation of
the first order indexes requires estimates of E(E(Y|Xi)

2),
Var(Y), and E(Y). The matrix M is passed to the code
and nS assessments are done to get a vector of outputs
(shown as the first line of Fig. 18). The ith column of N is
then replaced by the M’s one (pick), creating a new Ni
matrix which is provided to the code, for an additional
cost of nS� nX assessments. This step is represented by
the second line and the right-part of the third line in
Figure 18 and the total cost for the first indexes
estimation is nS(nX+11) code assessments.
Finally, the total order indexes are computed starting
from the right-hand side of equation (25), which looks very
much alike equation (24) used to compute the first order
but instead of a condition on having i known (frozen), it is
the exact opposite: the condition is to freeze all the columns
but i. It is doable as this is the only difference between theN
and Ni matrices. The total order indexes are thus obtained
by passing the N matrix to the code, leading to nS
additional code assessments, as shown by the left part of
the third line in Figure 18.
7.4.2 Implementation in Uranie

Different implementations of the pick-and-freeze method
have been proposed throughout the literature. In Uranie, a
single dedicated method gathers the results from several of
them ([50,51], etc.). One of them in particular is providing
the coefficient values along with an estimation of their
95% confidence level [52]. By rewriting a Sobol coefficient
as a correlation coefficient, one can get, under certain
hypothesis a confidence level using the Fisher’s transfor-
mation rule that applies on empirical correlation coef-
ficients determination.

7.4.3 Application to the use-case

As for all the methods detailed in this paper, this one has
been applied to our thermal exchange model to compute
both the first and total order coefficients. The results are
gathered in Figure 19 which shows the evolution of both the
first and total order coefficients, as a function of time, for
the four input variables of the model, along with their 95%
confidence interval. In Figure 19a and b, the upper part
(the first order coefficients) and the lower one (the total
order coefficients) are displayed and a reasonable agree-
ment between both order can be found. It leads, once more,
to the conclusion that the model has no interaction, as
already stated in Section 7.3.2 (for both xds=0.3 and
xds=0.8).

Fig. 19. Evolution of both the first (top pad) and total order
(bottom pad) coefficients, as a function of time, with the Sobol
method, for xds=0.3 (a) and xds=0.8 (b), along with their 95%
confidence interval.

Fig. 20. Measurement of the first order coefficients, with the
Sobol method, for xds=0.3 (a) and xds=0.8 (b), as a function of
time.

J.-B. Blanchard et al.: EPJ Nuclear Sci. Technol. 5, 4 (2019) 23
In order to compare these results and the ones presented
in Figure 17, the first order coefficients estimated with the
Sobol method are represented as stacked histograms in
Figure 20. Here again, the contribution of every inputs can
be seen as the area represented by the corresponding
colour, while the upper limit of the histograms is the sum of
all the contributions. Figure 20a and b show the evolution
as a function of time respectively for xds=0.3 and xds=0.8.

In practice, the main steps used to obtain these results
are gathered in the following block:
7.5 More methodology and ongoing investigations

These methods to estimate either a ranking or more
quantitative indicators, such as the Sobol coefficients,
have dedicated options to change the way the computa-
tions are done. On top of this, there are other ways to get
sensitivity indexes already implemented in Uranie, such as

–
 the regression either on values, to get standard regression
coefficient (SRC) and partial correlation coefficient
(PCC), or on ranks, to get standard regression rank
coefficient (SRRC) and partial correlation rank coeffi-
cient (PRCC). All indexes can be estimated at once
thanks to the algorithm implemented in Uranie [53];

24 J.-B. Blanchard et al.: EPJ Nuclear Sci. Technol. 5, 4 (2019)
–
 another Fourier-based algorithm, relying on a different
paradigm, called random balance design (RBD) [54,55].

There are also several other ways to get Sobol indexes,
or other kind of sensitivity indexes currently under
investigation:

–
 Sobol indexesmeasured using replicated Latin hypercube
design-of-experiments. This provides an estimation
whose cost is independent of the input space size [56,57];
–
 Shapley indexes [58] that allow to cover correlated
variables;
–
 HSIC indexes [43] (for Hilbert–Schmidt independence
criterion) that allow to capture complex dependencies;
–
 PLI indexes [59] (for Perturbed–Law based Indices) that
quantify the impact of statistical law mis-knowledge on a
specific quantity of interest.
8 Optimisation

Each optimisation study has its own peculiarities and it
often requires to grope one’s way forward, before finding an
interesting solution. Most commonly, when dealing with
optimisation, there are:

–
 one or more objectives that one wants to minimize (or
maximise);
–
 decision variables that have a clear influence on the
objectives;
–
 some constraints either on the decision variables, on
combination of some of them, or on objectives (defining
the search domain).

For every problem, it is compulsory to choose an
optimization algorithm, which is a crucial part of the
optimization procedure. It is possible to divide these
algorithms into two different categories:

–
 local ones: they allow mono-criterion optimisation, with
or without constraints. They are generally computation-
ally efficient, but cannot be used in parallel and tend to be
trapped in local optima;
–
 global ones: they allow multi-objective optimisation,
with or without constraints. They are suitable for
problems with many local optima, but are computation-
ally expensive. However, they are easily parallelisable.

Uranie offers several possibilities, either by interfacing
external library, as already stated in Section 3.1, or through
the use of a dedicated package, called Vizir, developed at
CEA, whose aim is to offer evolutionary algorithms to solve
multi-objective problems.
8.1 Single-objective optimisation problem
8.1.1 Introduction

In the case of a single criterion problem, the optimization
procedure is equivalent to the minimisation of a function
j(x) which is called the cost function or the objective
function. The optimisation leads to the determination of a
minimum (that can be called optimum) that can either be
global (there is no x0 in the research volume such as
j(x0)< j(xmin) or local (same relation as before, but only in
the vicinity of xmin). In the case where a maximum should
be determined, all the techniques remained, but the
objective is changed (inverted) to get back to a minimum
search. In order to do so, Uranie offers many solutions
thanks to its external dependencies:

Minuit: it is ROOT’s package to perform single-
objective optimisation problem, without constraint. It
provides two algorithms:

–
 Simplex: it does not use the first derivatives, it is
insensitive to local optima, but without guarantee of
convergence.
–
 Migrad: a fairly sophisticated gradient descent one that is
able to escape from some local optima.

NLopt: it is a library for nonlinear optimisation
providing algorithms for single-objective optimization
problem, with or without constraint. The list of
algorithms implemented in Uranie can be found in [16]
along with a small description of their principle, taken
from NLopt [12].
8.1.2 Application to the use-case

In this section, a calibration of some of the parameters of
our thermal exchange model is performed. Indeed,
performing the calibration of a code comes down to finding
the optimal set of parameters of the code which minimises
the distance between reference values and computations
from the code. In Uranie, two distances are currently
implemented:

–
 the root mean square deviation;

–
 the weighted root mean square deviation.

The starting point is the following: one has done a set of
30 computations or measurements on a PTFE sheet
without keeping notes of the experimental conditions.
Given that the sheet is made out of PTFE, several intrinsic
properties are known, such as the thermal conductivity
(l), the massive thermal capacity (Cr), and the density
(r). On the other hand, there are two remaining unknown
parameters: the thickness of the sheet (e) and the thermal
exchange coefficient value (h).

The Simplex algorithm (from Minuit optimization
package) is used to minimise the root mean square
deviation between the reference thermal gauge values
and the ones from every optimisation steps once the
parameters under study have been changed. Since this is a
local algorithm, the starting point in the (e, h) plane has to
be chosen beforehand (it is represented with a redmarker in
Fig. 21b). A default step value is set for both parameters
and the tolerance threshold is chosen, along with a
maximum number of calculation, both being the optimisa-
tion stopping criteria. The optimisation is run leading to
the results presented in Figure 21.

Figure 21a shows the evolution of the objective function
with respect to the iteration of the optimisation algorithms.
This evolution can be investigated along with the
parameter variations shown in Figure 21b: from the chosen
starting point in red, every optimisation steps is repre-
sented with a black marker and linked to the rest of
the already done estimation through a black line. The
optimisation has stopped after 52 steps, heading to best

4 Because of the discretisation, the obtained group is usually an
approximation of the Pareto set.

Fig. 21. Evolution of the cost function as a function of the
considered optimisation step (a). Evolution of the parameters
from the initial point (red marker) to the optimal found one (blue
marker) in the objective (e,h)-plane (b).

J.-B. Blanchard et al.: EPJ Nuclear Sci. Technol. 5, 4 (2019) 25
estimated value for our parameters of ebest = 0.01 and
hbest = 100.076 (the blue point in Fig. 21b). These values
are in agreement with the reference ones which have
produced the original set of points (these values are shown
in Tab. 1).

8.1.3 Possible limitations

This solution is very efficient, mainly because the code to be
run is quick. In the case of a very time-memory and/or cpu
consuming code, this might have been difficult: as the
Simplex algorithm is sequential, no parallelism is possible.
There are more refined techniques to perform optimisation
with less code assessments (using surrogate model for
instance), as introduced in Section 8.3.
8.2 Multi-objectives optimisation
8.2.1 Introduction

The optimisation problem, in the multi-objective case, can
then be expressed as the minimisation of the function
Ξ(x)= (j1(x); j2(x);… ; jn(x)) where n is the number of
objectives imposed and Ξ is the complete cost function. In
some cases, the objectives can be combined, for instance
by doing a weighted (or not) sum, resulting in a new
objective over which the optimization is performed. This
is what is done in the example above where the difference
between the 30 output values in the reference set and
the newly computed ones, for a given set of parameters,
are combined into a single objective. Unlike this case, the
multi-objective hypothesis is that no overall optimum
can be determined when it is not be possible to quantify a
relation between the objectives. In this case, when two
solutions x1 and x2 are possible, x1 dominates x2 if it does
as good as the latter for all the objectives and strictly
better for at least one. The optimisation goal is then to get
a group of solutions that are said to be not dominated: no
solution out of this group dominates them, and in the
group either. There is no best point, unless an external
constraint or preference is imposed, usually with
hindsight.

The group of not-dominated solutions is called the
Pareto set and its representation in the objective space is
called the Pareto front.4 Figure 22a shows an academic
example of a pure analytic model with two objectives
depending only on one variable. In this simple case, the
Pareto set is shown in pink, as the area in between both
criterion’s minimum. Now looking in the objective space
in Figure 22b, all the solutions are shown in black and
the corresponding Pareto front is, once more, depicted
in pink.
8.2.2 The Vizir package

In Uranie multi-objectives optimisation issues are dealt
with the Vizir package, which gathers several solutions, all
developed at CEA, regarding the considered evolutionary
algorithms and the way to make them evolve (genetic or
swarm algorithm, single or island evolution, etc.). In any
case, the aim is to get a certain number N of solutions to
describe correctly both the Pareto set and front, and the
analysis can be described in few key steps (shown in Fig. 23)
and detailed below.
1.
 Initialisation: Create randomly, only using the research
space definition, a population of the requested size (N).
The first evaluation is performed for all candidates,
meaning that the criteria and constrains will be tested
and the results will be stored in a vector for all
candidates. This step is represented as a black box in
Figure 23, followed by the evaluation shown as the
orange box.

Fig. 22. Naive example of an imaginary optimisation case
relying on two objectives that only depend on a single input
variable.

26 J.-B. Blanchard et al.: EPJ Nuclear Sci. Technol. 5, 4 (2019)
2.
 Ranking: The rank affected to a candidate under study
corresponds to the number of other candidates that
dominate it. The best candidates have then a rank 0
(they are not-dominated), following by those with rank
1, rank 2, etc.
3.
 Convergence test: This test (green box in Fig. 23) can
reach three possible states:
– all the tested candidates are not-dominated. The
algorithm has converged and the loop is stopped;

– not all candidates are not-dominated but the maxi-
mum number of evaluation has been reached. The
algorithm has stopped without having converged. The
optimisation should be restarted (maybe changing
the configuration);

– not all candidates are not-dominated and the maxi-
mum number of evaluation is not reached.
Re-generation: In the latter case of the convergence test,
4.

a fraction of the lowest-ranked candidates (l) is kept
(purple box in Fig. 23) and used to produce a new
generation, the crossing procedure depending on the
chosen algorithm (blue box in Fig. 23). This resulting
population, made out of the selected (lN) and re-
generated candidates (1�lN), is re-evaluated.

These steps are more thoroughly explained in [16]. Even
though this library can be used on its own for multi-
objective optimisation, the example provided below will
embedded it in the context of efficient global optimisation
(EGO).

8.3 Efficient global optimisation

This section layouts another optimisation possibility to
look for a minimum using a global technique. The EGO [60]
is first introduced and then applied to a simple mono-
dimensional example that will fully illustrate the principle.
Finally, the calibration problem discussed in Section 8.1.2
will be investigated with this technique, to help appreciate
the pros and cons of this method.

8.3.1 Introduction

The EGO technique is the perfect illustration of method
combination, introduced in Section 2.2, where all the
building blocks are already implemented in Uranie. It
might be useful in the case where the code is high time/
cpu/memory consuming (so one wants to limit as much as
possible the computation) given that theremight be several
local minimum in which one does not want to fall
(preventing from using local optimization such as gradient
ones for instance). Instead of having to choose a starting
point (as done in Sect. 8.1.2), the idea is to provide a
training database which is supposed to be representative of
the problem, so whose size cannot be too small with respect
to the dimension of the ongoing analysis. Once done, a
kriging model is constructed.

Let fmin ¼ minðy1; . . . ; ynt
Þ be the current best function

value (nt being the size of the kriging training database). It is
true that before computing the output of the code for a given
input vectorx, we are uncertain about thevalue y(x).On the
other hand, y(x) is not completely unknown as we can
assimilate it to ŷðxÞ its realisation through the kriging
surrogate model, which is provided along with its standard
deviation s(x).Withthishypothesis, it ispossible tocompute
the probability of the real value to be below the actual
minimum fmin. Different distances below the line y= fmin are
associated with different density values. If we weight all
thesepossible improvementsbytheassociateddensityvalue,
we get what we call the “expected improvement” (EI). The
improvement for a given point x is I=max(fmin�Y, 0)
which is a random variable because Y is a random variable
that models our uncertainty about the code’s value at x. To
get the EI, from here, we simply take the expected value of
this random variable:

E½IðxÞ� ¼ E½maxðfmin � Y ; 0Þ�

¼ ðfmin �^̂y ÞF fmin �^̂y
s

� �
þsf

fmin �^̂y
s

� �
:

ð31Þ

Fig. 23. Schematic description of the needed steps of an optimisation procedure, when this one is performed with Vizir.

Fig. 24. Modelisation of the evolution of the thermal exchange
coefficient as a function of the time.

J.-B. Blanchard et al.: EPJ Nuclear Sci. Technol. 5, 4 (2019) 27
In these equations, we use the previously introduced
notations ŷ and s to denote the kriging predictor and its
standard error at x, knowing that Y follows a normal law
(Y ∼N ðŷ; s2ÞÞ. f(.) and F(.) are respectively the standard
normal density and its cumulative distribution. These two
contributions are bringing a trade-off between exploring
within a promising area and exploring where the
uncertainty of the surrogate model is large. The latter
contribution brings back the global aspect requested.

Once done, the next step consists in searching the
maximum of the EI which is a positive definite function.
This is done by using the genetic algorithm, as this search is
actually an optimisation: the aim is to minimise the
opposite EI criteria, providing the best candidate. The code
is then run on this specific location, which is then included
in the training database. The kriging model is re-build,
using the updated training database and a new location is
determined, following the exact same recipe.

8.3.2 Application to the thermal exchange model

The idea here is to apply the EGO method on a mono-
dimensional problem to get plots that would perfectly
illustrate the way this procedure works. This will be done
by working on a simple function which is an extension of
our thermal exchange model. In Section 4.1.2, one of the
first hypothesis to get an analytic solution was to fix the
thermal exchange coefficient h to a constant value. This is
known to be a rough approximation and a more rigorous
way to describe the evolution of this coefficient through
time is actually given by the following equation:

hðtÞ ¼ hmax � hmin

1þ bðt� tmaxÞ2
;b ¼ hmax � h0

t2maxðh0 � hminÞ
ð32Þ

whose behaviour is represented in Figure 24.
This equation depends on 4 parameters: the initial and

asymptotic value of the thermal exchange coefficient
(which can be measured respectively at the very beginning
and after a very long time on a given experiment). The
other parameters are the coordinate of the maximum,
whose measurement can be turned into an optimisation by
looking for the minimum of the opposite function �h(t).
This is exactly what has been done and this analysis can be
summarised in Figure 25 where, in the upper part of every
pad, the blue line is the real “unknown” function used, the
black points are the training database, the red line is the
approximation given by the kriging model along with its
uncertainty and the green point is the latest point included
in the training database from the previous iteration. The
bottom pad of every plot shows the inverted EI (�EI)
which is minimised using the evolutionary algorithm to
determine the next location to be included in the training
database.

Going through Figure 25, one can find back the
different steps described in Section 8.3.1.

Figure 25a: Starting point, the training database is
made out of 4 locations, and the uncertainty on the model
at several places are large. One of the location is close
to the real minimum and is the current fmin. From the
EI, the next location to be computed will be on the other
side of the real minimum (where the estimated values from
the krigingmodel are small and the uncertainties are large).

Figure 25b: One more location has been computed and
added to the training database (it is the current new fmin).
The updated kriging model has changed tremendously
and the lowest boundary is the next location to be
computed. This is the perfect illustration of the global
aspect of this method: a gradient would have been down to
check for a smaller minimum, disregarding the fact that
other part of the phase space might be really mis-modelled.

Figure 25c: One more location has been computed and
added to the training database upon which the kriging
model has been updated. The next location to be computed
(from the EI curve) is very close to the real minimum.

Figure 25d: Two more locations have been added to the
training database (among which a new fmin in agreement
with the real minimum). As themodel uncertainty band for
the locations around fmin is small, the next location to be
computed is the highest boundary, which, once more,
shows the global behaviour of this protocol.

Figure 25e: Once the highest boundary has been
included, few more locations around the real minimum
will be tested.

Fig. 25. Evolution of the kriging surrogate model in red, compared to the real (supposed unknown) function in blue, as a function of
the time for different number of locations in the training database. These ones are represented as black dots, expect for the latest-
introduced one, spotted in green. The bottom part of every plot represents the evolution of the EI.

28 J.-B. Blanchard et al.: EPJ Nuclear Sci. Technol. 5, 4 (2019)
Figure 25f: The method will start computing the closest
location to fmin with the largest uncertainty.

The steps described in Figure 25 converge quickly
toward an estimation of the parameters t�max ¼ 5 and
h�
max ¼ 42:9999 which are in very good agreement with the
injected values ðtRealmax ¼ 5;hReal
max ¼ 43Þ. The only sensitive

aspect is to be able to stop the method: one cannot use a
tolerance criteria as it could prevent the exploration needed
to conserve the global behaviour. The only remaining
option is to set a maximum number of location to be added,

Fig. 26. Training database (black points) and the 32 new points
computed using the EGO algorithm (purple, green and blue
points) for the calibration problem discussed in Section 8.1.2. The
best minimum found is represented as the red box.

J.-B. Blanchard et al.: EPJ Nuclear Sci. Technol. 5, 4 (2019) 29
or to put a threshold on the Leave-One-Out Q2 criterion of
the kriging model. This criterion is not really focusing on
the minimum description, but more on agreement of the
kriging model.

For illustration purpose only, the same method has
been applied to the calibration problem introduced in
Section 8.1.2. The idea is to compare the results given in
Figure 21 to the one presented in Figure 26. A training
database of 20 locations has been generated and the
algorithm has been run over 32 more computations in order
to get the same number of code assessments (52, as already
computed in Sect. 8.1.2).

Figure 26 shows the training database (black points)
and the32new locations computedusing theEGOalgorithm
(blue points) along with the best minimum found (red box).
Thenewly computed locations are split into three categories:
the first ten ones in purple, the following ten ones in green,
and the last twelve ones in blue.Thanks to this splitting, it is
possible to check that the optimisation exploration remains
global as there can be green and even blue new locations
computed far away from the global minimum. However,
most of the locations included by the EGOmethod are along
a clear line, showing the shape of the minimum valley in the
(e,h)-plane (that was also visible in Fig. 21b). Here is the
different level of agreement obtained on the parameters, as a
functionof thenumberof locationscomputed(so thenumber
of assessments):

–
 8 new locations: the accuracy obtained on e and h is
respectively ∼0.3% and ∼1.5%.
–
 21 new locations: the accuracy obtained on e and h is
respectively ∼0.01% and ∼0.3%.
–
 28 new locations: the accuracy obtained on e and h is
respectively ∼0.01% and ∼0.2%.

8.4 More methodology and ongoing investigations

In this section, we focus mainly on mono-objective issues,
only introducing some basic concepts of multiobjectives
analysis discussed through an overall evolutionary algo-
rithm description. This discussion is of course too shallow
to encapsulate the difficulties that can arise either from
having a large number of objectives or by requesting a small
population to describe the Pareto front. In these cases,
sorting the elements of a population just using the non-
dominance criteria might be irrelevant, as many solutions
will be noncomparable.

To cope for this, there are many proposed solutions,
usually referred to as many-objectives algorithms, already
implemented in Uranie. These algorithms use other
strategies (on top of the pareto-dominance criteria) to
sort out and rank solutions in a given population, such as:

–
 the knee-point driven evolutionary algorithm [61] which
compare the solution’s distance with respect to the
hyper-plan defined by extremum solution;
–
 the IBEA algorithm (Indicator Based Evolutionary
Algorithm [62]) which compute an indicator to compare
all the solutions in a given set;
–
 the MOEAD one (Multi Objective Evolutionary Algo-
rithm based on Decomposition [63]) which decompose
the domain first, in order to get a better coverage at first
of the ensemble of solutions.

Concerning the EGO estimation, different methods are
considered to distribute the computation and be able to
speed up the optimisation. The main difference between
the examined solutions relies on either a synchronous or
asynchronous approach.

9 Perspectives

In this section, important yet not discussed properties are
briefly discussed, from implementation aspects to meth-
odological ones. A nonexhaustive list of developments
considered by the team is also provided as perspective to
end this section.

9.1 Parallelism

The fact that the code under consideration might be very
consuming in terms of time, cpu, and/or memory has been
raised several times throughout this paper. This, along
with the fact that some of method might also need a great
deal of internal computations, even without the external
code, shows the clear necessity to have parallelism strategy
to benefit from the recent hardware paradigm: the number
of cpu is no-more a limiting criteria while on the other hand,
cpu frequency has reached a plateau and memory access
tend to become problematic ([64]).

In order to deal with this, the Uranie team is working on
two different aspects:

Code assessments distribution: this is the way an
external code is called. Several strategies are implemented
in Uranie:

–
 forking the code on a local node or on a list of resources
listed as available at the initialisation. This is duplicating
the code and the Launcher module (see Fig. 1) will
distribute the computations.
–
 shared-memory distribution. This technique is using the
pthread protocol to distribute the code assessments

5

30 J.-B. Blanchard et al.: EPJ Nuclear Sci. Technol. 5, 4 (2019)
through the Relauncher module (see Fig. 1). This, as all
memory-shared strategy, can suffer from race conditions
(which might only depend on whether the code used is
thread-safe).
–
 split-memory distribution. This technique relies on an
mpirun distribution of the computation through the
Relauncher module (see Fig. 1). This has the advantage
of not suffering from race conditions, but the variables
used can only be numerical-based (Uranie can also handle
string variables as input/output of an external code).

Internal calculation distribution: mainly available for the
k-nearest neighbour and ANN, the idea is to use the very
high number of GPU given in a reasonable graphical card,
to perform internal computation (in the already-
introduced case, the training of the synaptic weight for
instance). This is done using CUDA, provided by the
NVIDIA company ([14]).

The proper use of these solutions allows to benefit from
the structure of the new computers and the grid uponwhich
the Uranie platform can be installed.

9.2 Ongoing methodological implementations

This paper has focused on some classical aspects of the
uncertainty quantification, not discussing other important
methods in the general VVUQ5 approach. On top of the
already mentioned possible evolution (see Sects. 6.4, 7.5
and 8.4), there are many possible fields of interests toward
which the developing team is investigating.

Bayesian calibration or inference is often an important
step of code validation [65]. From an “a priori” law set on
parameters, one can use residuals between physical
quantities and simulations to get back the “a posteriori”
laws of uncertain inputs [66,67], through Markov Chain
usage, such as a Gibbs [68] or Metropolis-Hastings [69] one.

A reliability analysis aims at quantifying the safety of
the structure by estimating the Frontier between the safe
domain and the failure one. So far the Uranie platform is
providing the Form-Sorm methodology [70], whose aim is
to estimate the distance in the standard space between the
origin and the Most Probable Failure Point [71]. Various
improvements are currently under consideration, either
based on Markov Chain [72] or on adaptive construction,
for instance using kriging techniques [73].

The possibility of comparing empirical distributions to
reference ones is also provided by the Uranie platform, for
instance with different tests of goodness of fit, such as
Kolmogorov–Smirnov [74], Anderson–Darling [75],
Cramer–Von Mises [76], etc.

Finally, the use-case introduced in Section 4 has also
been chosen, as the output can be considered as functional.
The Uranie platform can deal with these functional
variables by discretising them and, for instance, study
the sensitivity of the output for every time steps (as done
here in Sect. 7). Other ways than the discretisation
are considered [77] and might be of interest quickly as the
Uranie platform is, for instance, part of a European project
called Escape2 on uncertainty methodology in weather
forecast prediction.
Validation, verification and uncertainty quantification.
This list of leads is not exhaustive and the priority with
which they might be considered can depend as well from
the needs and requests from our community.
10 Conclusion

Uranie is an open-source platformwhich has been developed
over the last 10 years to make available the state of the art
methodological developments on uncertainty quantification
from the academic world to our industrial problems, but it
canbe usedwhatever the scientificfield under consideration.
To do so, it is relying on a small number of external
dependencies, providing both a Python and C++ (compiled
on the fly) interface that can be accessed either as simple
scripts or through the Jupyter-notebook web application. It
provides way of launching various kinds of interactive
functions and codes, with a black-box approach (to
guarantee nonintrusive results), and even to link them in
a complete computational chain. As the computational
budget is often a limit when considering the UQ analysis,
different computation distribution techniques have been
implemented in Uranie and a large number of visualization
tools are also provided along the platform.

This paper introduces a pedagogical example, based
on thermal exchange between a plane sheet and a fluid at
constant temperature, which is used to address different
problematics linked to uncertainty quantification: un-
certainty propagation, SA, surrogate models construc-
tions, optimisation issues, etc. For every steps, several
methodologies have been introduced, theoretically first,
then in the way they are implemented and finally applied
to the use-case using the Uranie platform. Possible ways
of improvement (both technical and methodological) are
also introduced, as considered so far by the team, bearing
in mind that it is not exhaustive and might change in the
next few years, considering the needs and requests of
the community.

Author contribution statement

Jean-Baptiste Blanchard has performed this study and has
written the article. This analysis has been conducted with
the Uranie platform, developed by Fabrice Gaudier, Jean-
Marc Martinez, Gilles Arnaud and Guillaume Damblin.
They all have contributed to this work by providing
support and expert viewpoints.
References

1. C.G. Bucher, H.J. Pradlwarter, G.I. Schuëller, Computa-
tional Stochastic Structural Analysis (COSSAN) (Springer,
Berlin, Heidelberg, 1991), pp. 301–315

2. B.M. Adams, W. Bohnhoff, K. Dalbey, J. Eddy, M. Eldred,
D. Gay, K. Haskell, P.D. Hough, L.P. Swiler, Dakota, A
multilevel parallel object-oriented framework for design
optimization, parameter estimation, uncertainty quantifi-
cation, and sensitivity analysis: version 5.0 users manual,
Technical Report SAND2010-2183, Sandia National
Laboratories

J.-B. Blanchard et al.: EPJ Nuclear Sci. Technol. 5, 4 (2019) 31
3. M. Baudin, R. Lebrun, B. Iooss, A.-L. Popelin, Openturns:
An industrial software for uncertainty quantification in
simulation, in Handbook of Uncertainty Quantification
(Springer, Cham, 2017), pp. 2001–2038

4. S. Marelli, B. Sudret, UQLab: A framework for uncertainty
quantification in Matlab, in Proceedings, SIAM Conference
on Uncertainty Quantification, Savannah, GA, USA
(ETH-Zürich, 2014), pp. 2554–2563

5. R. Brun, F. Rademakers, Nucl. Instrum. Methods A389, 81
(1997)

6. E. de Rocquigny, N. Devictor, S. Tarantola, Uncertainty in
Industrial Practice: A Guide to Quantitative Uncertainty
Management (John Wiley & Sons, NJ, 2008)

7. K. Martin, B. Hoffman, IEEE Software 24, 46 (2007)
8. T. Kluyver, B. Ragan-Kelley, F. Pérez, B. Granger, M.

Bussonnier, J. Frederic, K. Kelley, J. Hamrick, J. Grout, S.
Corlay, P. Ivanov, D. Avila, S. Abdalla, C. Willing, Jupyter
notebooks � a publishing format for reproducible computa-
tional workflows, in Positioning and Power in Academic
Publishing: Players, Agents and Agendas, edited by F.
Loizides, B. Schmidt (IOS Press, Amsterdam, 2016),
pp. 87–90

9. M. Feathers, B. Lepilleur, Cppunit cookbook (2002), http://
cppunit.sourceforge.net/doc/1.8.0/cppunit_cookbook.html

10. J.C. Meza, R.A. Oliva, P.D. Hough, P.J. Williams, ACM
Trans. Math. Softw. 33, 12 (2007)

11. M. Frigo, S.G. Johnson, Proc. IEEE 93, 216 (2005) (special
issue on “Program Generation, Optimization, and Platform
Adaptation”)

12. S.G. Johnson, The nlopt nonlinear-optimization package,
2008, http://ab-initio.mit.edu/nlopt

13. E. Gabriel, G.E. Fagg, G. Bosilca, T. Angskun, J.J.
Dongarra, J.M. Squyres, V. Sahay, P. Kambadur, B. Barrett,
A. Lumsdaine, R.H. Castain, D.J. Daniel, R.L. Graham, T.S.
Woodall, Open MPI: Goals, concept, and design of a next
generation MPI implementation, in Proceedings, 11th
European PVM/MPI Users’ Group Meeting, Budapest,
Hungary, 2004, pp. 97–104

14. C. Nvidia, Nvidia Corporation 120, 8 (2011)
15. D. Van Heesch, Doxygen: Source code documentation

generator tool, 2008, http://www.doxygen.org
16. J.-B. Blanchard, Methodological reference guide for uranie

v3.11.0, Technical Report, CEA, DEN/DANS/DM2S/
STMF/LGLS/RT/17-006/A, updated version provided in
the source of the Uranie platform for every new release

17. M.D. McKay, R.J. Beckman, W.J. Conover, Technometrics
42, 55 (2000)

18. D. Morris, J. Mitchell, J. Stat. Plan. Inference 43, 381 (1995)
19. L. Pronzato, W. Muller, Stat. Comput. 22, 681 (2012)
20. G. Damblin, M. Couplet, B. Iooss, J. Simul. 7, 276 (2013)
21. R.L. Iman, W.J. Conover, Commun. Stat. Simul. Comput.

11, 311 (1982)
22. J.H. Halton, Commun. ACM 7, 701 (1964)
23. I. Sobol’, USSR Comput. Math. Math. Phys. 7, 86 (1967)
24. K. Petras, Numer. Algorithms 26, 93 (2001)
25. A. De Crécy, P. Bazin, Determination of the uncertainties

of the constitutive relationship of the CATHARE 2 code
(M&C, 2001)

26. K.-T. Fang, R. Li, A. Sudjianto, Design and Modeling for
Computer Experiments, Computer Science & Data Analysis
Series (Chapman & Hall/CRC, Boca Raton, 2005)

27. N. Wiener, Am. J. Math. 60, 897 (1938)
28. R.H. Cameron, W.T. Martin, Ann. Math. 48, 385 (1947)
29. R.G. Ghanem, P.D. Spanos, Stochastic Finite Elements: A

Spectral Approach (Springer-Verlag, New York, 1991)
30. M. Baudin, J.-M. Martinez, Polynômes de chaos sous Scilab

via la librairie NISP, in 42èmes Journées de Statistique,
Marseille, France, 2010, https://hal.inria.fr/inria-00494680

31. W. McCulloch, W. Pitts, Bull. Math. Biophys. 5, 115 (1943)
32. F. Rosenblatt, Principles of Neurodynamics: Perceptrons

and the Theory of Brain Mechanisms, Report (Cornell
Aeronautical Laboratory) (Spartan Books, Washington
DC, 1962)

33. C.E. Rasmussen, C.K. Williams, Gaussian Process for
Machine Learning (MIT Press, MA, 2006)

34. G. Matheron, La théorie des variables régionalisées, et ses
applications, Fasicule 5 in Les Cahiers du Centre de
Morphologie Mathématique de Fontainebleau

35. F. Bachoc, Estimation paramétrique de la fonction de
covariance dans lemodèle de krigeage par processus gaussiens:
application à la quantification des incertitues en simulation
numérique, Ph.D. thesis, Mathématiques appliquées, Paris 7,
thèse de doctorat dirigée par Garnier, Josselin, 2013

36. R.M. Neal et al., Mcmc using hamiltonian dynamics, in
Handbook of Markov Chain Monte Carlo 2 (11) (Chapman
and Hall/CRC)

37. T. Robinson, F. Fallside, Compu. Speech Lang. 5, 259 (1991)
38. G.E. Hinton, Prog. Brain Res. 165, 535 (2007)
39. M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C.

Citro, G.S. Corrado, A. Davis, J. Dean, M. Devin, S.
Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y.
Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D.
Mané, R.Monga, S. Moore, D.Murray, C. Olah,M. Schuster,
J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V.
Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P.
Warden, M. Wattenberg, M. Wicke, Y. Yu, X. Zheng,
TensorFlow: Large-scale machine learning on heterogeneous
systems, software, available from tensorflow.org (2015),
https://www.tensorflow.org/

40. B. Iooss, P. Lemaître, A review on global sensitivity analysis
methods, in Uncertainty Management in Simulation-Opti-
mization of Complex Systems: Algorithms and Applications,
edited by C. Meloni, G. Dellino (Springer, NY, 2015), pp.
101–122

41. R. Ghanem, D. Higdon, H. Owhadi (Eds.), Springer
Handbook on Uncertainty Quantification (Springer, Cham,
2017)

42. A. Saltelli, K. Chan, E. Scott, Sensitivity Analysis (Wiley,
New York, 2008)

43. S. Da Veiga, J. Stat. Comput. Simul. 85, 1283 (2015)
44. B. Bettonvil, J.P. Kleijnen, Eur. J. Oper. Res. 96, 180 (1997)
45. A. Saltelli, S. Tarantola, F. Campolongo, M. Ratto, T.

Andres, J. Cariboni, D. Gatelli, M. Saisana, Global
Sensitivity Analysis: The Primer (Wiley, New York,
2008)

46. A. Saltelli, S. Tarantola, F. Campolongo, M. Ratto,
Sensitivity Analysis in Practice: A Guide to Assessing
Scientific Models (Wiley, New York, 2004)

47. T. Homma, A. Saltelli, Reliab. Eng. Syst. Saf. 52, 1 (1996)
48. G. McRae, J. Tilden, J. Seinfeld, Comput. Chem. Eng. 6, 15

(1982)
49. A. Saltelli, R. Bolado, Comput. Stat. Data Anal. 26, 445

(1998)
50. A. Saltelli, Comput. Phys. Commun. 145, 280 (2002)

http://cppunit.sourceforge.net/doc/1.8.0/cppunit_cookbook.html
http://cppunit.sourceforge.net/doc/1.8.0/cppunit_cookbook.html
http://ab-initio.mit.edu/nlopt
http://www.doxygen.org
https://hal.inria.fr/inria-00494680
https://www.tensorflow.org/

32 J.-B. Blanchard et al.: EPJ Nuclear Sci. Technol. 5, 4 (2019)
51. H. Monod, C. Naud, D. Makowski, Uncertainty and
sensitivity analysis for crop models, in Working with
Dynamic Crop Models: Evaluation, Analysis, Parameteriza-
tion, edited by D. Wallach, D. Makowski, J.W. Jones
(Elsevier, Amsterdam, 2006)

52. J.-M. Martinez, Analyse de sensibilité globale par décompo-
sition de la variance, Technical Report, GdR Ondes et
Mascot Num, institut Henri Poincaré, 2011

53. R. Iman, M. Shortencarier, J. Johnson, FORTRAN 77
program and users guide for the calculation of partial
correlation and standardized regression coefficients, Sandia
National Laboratories, 1985

54. S. Tarantola, D. Gatelli, T. Mara, Reliab. Eng. Syst. Saf. 91,
717 (2006)

55. J.-Y. Tissot, C. Prieur, Reliab. Eng. Syst. Saf. 107, 205
(2012)

56. M.D. McKay, J.D. Morrison, S.C. Upton et al., Comput.
Phys. Commun. 117, 44 (1999)

57. T. AlexMara, O. Rakoto Joseph, J. Stat. Comput. Simul. 78,
167 (2008)

58. A.B. Owen, SIAM/ASA J. Uncertain. Quantif. 2, 245 (2014)
59. P. Lemaître, E. Sergienko, A. Arnaud, N. Bousquet, F.

Gamboa, B. Iooss, J. Stat. Comput. Simul. 85, 1200 (2015)
60. D.R. Jones, M. Schonlau, W.J. Welch, J. Glob. Optim. 13,

455 (1998)
61. X. Zhang, Y. Tian, Y. Jin, IEEE Trans. Evol. Comput. 19,

761 (2015)
62. E. Zitzler, S. Künzli, Indicator-based selection in multi-
objective search, in International Conference on Parallel
Problem Solving from Nature (Springer, Heidelberg, 2004),
pp. 832–842

63. Q. Zhang, H. Li, IEEE Trans. Evol. Comput. 11, 712
(2007)

64. U. Drepper, What Every Programmer Should Know About
Memory (2007)

65. M.J. Bayarri, J.O. Berger, R. Paulo, J. Sacks, J.A. Cafeo,
J. Cavendish, C.-H. Lin, J. Tu, Technometrics 49, 138
(2007)

66. M.C. Kennedy, A. O’Hagan, J. R. Stat. Soc. 63, 425 (2001)
67. F. Bachoc, G. Bois, J. Garnier, J.-M. Martinez, Nucl. Sci.

Eng. 176, 81 (2014)
68. G. Casella, E.I. George, Am. Stat. 46, 167 (1992)
69. S. Chib, E. Greenberg, Am. Stat. 49, 327 (1995)
70. Y.-G. Zhao, T. Ono, Struct. Saf. 21, 95 (1999)
71. A.M. Hasofer, N.C. Lind, J. Eng. Mech. Div. 100, 111 (1974)
72. S.-K. Au, J.L. Beck, Probab. Eng. Mech. 16, 263 (2001)
73. X. Huang, J. Chen, H. Zhu, Struct. Saf. 59, 86 (2016)
74. A.N. Kolmogorov, Giornale dell’Istituto Italiano degli

Attuari 4, 83 (1933)
75. T.W. Anderson, D.A. Darling, Ann. Math. Stat. 23, 193

(1952)
76. T.W. Anderson, Ann. Math. Stat. 33, 1148 (1962)
77. S. Nanty, C. Helbert, A. Marrel, N. Pérot, C. Prieur,

Comput. Stat. 32, 559 (2017)
Cite this article as: Jean-Baptiste Blanchard, Guillaume Damblin, Jean-Marc Martinez, Gilles Arnaud, Fabrice Gaudier, The
Uranie platform: an open-source software for optimisation, meta-modelling and uncertainty analysis, EPJ Nuclear Sci. Technol. 5,
4 (2019)

	The Uranie platform: an open-source software for optimisation, meta-modelling and uncertainty analysis
	1 Introduction
	1.1 The Uranie platform
	1.2 Paper layout

	2 The uncertainty general methodology
	2.1 Notation used throughout this paper
	2.2 Schematic description
	2.3 Corresponding modules the Uranie platform
	2.3.1 DataServer module
	2.3.2 Sampler module
	2.3.3 Modeler module
	2.3.4 Optimizer and Reoptimizer modules
	2.3.5 Sensitivity module

	3 Architecture and dependencies
	3.1 The Uranie platform dependencies
	3.1.1 Compulsory dependencies
	3.1.2 Optional dependencies

	3.2 Uranie documentation and installation

	4 Use case
	4.1 The thermal exchange model
	4.1.1 Introduction
	4.1.2 Analytic model
	4.1.3 Looking at PTFE and iron

	5 Uncertainty propagation
	5.1 Random variable definition
	5.1.1 Defining a variable
	5.1.2 Correlating the laws

	5.2 Design-of-experiments definition
	5.2.1 Stochastic methods
	5.2.2 Quasi Monte-Carlo methods

	5.3 Focusing on the PTFE case
	5.4 More methodology and ongoing investigations

	6 Surrogate model generation
	6.1 Polynomial chaos expansion
	6.1.1 Introduction
	6.1.2 Implementation in Uranie
	6.1.3 Application to the use-case
	6.1.4 To go further

	6.2 Artificial neural networks
	6.2.1 Introduction
	6.2.2 Implementation in Uranie
	6.2.3 Application to the use-case
	6.2.4 To go further

	6.3 Kriging
	6.3.1 Introduction
	6.3.2 Implementation in Uranie
	6.3.3 Application to the use-case
	6.3.4 To go further

	6.4 More methodology and ongoing investigations

	7 Sensitivity analysis
	7.1 Screening method
	7.1.1 Introduction to the Morris method
	7.1.2 Implementation in Uranie
	7.1.3 Application to the use-case

	7.2 Introduction to Sobol indexes
	7.3 The fast method
	7.3.1 Introduction
	7.3.2 Implementation in Uranie
	7.3.3 Application to the use-case

	7.4 The Sobol method
	7.4.1 Introduction
	7.4.2 Implementation in Uranie
	7.4.3 Application to the use-case

	7.5 More methodology and ongoing investigations

	8 Optimisation
	8.1 Single-objective optimisation problem
	8.1.1 Introduction
	8.1.2 Application to the use-case
	8.1.3 Possible limitations

	8.2 Multi-objectives optimisation
	8.2.1 Introduction
	8.2.2 The Vizir package

	8.3 Efficient global optimisation
	8.3.1 Introduction
	8.3.2 Application to the thermal exchange model

	8.4 More methodology and ongoing investigations

	9 Perspectives
	9.1 Parallelism
	9.2 Ongoing methodological implementations

	10 Conclusion
	Author contribution statement
	References

