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Cyclic electron flow (CEF) around PSI regulates acceptor-side limitations and has multiple
functions in the green alga, Chlamydomonas reinhardtii. Here we draw on recent and
historic literature and concentrate on its role in Photosystem I (PSI) photoprotection,
outlining causes and consequences of damage to PSI and CEF’s role as an avoidance
mechanism. We outline two functions of CEF in PSI photoprotection that are both
linked to luminal acidification: firstly, its action on Photosystem II with non-photochemical
quenching and photosynthetic control and secondly, its action in poising the stroma
to overcome acceptor-side limitation by rebalancing NADPH and ATP ratios for carbon
fixation.

Keywords: cyclic electron flow, PSI photoinhibition, non-photochemical quenching, oxygen photoreduction,
luminal acidification, photosynthetic control, ATP, malate valve

In the early years of photosynthesis research, a cyclic photophosphorylation was described that
required ferredoxin (Fd), did not evolve oxygen (O2) and resulted in the accumulation of ATP
(Arnon et al., 1954). From this observation, experiments performed in a variety of organisms from
cyanobacteria to higher plants using a combined pharmacological and in vitro approach created
a robust model for what is now referred to as cyclic electron flow (CEF; thoroughly reviewed,
in Bendall and Manasse, 1995). More recently, Arabidopsis thaliana lines altered in CEF have
been identified and have enriched the ways we have to study these pathways (Joet et al., 2001;
Munekage et al., 2002, 2004; DalCorso et al., 2008). Biochemical approaches have shown that
the Proton-Gradient Regulator5 (PGR5) and PGR5-Like1 (PGRL1) proteins form an interaction
that results in a ferredoxin-plastoquinone reductase (FQR) activity (Hertle et al., 2013). In the
unicellular, green alga, Chlamydomonas reinhardtii, this pathway and the function of these proteins
is conserved (Petroutsos et al., 2009; Tolleter et al., 2011; Johnson et al., 2014). In Chlamydomonas
a second type of CEF is also in operation where the mediator at the level of the PQ pool is a
type-2 NADPH dehydrogenase (Desplats et al., 2009), with the nda2 mutant shown to have a
phenotype in CEF (Jans et al., 2008). Here, we focus on the PGR5 pathway and work done on
the Chlamydomonas mutants pgr5 and pgrl1 mutants, that both demonstrate no PGR5/PGRL1-
dependent CEF (Alric, 2014). Our focus is on Chlamydomonas but due to the conservation
of this pathway we also make reference to work done in other photosynthetic organisms.
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Cyclic electron flow is a generator of proton motive force
that (i) can produce supplementary ATP to meet ATP:NADPH
requirements for the Calvin Benson Bassham (CBB) cycle and
the CO2 concentrating mechanism (CCM; reviewed by Alric,
2010), and (ii) triggers regulatory mechanisms, namely non-
photochemical quenching (NPQ) and cytochrome b6f complex
(cytb6f ) “photosynthetic control” (Joliot and Johnson, 2011).
Its rate is highest under conditions where the stromal poise is
reduced, thus PGR5-CEF has been considered as a regulator
of redox homeostasis for the photosynthetic chain (Nishikawa
et al., 2012). Among the phenotypes observed in CEF-altered
strains of both Arabidopsis and Chlamydomonas, Photosystem I
(PSI) photoinhibition arose in conditions of high light or limiting
CO2 (Munekage et al., 2002; Dang et al., 2014; Johnson et al.,
2014) and fluctuating light (Suorsa et al., 2012) leading to the
assignment of yet another role for PGR5-CEF.While Photosystem
II (PSII) photoinhibition is frequently observed and has complex
models that describe the mechanism (Murata et al., 2012), PSI
photoinhibition remains poorly understood. In this work, we
review the potential causes of photoinhibition that occur at the
acceptor-side of PSI and the processes triggered by CEF that
can contain it. For the sake of comprehensive reviewing of
mechanisms involved in PSI photoprotection, other connected
pathways are also introduced.

ACCEPTOR-SIDE LIMITATION IS THE
CAUSE OF PSI PHOTOINHIBITION

PSI photoinhibition was first reported in isolated chloroplasts
submitted to strong light (Jones and Kok, 1966). Satoh was able to
differentiate two types of damage that corresponded to damage
to the two photosystems using fragmented chloroplasts. Artificial
donors were used to measure the capacity of PSI to transfer
electrons to terminal acceptor, NADPH. These experiments
showed that the addition of the PSII inhibitor, DCMU specifically
but incompletely prevented photo-inactivation of PSI (Satoh,
1970a,b). Photo-inactivation of PSI was avoided by addition of
excess Fd showing that PSI photoinhibition is an acceptor-side
limited phenomenon. The observation that the same group of co-
factors that could enhance CEF (including Fd) were also involved
in the avoidance of photoinactivation of PSI led to the discussion
of CEF as a photoprotectant for PSI (Satoh, 1970c). Further
studies demonstrated the destruction of PSI-bound iron-sulfur
centers (FX, FA/B) by oxidative species primarily superoxide anion
radical (O•−

2 ) (Sonoike et al., 1995). Production of O•−
2 can occur

within: the iron-sulfur centers of PSI, reduced Fd and stromal
flavodehydrogenases (NADP+ ferredoxin dehydrogenase,
glutathione reductase and monohydrate ascorbate reductase)
in plant chloroplasts (discussed, in Asada, 2000). In permissive
conditions, radicals are enzymatically neutralized into water,
resulting in the net uptake of O2 reported by Mehler (1951),
establishing a pseudo-cyclic pathway for electrons known as the
water-water cycle. When radical production exceeds detoxifying
capacity, O•−

2 irreversibly damages PSI primary acceptors (FX,
FA/B) and prevents stable accumulation of P700+ in high light
(Figure 1). This is because of fast charge recombination at the
level of intermediary acceptors A0/1 (Setif and Brettel, 1990). The

resultant decrease in the quantity of oxidizable P700 is thus a
common measurement for probing the photoinhibition of PSI.

Interestingly, no singlet oxygen (1O2) is produced in
overexcited PSI (triplet excited state, 3P700) because P700 is
sterically screened from O2 (Setif et al., 1981). Hence, P700+ and
3P700 are most probably efficient quenchers of excess excitation
of plant PSI as observed for cyanobacterial PSI (Schlodder et al.,
2005; Shubin et al., 2008). Contrarily, 1O2 is the main photo-
damaging species produced in acceptor-side limited PSII (3P680)
(Durrant et al., 1990). It is remarkable that O2 can be sensitized
in PSII and not in PSI (Hideg and Vass, 1995), in other words that
1O2 production within PSII was not evolutionarily eliminated.
Over time this may be why a signaling role has developed for 1O2
(Telfer, 2014) resulting in some selectivity in the degradation of
PSII protein under photoinhibitory conditions. As compared to
the “monolithic” architecture of PSI, the modular architecture of
PSII allows for a unique degradation of damaged D1 and re-use
of other subunits (extensively reviewed, in Caffarri et al., 2014)
and may be another reason why PSII damage-and-repair cycle
has been a target of selective pressure. On the contrary, PSI has
no known molecular mechanism per se to set its turnover in tune
with light intensity. The protection of PSI from photoinhibition
would appear to require a set of distinctly different properties than
that of PSII (Allahverdiyeva et al., 2015) which includes buffering
acceptor side limitations in the stroma. Selective, irreversible
photoinhibition of PSI in Chlamydomonas is observed to occur
both in CEF-altered strains (Dang et al., 2014; Johnson et al., 2014;
Kukuczka et al., 2014; Bergner et al., 2015) and in strains with
severe acceptor side limitations such as those lacking RuBisCO
(Johnson et al., 2010). Crpgr5 and Crpgrl1 strains demonstrate
decreased amounts of oxidizable P700 and PSI protein measured
by western hybridization after exposition to high light (Johnson
et al., 2014; Kukuczka et al., 2014) and after transition from high
(2%) to atmospheric concentrations of CO2 (Dang et al., 2014). In
the following sections we present CEF’s role in triggering several
mechanisms avoiding long-lasting limitations at the acceptor-side
of PSI.

CEF TRIGGERS FAST QUENCHING,
PHOTOSYNTHETIC CONTROL AND PSII
PHOTOINHIBITION RESULTING IN PSI
PHOTOPROTECTION

As already suggested (Sonoike, 2011), non-photochemical
quenching (NPQ) of PSII avoids excessive electron flow to PSI
via linear electron flow (LEF) to prevent photoinhibition. CEF
limits electrons entering the thylakoid chain because it prompts
both excitation-dependent quenching (qE) and indirectly PSII
photoinhibition (qI), thus avoiding overflow to PSI. Acidification
of the lumen triggers qE (Briantais et al., 1979) and occurs during
CEF due to coupling of electron transfer and proton translocation
in the cytb6f. Since both LEF and CEF pass through cytb6f, the
exact contribution of CEF to the formation of a qE is hard to
determine but an altered ability to develop qE is observed in
Crpgr5 and Crpgrl1 strains (Tolleter et al., 2011; Dang et al., 2014;
Johnson et al., 2014; Kukuczka et al., 2014) concomitantly with
PSI photoinhibition (Dang et al., 2014; Johnson et al., 2014). This
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FIGURE 1 | Acceptor-side limitation and excess electron flow promotes CEF or in its absence leads to the irreversible damage of PSI centers. The
linear electron flow coming from PSII (gray dashed arrow) is the source of electrons for the PSI reaction center (P700+/P700) that transfers electrons from the
chlorophyll excited state (P700*) and subsequently delivers to downstream acceptors within PSI (FX, FA, FB iron-sulfur centers) then to stromal electron carriers
(ferredoxin, FNR, NADP+) (light gray arrow). When CO2 fixation decreases, acceptor-side limitation gradually leads to accumulation of NADPH and overreduction of
stromal and PSI electron carriers (light red arrow). In this case electrons are redirected to O2 either at the level of NADPH without the production of reactive oxygen
species (ROS; gray dashed arrow) or produce the very reactive superoxide anion radical (O•−

2 ) at the level of FX, FA, FB, Fd, and FNR with a rate exceeding the
detoxification process. Thus O•−

2 will irreversibly destroys the centers (red arrows) resulting in an inability to oxidize *P700 and on a longer time scale the degradation
of the entire PSI complex. Preventing this scenario, cyclic electron flow triggers downregulation of linear electron flow at the site of PSII and cytb6f by enhancing
proton accumulation in the lumen.

is also consistent both with the failure to acidify the lumen under
short saturating illumination in Atpgr5 plants (Suorsa et al., 2012)
and reduced growth of Crpgrl1 strains in fluctuating light (Dang
et al., 2014). A recent report challenging the effects of rapid
quenching of PSII in PSI photoprotection showed that an absence
of qE (in Atnpq4 mutants lacking the PsbS protein that induces
qE in higher plants, Li et al., 2000) does not have a dramatic effect
on P700 oxidation kinetics at any light regime as opposed to
Atpgr5 mutants where steady state oxidation of P700 is abolished
(Tikkanen et al., 2015). Partial compensatory mechanisms may,
however, act between CEF and qE as double mutant strain
Crpgrl1npq4, (lacking both CEF and the LHCSR3 protein that
acts as the activator for qE in Chlamydomonas, Peers et al., 2009),
are particularly susceptible to PSI photoinhibition in comparison
to the simple Crpgrl1 mutant (Kukuczka et al., 2014; Bergner
et al., 2015). This may coincide with a PSI-photoprotective
role recently proposed for LHCSR3 via its association with
the PSI antenna system under “state 2 conditions” (Allorent
et al., 2013; Bergner et al., 2015) but here LHCSR3-dependent
quenching of LHCIs and/or PSI-bound LHCIIs has not been
strictly established. The argument against would be that the
quenching of PSI antenna is irrelevant given the harmlessness of
*P700 and furthermore photo-oxidation events at PSI (measured
on isolated complexes in vitro) have been shown to take place

after photoinhibition is completed, chlorophyll oxidation being
preceded by irreversible carotenoid oxidation (Santabarbara,
2006). For now, the literature would suggest that qE is a first level
of photoprotection in photoinhibitory conditions and rapidly
protects not only PSII but also PSI by reducing electron flow
(Figure 2).

Aside from ATP production and qE, high pmf downregulates
LEF (Rumberg et al., 1968) at the site of PQH2 oxidation:
originally called “back pressure,” (Stiehl and Witt, 1969), and now
known as “photosynthetic control.” Comparison of the Cr∆rbcL
mutant against the doublemutantCr∆rbcL pgr5 orwildtype (WT)
clearly shows the effects of photosynthetic control imposed by
CEF witnessed by a strong increase in chlorophyll fluorescence
in the single mutant indicative of a gradually decreasing electron
flow, while the double mutant has fluorescence kinetics that
resemble the WT (Johnson et al., 2014). The mutant lacking
RuBisCO is an important genetic tool to observe the effects
of an absence of CO2 fixation on CEF because it is difficult
to modulate CO2 much below atmospheric concentrations in
Chlamydomonas due to the efficiency of the carbon concentrating
mechanism (CCM): thus this double mutant gives us a window
on the mechanisms of CEF as if the WT were under strong
CO2-limited conditions. As important as qE in fluctuating light,
photosynthetic control is established when a rapid response to
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FIGURE 2 | Cyclic electron flow promotes proton accumulation in the lumen and triggers regulatory mechanisms that can protect PSI from
photoinhibition. Under constraining conditions, electrons are recycled from the acceptor-side of PSI by PGR5-CEF that results in a rapid acidification of the lumen.
This promotes (i) the energy-dependent quenching of PSII antennas (qE) and (ii) photosynthetic control at the level of cytb6f that exerts reducing pressure on PSII to
provoke a controlled photoinhibition (qI). These mechanisms result in a decrease of electron flow to PSI. Regulation of ATPsynthase conductivity by protons,
electrochemical gradient partitioning and O2 photoreductive pathways produce ∆pH, producing ATP and contributing to the recycling of NADPH. Extra ATP
produced by CEF is used by the Calvin-Benson-Bassham (CBB) cycle to assimilate CO2 and contributes to the regeneration of NADP+. Decreasing linear electron
flow or increasing the sinks downstream of PSI avoids the over-reduction of ferredoxin (Fd) and PSI centers.

severe acceptor side limiting conditions is required to buffer
a sudden burst of electron flow toward PSI (Suorsa et al.,
2012). Moreover, while qE is not constitutive but inducible in
Chlamydomonas, on the contrary to plants (Peers et al., 2009),
photosynthetic control is likely to be crucial in the very first hours
of exposition to drastic conditions. As a secondary consequence
of photosynthetic control, reducing pressure increases on the
QB site of PSII so that PSII centers remain in a closed state
longer. Overexcited chlorophyll (3P680) activates O2 into 1O2
triggering photoinhibition of PSII (reviewed, in Sonoike, 2011;
Murata et al., 2012). Highlighting the key role of pmf in control
of linear electron transfer, PSI was shown more susceptible to
photoinhibition than PSII in nigericin-infiltrated leaves where
control at the level of cytb6f could not develop (Joliot and Johnson,
2011). Moreover, photoinhibition of PSI in Atpgr5 could be
avoided by modulating PSII turnover with the addition of the
protein translation inhibitor lincomycin (Tikkanen et al., 2014).
Thus, PSII photoinhibition mediated by photosynthetic control is
a secondary level of photoprotection in drastic photoinhibitory
conditions that exceed qE dissipation capacity: it indirectly but
effectively acts as a shunt to avoid sustained PSI acceptor-side
limitations (Figure 2).

In Chlamydomonas, the pgr5 mutation combined with an
absence of chloroplast ATPsynthase results in a less photosensitive
phenotype than the ATPase mutant alone, where light sensitivity
has been attributed to luminal over-acidification (Johnson et al.,
2014). This observation shows that photosynthetic control relying

on CEF actively contributes to decreasing the luminal pH and
supports previous work (Rott et al., 2011). In higher plants,
triggering of low luminal pHhas also been correlatedwith changes
in conductivity of the ATPsynthase to protons (Kanazawa and
Kramer, 2002) and also to partitioning of the proton motive
force between its osmotic (or concentration gradient, ∆pH) and
electrical (∆Ψ) component (Avenson et al., 2005). ATPsynthase
conductivity to protons is increased in Atpgr5 (Avenson et al.,
2005; Wang et al., 2015) with similar observations seen in
knocked-down PGR5 rice lines (Nishikawa et al., 2012). This may
be ruled by the concentration of substrate for ATP production,
i.e., ADP and phosphate (Pi): in spinach thylakoids, artificially
decreasing Pi levels resulted in lower ATPase conductivity and
a lower luminal pH, thus promoting qE (Takizawa et al., 2008).
These observations show the metabolic interconnections between
ATP, CEF and ATPsynthase. As already suggested (Shikanai,
2014), further studies should be done to explain the acceptor-
side limitation occurring in strains affected in PGR5-CEF in the
light of the scenario proposed by Kramer and coworkers for qE
regulation.

O2 REDUCTION WORKS WITH CEF IN
DISSIPATING EXCESSIVE ELECTRON
FLOW

A number of recent observations have shown the direct
interaction of CEF with chloroplast metabolism because CEF
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regulates acceptor-side limitation in the absence of reactions for
consumption of NADPH. Rubisco-less mutants but also CBB
cycle mutants and those affected in starch metabolism show
a strong increase in CEF or in CEF-dependent photosynthetic
control that results in a repressed rate of LEF (Livingston et al.,
2010; Johnson and Alric, 2012; Johnson et al., 2014; Krishnan
et al., 2015). When the CBB cycle is an insufficient sink for
reducing power, O2 photoreduction pathways may work in
conjunction with CEF to protect PSI. On the other hand, under
non-acceptor side limited conditions (steady state high light
and/or high CO2) an absence of CEF in Crpgrl1 did not result
in photoinhibition to PSI and this capacity to acclimate was
shown to be due to a sustained dependence onO2 photoreduction
pathways (Dang et al., 2014). While photorespiration is a
minimal process in green algae due to the CCM, other important
sinks exist for reducing equivalents downstream of PSI that
terminate on O2. These include: (i) export of reducing power
to the respiratory chain to stimulate oxidative phosphorylation
in the mitochondria, (ii) ROS-producing (“Mehler”) reactions
with a concomitant increase in detoxifying enzymes and (iii)
ROS-independent (“Mehler-like”) NADPH:O2 oxidoreduction
probably by flavodiiron proteins (FLV; Peltier et al., 2010).
Mechanisms (ii) and (iii) dually generate proton gradient and
thus ATP (Forti and Elli, 1995, 1996) and regenerate NADP+

thus avoiding PSI acceptor-side limitations, and over-expression
of FLV proteins 1 and 3 in cyanobacteria have been observed to
stabilize PSI under fluctuating light (Allahverdiyeva et al., 2013).
Mechanism (i) mitochondrial cooperation, also generates ATP
but the ATP is probably not reshuttled back into the chloroplast,
its major role would be thus to regenerate oxidized NADP+

(Figure 2).
Radmer and Kok (1976) first observed the potential for O2 to

replace CO2 fixation during a light-to-dark transition or in the
presence of CBB cycle inhibitors. The role of such an acceptor side
activity within the chloroplast such as Mehler (O2 reduction) or
hydrogenase (H+ reduction) would enable Chlamydomonas cells
to reoxidise the electron transport chain in the light, convincingly
shown after anaerobic incubation (Forti et al., 2005; Ghysels
et al., 2013). In the Crpgr5 ∆rbcL, lacking both CO2 fixation
and CEF, O2 photoreduction rates can completely compensate for
CO2 fixation resulting in WT O2 evolution levels (Johnson et al.,
2014). Similarly, in a detached leaf assay addition of antimycin A
provokes both production of H2O2 and a strong sustained malate

dehydrogenase activity resulting in high rates of mitochondrial
O2 uptake (Fridlyand et al., 1998). While very removed from
the steady-state metabolic flow observed in WT strains under
standard conditions, these experimental observations provide
us with the maximal rates for the different pathways, and
suggest possible compensatory reactions. It would appear that
CEF down regulates ATP-independent O2 reducing pathways
and up regulates ATP-dependent CO2 reduction by CBB cycle.
Therefore, CEF can be seen as limiting ROS production under
acceptor side limitations. Furthermore, it has been suggested
that an interplay between CEF and O2 photoreduction acts
as a buffer to poise electron flow toward carbon fixation
(Backhausen et al., 2000). The action of H2O2 as an activator
of NDH CEF in Arabidopsis provides further evidence that
O2 photoreduction pathways and CEF are working in tandem
(Strand et al., 2015). The model that emerges is that regulation
of temporary excesses of reductant at the acceptor side of PSI
is controlled by an interplay between CEF, the Mehler reaction,
FLV proteins and the malate valve with another level of control
exerted by redox regulators such as thioredoxins (Scheibe and
Dietz, 2012). These pathways likely form a set of communicating
reactions that can rebalance NADPH/NADP+ ratios and avoid
PSI photoinhibition.

CONCLUDING REMARKS

While the study of mutants reveals to us the limitations of
a system, the complete photosynthetic apparatus is perfectly
able to acclimate to both light and changing redox conditions
with CEF and its protective role over PSI placed centrally as
a regulator of this flexibility. Further understanding of PSI
photoinhibition, proposed to be a major determinant in crop
productivity (Tikkanen et al., 2014), may allow the rational
modification of photosynthesis to improve the efficiency of plant
crops and the production of renewable algal biomass.

ACKNOWLEDGMENTS

This work was supported by grants from the Agence Nationale
de la Recherche (ChloroPaths: ANR-14-CE05-0041-01) and the
CEA Tech Department of Commissariat des Energies Atomiques
et Energies Alternatives (CEA) for FC grant. We thank Jean Alric
for constructive discussions.

REFERENCES

Allahverdiyeva, Y., Mustila, H., Ermakova, M., Bersanini, L., Richaud, P., Ajlani, G.,
et al. (2013). Flavodiiron proteins Flv1 and Flv3 enable cyanobacterial growth
and photosynthesis under fluctuating light. Proc. Natl. Acad. Sci. U.S.A. 110,
4111–4116. doi: 10.1073/pnas.1221194110

Allahverdiyeva, Y., Suorsa, M., Tikkanen, M., and Aro, E. M. (2015).
Photoprotection of photosystems in fluctuating light intensities. J. Exp.
Bot. 66, 2427–2436. doi: 10.1093/jxb/eru463

Allorent, G., Tokutsu, R., Roach, T., Peers, G., Cardol, P., Girard-Bascou, J., et al.
(2013). A dual strategy to cope with high light in Chlamydomonas reinhardtii.
Plant Cell 25, 545–557. doi: 10.1105/tpc.112.108274

Alric, J. (2010). Cyclic electron flow around photosystem I in unicellular green algae.
Photosynth. Res. 106, 47–56. doi: 10.1007/s11120-010-9566-4

Alric, J. (2014). Redox and ATP control of photosynthetic cyclic electron flow
in Chlamydomonas reinhardtii: (II) involvement of the PGR5-PGRL1 pathway
under anaerobic conditions. Biochim. Biophys. Acta 1837, 825–834. doi:
10.1016/j.bbabio.2014.01.024

Arnon, D. I., Allen, M. B., and Whatley, F. R. (1954). Photosynthesis by isolated
chloroplasts. Nature 174, 394–396. doi: 10.1038/174394a0

Asada, K. (2000). The water-water cycle as alternative photon and electron
sinks. Philos. Trans. R. Soc. Lond. B Biol. Sci. 355, 1419–1431. doi:
10.1098/rstb.2000.0703

Avenson, T. J., Cruz, J. A., Kanazawa, A., and Kramer, D. M. (2005). Regulating the
proton budget of higher plant photosynthesis. Proc. Natl. Acad. Sci. U.S.A. 102,
9709–9713. doi: 10.1073/pnas.0503952102

Backhausen, J. E., Kitzmann, C., Horton, P., and Scheibe, R. (2000). Electron
acceptors in isolated intact spinach chloroplasts act hierarchically to prevent

Frontiers in Plant Science | www.frontiersin.org October 2015 | Volume 6 | Article 8755

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Chaux et al. Cyclic electron flow and PSI photoprotection

over-reduction and competition for electrons. Photosynth. Res. 64, 1–13. doi:
10.1023/A:1026523809147

Bendall, D. S., and Manasse, R. S. (1995). Cyclic Photophosphorylation and
Electron Transport. Biochim. Biophys. Acta 1229, 23–38. doi: 10.1016/0005-
2728(94)00195-B

Bergner, S. V., Scholz, M., Trompelt, K., Barth, J., Gabelein, P., Steinbeck, J., et
al. (2015). STATE TRANSITION7-dependent phosphorylation is modulated
by changing environmental conditions, and its absence triggers remodeling
of photosynthetic protein complexes. Plant Physiol. 168, 615–634. doi:
10.1104/pp.15.00072

Briantais, J. M., Vernotte, C., Picaud, M., and Krause, G. H. (1979). A quantitative
study of the slow decline of chlorophyll a fluorescence in isolated chloroplasts.
Biochim. Biophys. Acta 548, 128–138. doi: 10.1016/0005-2728(79)90193-2

Caffarri, S., Tibiletti, T., Jennings, R. C., and Santabarbara, S. (2014). A comparison
between plant photosystem I and photosystem II architecture and functioning.
Curr. Peptide Sci. 15, 296–331. doi: 10.2174/1389203715666140327102218

DalCorso, G., Pesaresi, P., Masiero, S., Aseeva, E., Schunemann, D., Finazzi, G., et
al. (2008). A complex containing PGRL1 and PGR5 is involved in the switch
between linear and cyclic electron flow in Arabidopsis. Cell 132, 273–285. doi:
10.1016/j.cell.2007.12.028

Dang. K. V., Plet, J., Tolleter, D., Jokel, M., Cuine, S., Carrier, P., et al. (2014).
Combined increases in mitochondrial cooperation and oxygen photoreduction
compensate for deficiency in cyclic electron flow inChlamydomonas reinhardtii.
Plant Cell 26, 3036–3050. doi: 10.1105/tpc.114.126375

Desplats, C., Mus, F., Cuine, S., Billon, E., Cournac, L., and Peltier, G.
(2009). Characterization of Nda2, a plastoquinone-reducing type II NAD(P)H
dehydrogenase in Chlamydomonas chloroplasts. J. Biol. Chem. 284, 4148–4157.
doi: 10.1074/jbc.M804546200

Durrant, J. R., Giorgi, L. B., Barber, J., Klug, D. R., and Porter, G. (1990).
Characterization of triplet states in isolated photosystem II reaction
centers—oxygen quenshing as a mechanism for photodamage. Biochim.
Biophysica Acta 42, 9205–9213.

Forti, G., and Caldiroli, G. (2005). State transitions in Chlamydomonas reinhardtii.
The role of theMehler reaction in state 2-to-state 1 transition. Plant Physiol. 137,
492–499.

Forti, G., and Elli, G. (1995). The function of ascorbic acid in photosynthetic
phosphorylation. Plant Physiol. 109, 1207–1211. doi: 10.1007/978-94-009-0173-
5_431

Forti, G., and Elli, G. (1996). Stimulation of photophosphorylation by ascorbate as
a function of light intensity. Plant Physiol. 112, 1509–1511.

Fridlyand, L. E., Backhausen, J. E., and Scheibe, R. (1998). Flux control of
the malate valve in leaf cells. Arch. Biochem. Biophys. 349, 290–298. doi:
10.1006/abbi.1997.0482

Ghysels, B., Godaux, D., Matagne, R. F., Cardol, P., and Franck, F. (2013).
Function of the chloroplast hydrogenase in the microalga Chlamydomonas: the
role of hydrogenase and state transitions during photosynthetic activation in
anaerobiosis. PLoS ONE 8:e64161.

Hertle, A. P., Blunder, T., Wunder, T., Pesaresi, P., Pribil, M., Armbruster,
U., et al. (2013). PGRL1 is the elusive ferredoxin-plastoquinone reductase
in photosynthetic cyclic electron flow. Mol. Cell. 49, 511–523. doi:
10.1016/j.molcel.2012.11.030

Hideg, E., and Vass, I. (1995). Singlet oxygen is not produced in photosystem-
I under photoinhibitory conditions. Photochem. Photobiol. 62, 949–952. doi:
10.1111/j.1751-1097.1995.tb09162.x

Jans, F., Mignolet, E., Houyoux, P. A., Cardol, P., Ghysels, B., Cuine, S., et al. (2008).
A type II NAD(P)H dehydrogenase mediates light-independent plastoquinone
reduction in the chloroplast ofChlamydomonas. Proc. Natl. Acad. Sci. U.S.A. 105,
20546–20551. doi: 10.1073/pnas.0806896105

Joet, T., Cournac, L., Horvath, E. M., Medgyesy, P., and Peltier, G. (2001).
Increased sensitivity of photosynthesis to antimycin A induced by inactivation
of the chloroplast ndhB gene. Evidence for a participation of the NADH-
dehydrogenase complex to cyclic electron flow around photosystem I. Plant
Physiol. 125, 1919–1929. doi: 10.1104/pp.125.4.1919

Johnson, X., and Alric, J. (2012). Interaction between starch breakdown, acetate
assimilation, and photosynthetic cyclic electron flow in Chlamydomonas
reinhardtii. J. Biol. Chem. 287, 26445–26452. doi: 10.1074/jbc.M112.
370205

Johnson, X., Steinbeck, J., Dent, R. M., Takahashi, H., Richaud, P., Ozawa, S., et
al. (2014). Proton gradient regulation 5-mediated cyclic electron flow under

ATP- or redox-limited conditions: a study of DeltaATpase pgr5 and DeltarbcL
pgr5 mutants in the green alga Chlamydomonas reinhardtii. Plant Physiol. 165,
438–452. doi: 10.1104/pp.113.233593

Johnson, X., Wostrikoff, K., Finazzi, G., Kuras, R., Schwarz, C., Bujaldon, S., et
al. (2010). MRL1, a conserved Pentatricopeptide repeat protein, is required for
stabilization of rbcL mRNA in Chlamydomonas and Arabidopsis. Plant Cell 22,
234–248. doi: 10.1105/tpc.109.066266

Joliot, P., and Johnson, G. N. (2011). Regulation of cyclic and linear electron
flow in higher plants. Proc. Natl. Acad. Sci. U.S.A. 108, 13317–13322. doi:
10.1073/pnas.1110189108

Jones, L. W., and Kok, B. (1966). Photoinhibition of chloroplast reactions. II.
Multiple Effects. Plant Physiol. 41, 1044–1049. doi: 10.1104/pp.41.6.1044

Kanazawa, A., and Kramer, D. M. (2002). In vivomodulation of nonphotochemical
exciton quenching (NPQ) by regulation of the chloroplast ATP synthase. Proc.
Nat. Acad. Sci. U.S.A. 99, 12789–12794. doi: 10.1073/pnas.182427499

Krishnan, A., Kumaraswamy, G. K., Vinyard, D. J., Gu, H., Ananyev, G., Posewitz,
M. C., et al. (2015). Metabolic and photosynthetic consequences of blocking
starch biosynthesis in the green alga Chlamydomonas reinhardtii sta6 mutant.
Plant J. 81, 947–960. doi: 10.1111/tpj.12783

Kukuczka, B., Magneschi, L., Petroutsos, D., Steinbeck, J., Bald, T., Powikrowska,
M., et al. (2014). Proton gradient regulation5-like1-mediated cyclic
electron flow is crucial for acclimation to anoxia and complementary
to nonphotochemical quenching in stress adaptation. Plant Physiol. 165,
1604–1617. doi: 10.1104/pp.114.240648

Li, X. P., Bjorkman, O., Shih, C., Grossman, A. R., Rosenquist, M., Jansson, S., et
al. (2000). A pigment-binding protein essential for regulation of photosynthetic
light harvesting. Nature 403, 391–395. doi: 10.1038/35000131

Livingston, A. K., Kanazawa, A., Cruz, J. A., and Kramer, D. M. (2010).
Regulation of cyclic electron flow in C(3) plants: differential effects of
limiting photosynthesis at ribulose-1,5-bisphosphate carboxylase/oxygenase
and glyceraldehyde-3-phosphate dehydrogenase. Plant Cell Environ. 33,
1779–1788. doi: 10.1111/j.1365-3040.2010.02183.x

Mehler, A. H. (1951). Studies on reactions of illuminated chloroplasts. II.
Stimulation and inhibition of the reaction with molecular oxygen. Arch.
Biochem. Biophys. 34, 339–351. doi: 10.1016/0003-9861(51)90012-4

Munekage, Y., Hashimoto, M., Miyake, C., Tomizawa, K., Endo, T., Tasaka,
M., et al. (2004). Cyclic electron flow around photosystem I is essential for
photosynthesis. Nature 429, 579–582. doi: 10.1038/nature02598

Munekage, Y., Hojo, M., Meurer, J., Endo, T., Tasaka, M., and Shikanai, T. (2002).
PGR5 is involved in cyclic electron flow around photosystem I and is essential
for photoprotection in Arabidopsis. Cell 110, 361–371. doi: 10.1016/S0092-
8674(02)00867-X

Murata, N., Allakhverdiev, S. I., and Nishiyama, Y. (2012). The mechanism of
photoinhibition in vivo: re-evaluation of the roles of catalase, alpha-tocopherol,
non-photochemical quenching, and electron transport. Biochim. Biophys. Acta
1817, 1127–1133. doi: 10.1016/j.bbabio.2012.02.020

Nishikawa, Y., Yamamoto, H., Okegawa, Y.,Wada, S., Sato, N., Taira, Y., et al. (2012).
PGR5-dependent cyclic electron transport around PSI contributes to the redox
homeostasis in chloroplasts rather than CO(2) fixation and biomass production
in rice. Plant Cell Physiol. 53, 2117–2126. doi: 10.1093/pcp/pcs153

Peers, G., Truong, T. B., Ostendorf, E., Busch, A., Elrad, D., Grossman, A. R., et al.
(2009). An ancient light-harvesting protein is critical for the regulation of algal
photosynthesis. Nature 462, 518–521. doi: 10.1038/nature08587

Peltier, G., Tolleter, D., Billon, E., and Cournac, L. (2010). Auxiliary electron
transport pathways in chloroplasts of microalgae. Photosynth. Res. 106, 19–31.
doi: 10.1007/s11120-010-9575-3

Petroutsos, D., Terauchi, A. M., Busch, A., Hirschmann, I., Merchant, S. S.,
Finazzi, G., et al. (2009). PGRL1 participates in iron-induced remodeling of
the photosynthetic apparatus and in energy metabolism in Chlamydomonas
reinhardtii. J. Biol. Chem. 284, 32770–32781. doi: 10.1074/jbc.M109.050468

Radmer, R. J., and Kok, B. (1976). Photoreduction of O(2) Primes and Replaces
CO(2) Assimilation. Plant Physiol. 58, 336–340. doi: 10.1104/pp.58.3.336

Rott, M., Martins, N. F., Thiele, W., Lein, W., Bock, R., Kramer, D. M., et al. (2011).
ATP synthase repression in tobacco restricts photosynthetic electron transport,
CO2 assimilation, and plant growth by overacidification of the thylakoid lumen.
Plant Cell 23, 304–321. doi: 10.1105/tpc.110.079111

Rumberg, B., Reinwald, E., Schroder, H., and Siggel, U. (1968). Correlation between
electron flow, proton translocation and phosphorylation in chloroplasts.
Naturwissenschaften 55, 77–79. doi: 10.1007/BF00599483

Frontiers in Plant Science | www.frontiersin.org October 2015 | Volume 6 | Article 8756

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Chaux et al. Cyclic electron flow and PSI photoprotection

Santabarbara, S. (2006). Limited sensitivity of pigment photo-oxidation in isolated
thylakoids to singlet excited state quenching in photosystem II antenna. Arch.
Biochem. Biophys. 455, 77–88. doi: 10.1016/j.abb.2006.08.017

Satoh, K. (1970a). Mechanism of photoinactivation in photosynthetic systems.1.
dark reaction in photoinactivation. Plant Cell Physiol. 11, 15–27.

Satoh, K. (1970b). Mechanism of photoinactivation in photosynthetic systems.2.
occurrence and properties of 2 different types of photoinactivation. Plant Cell
Physiol. 11, 29–38.

Satoh, K. (1970c).Mechanism of photoinactivation in photosynthetic systems.3. site
andmode of photoinactivation in photosystem.1.Plant Cell Physiol. 11, 187–197.

Scheibe, R., and Dietz, K. J. (2012). Reduction-oxidation network for flexible
adjustment of cellular metabolism in photoautotrophic cells. Plant Cell Environ.
35, 202–216. doi: 10.1111/j.1365-3040.2011.02319.x

Schlodder, E., Cetin, M., Byrdin, M., Terekhova, I. V., and Karapetyan, N. V.
(2005). P700+- and 3P700-induced quenching of the fluorescence at 760 nm
in trimeric Photosystem I complexes from the cyanobacterium Arthrospira
platensis. Biochim. Biophys. Acta 1706, 53–67. doi: 10.1016/j.bbabio.2004.08.009

Setif, P., and Brettel, K. (1990). Photosystem-I photochemistry under highly
reducing conditions—study of the P700 triplet-state formation from the
secondary radical pair (P700+-A1-). Biochim. Biophys. Acta 1020, 232–238. doi:
10.1016/0005-2728(90)90152-T

Setif, P., Hervo, G., and Mathis, H. (1981). Flash-induced absorption chnages in
photosystem I. Radical Pair or Triplet Formation? Biochim. Biophys. Acta 638,
257–267. doi: 10.1016/0005-2728(81)90235-8

Shikanai, T. (2014). Central role of cyclic electron transport around photosystem
I in the regulation of photosynthesis. Curr. Opin. Biotechnol. 26, 25–30. doi:
10.1016/j.copbio.2013.08.012

Shubin, V. V., Terekhova, I. N., Kirillov, B. A., and Karapetyan, N. V. (2008).
Quantum yield of P700+ photodestruction in isolated photosystem I complexes
of the cyanobacterium Arthrospira platensis. Photochem. Photobiol. Sci. 7,
956–962. doi: 10.1039/b719122g

Sonoike, K. (2011). Photoinhibition of photosystem I. Physiol. Plant. 142, 56–64.
doi: 10.1111/j.1399-3054.2010.01437.x

Sonoike, K., Terashima, I., Iwaki, M., and Itoh, S. (1995). Destruction of
photosystem I iron-sulfur centers in leaves of Cucumis sativus L. by
weak illumination at chilling temperatures. FEBS Lett. 362, 235–238. doi:
10.1016/0014-5793(95)00254-7

Stiehl, H. H., and Witt, H. T. (1969). Quantitative treatment of the function
of plastoquinone in phostosynthesis. Z. Naturforsch. B 24, 1588–1598. doi:
10.1515/znb-1969-1219

Strand, D. D., Livingston, A. K., Satoh-Cruz, M., Froehlich, J. E., Maurino, V.
G., and Kramer, D. M. (2015). Activation of cyclic electron flow by hydrogen
peroxide in vivo. Proc. Natl. Acad. Sci. U.S.A. 112, 5539–5544. doi: 10.1073/pnas.
1418223112

Suorsa, M., Jarvi, S., Grieco, M., Nurmi, M., Pietrzykowska, M., Rantala,
M., et al. (2012). PROTON GRADIENT REGULATION5 is essential for
proper acclimation of Arabidopsis photosystem I to naturally and artificially
fluctuating light conditions. Plant Cell 24, 2934–2948. doi: 10.1105/tpc.112.
097162

Takizawa, K., Kanazawa, A., and Kramer, D. M. (2008). Depletion of stromal
P(i) induces high ‘energy-dependent’ antenna exciton quenching (q(E)) by
decreasing proton conductivity at CF(O)-CF(1) ATP synthase. Plant Cell
Environ. 31, 235–243. doi: 10.1111/j.1365-3040.2007.01753.x

Telfer, A. (2014). Singlet oxygen production by PSII under light stress: mechanism,
detection and the protective role of beta-carotene. Plant Cell Physiol. 55,
1216–1223. doi: 10.1093/pcp/pcu040

Tikkanen,M.,Mekala,N. R., andAro, E.M. (2014). Photosystem II photoinhibition-
repair cycle protects Photosystem I from irreversible damage. Biochim. Biophys.
Acta 1837, 210–215. doi: 10.1016/j.bbabio.2013.10.001

Tikkanen, M., Rantala, S., and Aro, E. M. (2015). Electron flow from PSII to PSI
under high light is controlled by PGR5 but not by PSBS. Front. Plant Sci. 6:521.
doi: 10.3389/fpls.2015.00521

Tolleter, D., Ghysels, B., Alric, J., Petroutsos, D., Tolstygina, I., Krawietz, D., et al.
(2011). Control of hydrogen photoproduction by the proton gradient generated
by cyclic electron flow in Chlamydomonas reinhardtii. Plant Cell 23, 2619–2630.
doi: 10.1105/tpc.111.086876

Wang, C., Yamamoto, H., and Shikanai, T. (2015). Role of cyclic electron transport
around photosystem I in regulating proton motive force. Biochim. Biophys. Acta
1847, 931–938. doi: 10.1016/j.bbabio.2014.11.013

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2015 Chaux, Peltier and Johnson. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) or licensor are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution
or reproduction is permitted which does not comply with these terms.

Frontiers in Plant Science | www.frontiersin.org October 2015 | Volume 6 | Article 8757

http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive

	A security network in PSI photoprotection: regulation of photosynthetic control, NPQ and O2 photoreduction by cyclic electron flow
	Acceptor-Side Limitation is the Cause of PSI Photoinhibition
	CEF Triggers Fast Quenching, Photosynthetic Control and PSII Photoinhibition Resulting in PSI Photoprotection
	O2 Reduction Works with CEF in Dissipating Excessive Electron Flow
	Concluding Remarks
	Acknowledgments
	References


