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In the frame of the WEST tokamak upgrade project, the Tore Supra combined interferometer-

polarimeter diagnostic has been modified to fit the geometry and constraints induced by the 

implementation of divertor coils in the vacuum vessel. For a good spatial resolution of the plasma, as 

the vertical ports are now partially obstructed, 8 infrared  beams go through a common horizontal port 

and are retro-reflected on an inner panel and 2 vertical port retro-reflected channels, with specific 

vacuum mirrors close to the divertor, could be  implemented to diagnose the edge plasma.   

The electronics and the data acquisition have also been renewed to improve the reliability and 

precision of the measurements. Novel digital electronics with embedded interferometric and 

polarimetric algorithms produce 1ms data outputs for real time control.   

The diagnostic has routinely been operated during the first WEST campaigns. In this article, we detail 

the new arrangement and discuss the first results with plasma.  

 

1) Introduction  

On fusion plasma tokamak machines, the measurement of the electron and current density can be 

obtained by interferometry and polarimetry technics, using the information given by Far Infrared  

(FIR) laser beams crossing the plasma [1]. On the French Tore Supra tokamak, a ten channel poloidal 

Interfero-polarimeter routinely run till 2011, using the following principle of measurement [2-3]:   

There are 3 dedicated detectors for each channel. After exiting the plasma, each probing FIR beam is 

recombined with a 100 KHz frequency shifted beam in front of the detectors to deliver synchronous 

amplified signals that are measurable in phase and amplitude.  

On the interferometry part, the line integrated electron density (LID) is calculated for each channel 

using the phase information Φ of two probing beams that have different wavelengths 𝜆 (195 and 119 

microns). They are superposed to cross the plasma and then they are separated toward the detectors 

[ref 3 p. 1228]. This double phase information enables to calculate the LID by eliminating the path 

length component  in equation (1).   

Φ = 2.82 × 10−15 𝜆 ∫ 𝑛𝑒(𝑙) 𝑑𝑙 +  2Π
𝛿

𝜆
    (1) 

Where ne is the electron density, all parameters in MKSA unit.  

On the polarimetry side, the Faraday Angle (FA)  is obtained by measuring the rotation of 

polarization of a 195 micron wavelength beam through the plasma. A grid separates the 2 

perpendicularly polarized output beams toward 2 distinct detectors, of which one is also used for 

interferometry [ref 3 p. 1237]. To take into account a possible elliptization of the beams, both 

amplitudes and relative phases are measured to calculate  [4]: 
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tan (𝛼) = 𝐾
abcos(ψ−ψ0)

a2    (2) 

Where a and b are the amplitudes of the 2 FIR beams, 𝜓 the relative phase and 𝜓0the initial one.  K is 

a coefficient that is deduced from a quartz plate rotation calibration before each plasma.     

Then one can calculate by the Ampere’s theorem the current density with the magnetic poloidal field 

that can be deduced from equation (3): 

𝛼 = 2.62 × 10−13 𝜆2 ∫ 𝑛𝑒(𝑙) 𝐵//(𝑙) 𝑑𝑙  (3) 

Where 𝐵// is the magnetic component parallel to the FIR beam propagation.  

In the former Tore Supra configuration, there were five plasma traversing chords going through 

vertical ports and five chords through a horizontal port to be reflected on the inner wall by corner cube 

mirrors (CC). For WEST [6], a lower and an upper toroidal tungsten divertor, with their supporting 

structures implemented in the vertical ports, have been installed and the inner panels have been 

displaced. Therefore the chord trajectories of the beams inside the vessel had to be modified and 

optimized to recover a good spatial resolution. To minimize the cost, efforts have been done not to 

modify the optics in the laser source and detector areas.  

To increase the precision and reliability of the diagnostic, a new digital electronics with FPGA 

processors has been installed. The embedded algorithms benefit from several year experiences on the 

JET tokamak, as they were initially developed and successfully tested for it [5]. An industrial PC has 

been configured to receive the output data from the boards, to calculate the LID and FA and to 

dispatch the results toward the WEST real time system and the WEST data base.  
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2) Mechanical modifications  

2.1 Trajectories of the chords inside the vessel.  

 In order to reuse at most the former 10 channel diagnostic, 10 chords could be positionned to optimize 

the spatial resolution.The figure 1a shows the chord trajectories of the FIR beams  inside the vessel 

with respect to a typical WEST plasma, in which the equally spaced in radius magnetic surfaces have 

been drown.      

 

Figure 1: Beam chord trajectories in the plasma, a: Overview versus the magnetic surfaces, b: 

Normalized positions of the chords in the plasma    

 

The chords are reflected by CC at approximately R=1.8 m, where R is the radial position in the torus 

vessel.  8 chords go through a common horizontal port. The windows are situated on the port flange at 

R= 4.5 m. The chords have been spaced in order to differently tangent the magnetic surfaces and thus 

to give a complete information on the plasma profile with a normalized spatial resolution of 

approximately 0.1 (figure 1b). 

To complete the profile characterization and because the edge of the plasma cannot be seen from the 

0.8 m high horizontal port, 2 chords go through a vertical port. The incoming beams are reflected by 

internal mirrors (chords 1 and 2 in figure 1b) before reaching a CC. One is for giving information on 

the plasma edge, the other one on the density inside the X point. 
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2.2 Corner cube mirrors  

All the FIR beams are now reflected on CC inside the vessel. Figure 2a shows the 1300 mm high 

specific internal panel on which 9 CC could be fixed. Cooling water flows inside a sandwich of 2 

stainless steel sheets at a temperature of 70-90°C during plasmas and up to 200°C when conditioning.  

  

Figure 2: CC implantation, a: specific panel with the CC, b: outer CC view, c: inside CC view  

   To save space and ensure the water tightness, the CC are TIG welded onto the panel. Figure 2b and 

2c show one CC. As in the previous Tore Supra configuration [2], the bulk part is made of Cu-Cr alloy 

to get a sufficient hardness. To allow the welding to the panel, a 62 mm Nickel ring is first welded 

outside the CC by electron beam. Then the print of the 3 perpendicular faces is dug by electro-erosion 

to obtain an optical diameter of 49 mm. The trihedral corners are dug perpendicularly to the incoming 

IR beams. But one CC is oriented on the bisector of the 8 degree angle formed by 2 incoming beams 

that share the same mirror. The 90 degree angles between the faces are manufactured with a precision 

of 50 second of arcs to obtain a low divergence of the reflected beam. Finally, the faces are manually 

polished down to a 10 micron peak to peak roughness. It is not good enough for visible reflection 

when alignment and thus movable optics had to be positioned outside the windows to send back the 

light and enable a visible alignment toward the detectors.   
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2.3 Windows  

In the former Interfero-polarimeter set up, the windows were made of natural crystal quartz, 

brazed by gold bonding on the flanges [3]. 3 of them have been reused for the WEST 

configurations. As the number of channels increased in the horizontal port, one had to position 

3 channels per window (figure 3).  

 

 
Figure 3: Twin flange supporting the 2 synthetic quartz diameter 111.5 m disks  

 

The quartz disks are now synthetic grown crystal, diameter 111.5 mm, optical axis 

perpendicular to the faces. They are tightened on by Helicoflex® joints and therefore can be 

easily replaced if failure.  

To avoid spurious reflections that could reach the detector and spoil the measurement, the 

disks and supports are 1.5 degree oriented perpendicularly to the plane defined by the beams.     

The angles between the beams that share the same window vary from 3 to 5 degrees and the   

maximum incidence angle is 4.5 degrees on a quartz disk. Its thickness of 6959 microns is 

optimized by calculation of the transmission for the expected incident angles (figure 4). 

 

 

  

 

Figure 4: Transmission of a 6959 micron thick Zcut crystal quartz,  

 Refraction index: n195=2.1116, n119=2.1256, absorption: a195=.30, a119=.63  
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2.4  Edge channels  

Although the WEST divertor support occults most of the vertical port and no direct line of sight to 

plasma is possible with the baffle, 2 channels could be installed to diagnose the edge plasma. 

Internal flat mirrors reflect the FIR beams towards the CC (figure 5).  

 

Figure 5:  Edge channels, a: General implantation, b: Zoom on the reflection under the baffle, 

c: Flat mirrors fixed on a common support  

The 220X105mm and 110X85 mm flat mirrors are screwed on the divertor leg (figure 5b). They 

are made of stainless steel, polished at lambda for visible alignment and they can be orientated 

(figure 5c). They are presently inertial but will be actively cooled for the long pulse second phase 

of WEST. Channel 1 is almost parallel to the divertor, 50mm away, and thus the beam crosses the 

X point region. Channel 2 is pointing the 0.8-0.9 normalized radius plasma region and therefore 

completes the profile information, which is especially useful for electron density profile 

reconstruction. It crosses the baffle through a 30 mm diameter hole. Only interferometry signals 

are presently operational but polarimetry will be added in the future. 
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2.5 External FIR beam transport  

 

The trajectory changes inside the vessel induced modifications of the ex-vessel FIR beam 

transport. Effort has been done to keep most of the diagnostic installation. The synoptic 

(figure 6) of the modified diagnostic is very similar with the former one given in [3]. 

  

    Figure 6: Synoptic of the interfero-polarimeter adapted to the WEST configuration 
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The DCN and H2O laser sources remain unchanged as well as the analyser FIR beam set up and the 

4K cryogenic detector installation. The former five traversing channels had to be transformed in 

reflected channels with new calibration tables and separating optics.  

Out of the overall 450 existing optics, 90 had to be repositioned because of the different chord 

trajectories in plasma, among which 40 new mirrors, mainly the focusing ones. Their dimensioning 

has been done by considering the plasma refraction and the Gaussian beam expansion:   

To calculate the refraction, the REMA raytracing code was used. It is adapted in wavelength from an 

electron cyclotron wave propagation code [8]. For the typical expected WEST electron density, the 

deviation is not more than 1.5 mm on the CC (figure 7 b) and therefore less than 3 mm on the output 

windows. 

 

Figure 7: Calculated refraction, a: Chords in plasma, b:  Beam deviation inside the plasma, c: 

Expected electron density profile  

Gaussian beam calculations [1] were performed to focus on the CC while fitting the incoming FIR 

beam in size from the lasers and towards the detectors. Figure 8a gives an example for one channel at 

195 micron wavelength: 4 new focus mirrors are needed. On the CC, the 1/e diameters of all the 

beams is always less than 14 mm. Therefore, the 3/e value of 42 mm, in which all the beam energy is 

contained, is lower than the 49 mm CC diameter.  Possible refraction or misalignments will thus not 

induce beam losses. The external optics and windows have also been dimensioned at 3/e. Therefore 

the signals are not lost despite the induced deviations caused by 3 mm refractions in plasma. (figure 

8b)      

 Figure 8: Channel 1 beam transport simulations from the laser the detector, a: Gaussian beam 

expansion, b: Induced deviation due to a 3 mm refraction  
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In the torus hall in front of the ports, 3 existing crates have been modified to position the new mirrors 

and their supports inside (figure 9) A new tower,2.5 m high, has been also added. It connects 3 

channels to the former traversing channel detectors. It has an aluminium frame composed of welded 

50 mm square section tubes. The base is screwed on steel girders that are fixed on the torus hall 

concrete to reduce at most the oscillations when plasma.   

 

Figure 9: Overview of the mechanical modifications for WEST  
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3) Modification of the signal processing  

3.1 Electronics and acquisition system  

The new electronics arrangement is a mixing of the old electronics and acquisition with new ones, as 

seen in Figure 10:  

Figure 10: Synoptic of the data processing for one channel 

The detectors, the preamplifiers, the programmable amplifiers, the calibration system and the 1MHz 

data acquisition have been kept unchanged. But the first generation digital interferometric signal 

processing electronics had to be upgraded to implement more complex real time algorithms, in 

particular to correct fringe jumps. Moreover, the analogue polarimetric electronics and its 12 bit data 

acquisition  was also to be improved  to avoid long term component drifts and  to gain precision.  In 

the new settlement, for each channel, a unique digital board (DGB), which has been developed by 

CEA [7], calculates in real time the interferometric phases for the 2 wavelengths and the amplitude 

and phase values that are needed for polarimetry. A FPGA processor is embedded, which enables to 

program algorithms in VHDL language. For interferometry calculation, the inputs are the zero 

crossing times of the 100 KHz reference and probe sine signals. They are sent from the programmable 

amplifiers by optical fibres. For polarimetry, the analogue sine signals are digitalized in the Mezzanine 

and then are sent as inputs to the DGB. The Mezzanine also reconstructs the analogue amplitudes from 

the ones calculated in the DGB in order to control by industrial programmable logic controller  the (1-

80) amplifiers. 

The DGB are connected to the WEST timing network to start the calculation and to date the 

measurements (figure 11). The sampling time of the output data is 1ms although the cycle time in the 

FPGA processor is governed by a 25 MHz clock, fast enough to both analyse the behaviour of the 100 

KHz signals and to apply real time filtering 
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. 

Figure 11: Interfero-polarimetry hardware integrated in the WEST network  

 The results are sent as dated packets via an Ethernet connection to a network switch and then 

transmitted to a new dedicated industrial PC computer, as the upgrade of the Real Time network in the 

frame of the WEST project required the old Tore supra VME units to be migrated to  PC architecture.  

Its function is to transform the incoming measurements into the LID and FA values that are defined in 

equation 1 and 3. Algorithms check the result consistency before sending them at the sampling time of 

1ms to the WEST real time shared memory network to be used as control and protection by other 

systems. The time delay that is induced by the PC calculations is at most 1ms. The PC also controls 

via FPGA acquisition boards the half-wavelength rotating quartz used for the polarimetry calibration 

that is performed before each pulse. At the end of the pulse, the PC transfers the DGB outputs to the 

WEST data base for post pulse analysis.   
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3.1 Methods of calculation employed in the DGB 

 The algorithms implemented in the DGB for WEST have been adapted from those initially developed 

for the JET tokamak interfero-polarimeter, which works at similar frequencies and wavelengths.  

Figure 12: Principle of the of the interferometric phase real time calculation 

The interferometric phase  is reconstructed with the help of slow counters K and J and fast counters 

Nk and Ni (figure 12) that are trigged by the fronts generated when the sine signals cross zero :   

Φ = 2Π(K − J + Ni/Nk )  (4) 

The K-J counting follows the 2 phase variations, which are called fringes. Non-physical fringe 

jumps can occur when the signal is lost or degraded. Therefore, an additional fast counter measures the 

probe signal time delay between 2 zero crossings to check the anomalies. When these are detected, the 

J counting is corrected, assuming that the phase change has been lesser than  in 500 s [5]. From the 

experience of JET, where high frequency oscillations induced by plasma turbulence were observed on 

the probe signals and potentially could mislead the checking, a 5 KHz low pass filter is applied on the 

time delay counting before detecting the anomalies.  
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For polarimetry, the amplitudes and relative phase of the 2 perpendicularly polarized sine signals are 

calculated after digitalization (figure 13). After  80-120 KHz bandpass filtering, the 2 rectified signals 

are 586 Hz low pass filtered in 3 steps and 3 sub-samplings to obtain the amplitudes. Simultaneously, 

the straight multiplication of the 2 signals and low-pass filtering enables to obtain a value proportional 

to cos , where  is the relative phase. The sin information is obtained by multiplying the first 

signal by the second one, whose value is taken some time steps before [4]. The 1.086 MHz 

digitalization frequency has been chosen not to be an integer ratio of 100 KHz to avoid stroboscopic 

effects. Moreover, the sub-sampling ratios are defined to avoid layovers.  

Figure 13: Principle of the characterization of the polarimetric signals 
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 After the initial 16 bit digitalization, every second order filtering Sn at each time step n is done in 32 

bits. It consists in a sum of polynomial terms that are calculated with the help of the previous n-i time 

values:    

𝑆𝑛 = 𝑎0𝑋𝑛 + 𝑎1𝑋𝑛−1 + 𝑎2𝑋𝑛−2 + 𝑏1𝑆𝑛−1 + 𝑏2𝑆𝑛−2   (5) 

Where Xn is the initial signal, Sn the filtered signal and ai and bi the filter coefficients.   

One can see in figure 13, in which the characteristics of the 80-120 KHz band pass filter are given, that 

the ai and bi coefficients are small and thus justify a 32 bit precision in the computation.   

Figure 14: Real time 80-120 KHz band pass filter characteristics, a: High pass transmission, b: Low 

pass transmission, c: Transmission when the filtering is repeated twice. 

The results of the multiplications of the 2 signals are in 64 bits not to lose the precision and then the 

low-pass filters are in 32 bits and the outputs as well.   
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4) Experimental results  

The diagnostic has routinely been running during the 2017-2018 WEST restart campaigns and helped 

to improve the plasma performances up to a 10 s duration and a 3 × 1019 m-2 central LID. 

4.1 Real time calculations.  

Figure 15: WEST #53259 raw real time signals, a: Line integrated density, b: Faraday angles  

 As an example, on figure 15, one can see the 10 channel LID and the 8 channel FA that are calculated 

in real time in the PC. The 2 most central plasma LID (red curves almost superposed in fig15a) are 

routinely used for plasma gas injection control and to authorise the electromagnetic heating system 

power coupling. In figure 15 b, the 1ms rate FA have been averaged over 5 points  

 

Figure 16: Averaged real time signals, a: Last Closed Surface at t=5s, b: Average electron densities (in 

10
19

 m-3) and peaking factors.  

With the help of the last closed surface (LCS) that is given in real time by the magnetics diagnostic [9]   

-figure 16a shows an example for pulse 53259 - , the distance of each chord in the plasma can be 

estimated to calculate the averaged LID. Moreover, the LID integration of the 8 almost horizontal 

channels along the vertical line defined by the centre of the plasma enables to calculate the volume 

average density by dividing by the surface, assuming that the LID is null on the LCS. The peaking 
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factor is the ratio of the average LID by the average volume density. It gives information on the 

peaking of the profile (figure 16 b).   

The consistency of the measurements can be verified by plotting the LID and FA profiles versus the 

vertical position of the 8 almost horizontal chords found at radial position of 2.5 m (figure 17). 

 

Figure 17: Vertical profile of the 8 almost horizontal channels, pulse 53259 at t= 5s, a: LID profile, b: 

FA profile.   

As the LID information is mandatory to control the gas injection, it is important to have redundancy 

on the central LID information even when partial diagnostic failure. Channel 3 and 8 are almost 

central (superposed red curves on figure 15 a) and thus can be equally used if one fails. Moreover, if 

one of the lasers or detectors is out of order, the real time software automatically switches to the LID 

calculated with only one wavelength. The induced errors, due to the path length variations, are 

analysed in figure 18:  
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Figure 18: Path length variations during a pulse, a: 10 chord variations, b: Induced error on the central 

LID  

Indeed, figure 18a shows there are significant path length oscillations only at the beginning and at the 

end of the pulse. They are correlated to sudden inversions of the current in the poloidal coils. The 

exceptions are the edge channels (figure 18a blue line) because the internal mirrors are fixed  on a  

divertor leg and  therefore vary with the divertor current. Therefore the central LID range error of a 

few 10
18

 m-2 (figure 18b) allows density control with one wavelength, except at the beginning of the 

pulse.     

 4.2 Post pulse processing  

After each pulse, the LID and FA angles are recalculated. This allows correcting possible additional 

fringe jumps or failures not detected by the real time algorithms. During the first campaign, the 

plasmas were quiet enough, only L mode, not to generate fringe jumps that would be uncorrected by 

the DGB. The LID were only in default when the plasma was ending by a disruption, during which the 

FIR beams are strongly deviated from the detectors while the density strongly varies. 

The 1MHz data acquisition is also used to diagnose fast variations of the electronic density. The 

interferometric phase is calculated with the digitalized sine signals by the same zero crossing technics 

as the electronics one. This allows a sampling time of 15 s. As the acquisition is not continuous but is 

composed of several triggered 1s data packets, the results of the calculations are mixed with the low 

acquisition to obtain an absolute LID. As an example, the slow and fast acquisitions are superposed 

during a ramp down (figure 19). A growing 6 KHz mode, followed by a crash, can be observed.  

Figure 19: Comparison of the fast and slow LID measurement during a density crash.   
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The post pulse calculated LID and FA are also used as inputs in equilibrium codes such as NICE [10]. 

They complete the magnetics diagnostic to constrain the equilibrium. Studies have started to validate 

the interfero-polarimetry contribution.  The figure 20 is an example of the obtained magnetic surfaces 

with interfero-polarimetry inputs.  

 Figure 20: Magnetic surfaces  obtained at t=5.1 s  by the NICE code, red line: LCS , dash line: real 

time LCS   

The consistency of the interfero-polarimetry measurements is analysed with the code outputs. Figure 

21 is an example of the obtained electron density and safety factor profiles. Some discrepancies of the 

reconstructed LID and FA with the experimental measurements can be observed (figure 21 c and d). 

Indeed the value differences cannot be explained by the instrumental precision of the diagnostic:  

For interferometry, the counting of the phase with a 25MHz clock induces a precision 1/250 of a 

fringe  for a 100KHz signal , which  can be converted in a one way through LID precision of 3.2 ×

1016m-2 . For this pulse, the measured LID typical noise that is calculated by standard deviation is  

1 × 1017 m-2 before plasma and 2.5 × 1017 m-2 during the plasma plateau.   

For polarimetry, the 32 and 64 bit calculations in the electronic boards provide high precision outputs. 

The 5 point averaged FA noise is typically 0.01 degrees before plasma and 0.02 degrees on the 

plateau. This leads to think that these values are due to the infrared beams intrinsic noise and are due 

to the plasma fluctuations as well.  

Another possible error could be caused by the uncertainty on the alignment of the chords inside the 

plasma. As it is estimated to less than 1 cm, one can see on figure c and d that a 1 cm vertical 

displacement does not significantly help reducing the profile differences.  

Therefore, the observed discrepancies need further investigations and cross checking with other 

diagnostics during the following plasma campaigns to get a better comprehension of the plasma. 
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Figure 21: NICE outputs for pulse 53259 at t=5.1s, a: Electron density profile, b: Safety factor profile, 

c: Vertical LID profile comparison, d: Vertical FA profile comparison   

5) Conclusion 

For the new WEST tokamak configuration, the diagnostic successfully modified the positions of the 

chords inside the plasma by adding plane mirrors and cooled retroreflectors inside the vessel and by 

modifying the beam transport outside the vessel whilst keeping a great part of the old optics and most 

of the initial mechanical structure. 10 channels could be reinstalled to achieve a 0.1 rho spatial 

resolution and a X point diagnose. Solutions such as shared windows and retroreflectors by several 

beams proved their efficiency to solve the lack of space issues. 

 The data processing has been improved for higher precision and reliability. The new digital boards 

with their embedded interferometric and polarimetric algorithms found to be efficient and trouble free. 

The new PC that is connected to the WEST real time network is now routinely working.  

For 2 years the diagnostic has been routinely exploited for real time control. The post pulse analysis 

has started and will be continued during the next campaign. It is an efficient tool to be used for 

characterizing the electron density at different time scales and to contribute to the full consistency of 

the equilibrium codes.   
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For the next phase of WEST, which consists in long pulses with high heating power, only few internal 

mirrors will have to be modified and cooled.     
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