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Since their discovery, fluctuations in the initial state of heavy-ion collisions have been understood
as originating mostly from the random positions of nucleons within the colliding nuclei. We consider
an alternative approach where all the focus is on fluctuations generated by QCD interactions, that
we evaluate from first principles in the color glass condensate effective theory. Our approach provides
an excellent description of RHIC and LHC data on anisotropic flow.

INTRODUCTION

Relativistic heavy-ion collisions are performed at the
BNL Relativistic Heavy Ion Collider (RHIC) and at the
CERN Large Hadron Collider (LHC) with the aim of
creating the quark-gluon plasma, the high-temperature
state of strongly-interacting matter. The nuclear-sized
droplet of quark-gluon plasma formed in a collision ex-
pands like a low-viscosity fluid [1], whose properties
are studied through characteristic azimuthal anisotropies
generated during the expansion [2–6]. In a hydrodynamic
framework, azimuthal anisotropy in the final state is en-
gendered by the spatial anisotropy that characterizes the
energy-density profile at the onset of the hydrodynamic
evolution [1, 7]. This primordial spatial anisotropy has,
in a heavy-ion collision, a twofold origin: First, it is due
to the almond shape of the overlap area between two
nuclei for noncentral collisions, that generates elliptic
flow [8]; Second, it originates from event-to-event density
fluctuations [9], that yield an elliptic deformation even in
central collisions [10], and a triangular anisotropy [11].
The role of primordial fluctuations for heavy-ion phe-
nomenology draws, hence, an interesting parallel [12]
with the physics of primordial fluctuations in cosmology,
where the observed anisotropies of the Cosmic Microwave
Background [13] originate from quantum fluctuations in
the early Universe [14].

In the standard picture of heavy-ion collisions, primor-
dial fluctuations originate from the randomness in the
spatial positions of the nucleons that populate the wave-
functions of the colliding nuclei [15], with additional con-
tributions at the level of the subnucleonic structure [16–
18]. In addition, there are also fluctuations due to the
collision process itself, i.e., to the gluon dynamics [19].
Putting all these effects together typically results in com-
plex, fully numerical descriptions of the initial state [20–
22] that do not offer an intuitive grasp of the relevant
scales and phenomena.

In this paper, we achieve a more transparent descrip-
tion of initial-state fluctuations by applying a recent an-

alytical calculation of energy-density fluctuations [23] to
the phenomenology of anisotropic flow in nucleus-nucleus
collisions. Denoting by ρ(s), where s labels a point in the
transverse plane, the energy density deposited at mid-
rapidity right after a collision takes place, we write that
ρ(s) = 〈ρ(s)〉+ δρ(s), where 〈ρ(s)〉 is the energy density
averaged over many events at a given impact parameter,
and δρ(s) is referred to as the fluctuation. Doing so, the
magnitude of density fluctuations, which is given by their
variance, or connected two-point function, is:

S(s1, s2) ≡ 〈δρ(s1)δρ(s2)〉
= 〈ρ(s1)ρ(s2)〉 − 〈ρ(s1)〉〈ρ(s2)〉. (1)

Albacete et al. [23] have calculated S(s1, s2) in the color
glass condensate [24–26] (CGC) effective field theory of
QCD. They have expressed S(s1, s2) analytically as a
function of the saturation scales of the two nuclei and
of the relative transverse distance r ≡ |s1 − s2|.

INITIAL-STATE ANISOTROPIES FROM THE
2-POINT FUNCTION

The relevant quantities for phenomenology are dimen-
sionless complex Fourier coefficients that characterize the
spatial anisotropy of the initial density field, ρ(s). They
are defined, in a centered coordinate system1, as [27, 28]

εn ≡
∫
s
snρ(s)∫

s
|s|nρ(s)

, (2)

where we use the complex coordinate s = x + iy, and
the short hand

∫
s

=
∫

dxdy for the integration over the
transverse plane. ε2 and ε3 thus defined quantify, respec-
tively, the amount of elliptic and triangular deformation
of the density profile.

The coefficient of anisotropic flow, vn, is defined as
the n-th Fourier harmonic of the azimuthal distribution

1 We mean that the center of energy lies at the origin,
∫
s s ρ(s) = 0.
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of outgoing particles [29]. The largest harmonics in the
spectrum are elliptic flow, v2, and triangular flow, v3.
Hydrodynamic simulations show that for both of them,
vn is to a good approximation [30–32] proportional to εn,
that is, vn = κnεn, where κn is a hydrodynamic response
coefficient which depends mildly on the impact parameter
of the collision for a given colliding system and energy.

Anisotropic flow is not measured on an event-by-event
basis, but inferred from correlations which are averaged
over events in a given class of collision centrality. The
default measure of vn is an rms average, denoted by
vn{2} ≡ 〈|vn|2〉1/2 [33], where the 2 inside curly brack-
ets means that it is inferred from analyses of 2-particle
correlations. Linear response implies vn{2} = κnεn{2}.
Thus, the relevant quantity from the initial state is the
rms average of εn, denoted by εn{2}. It turns out that
this quantity can be expressed in terms of the two-point
function, S(s1, s2), under fairly general assumptions [34].

Let us start with the simple case of a collision at zero
impact parameter. Since the mean density profile, 〈ρ(s)〉,
is azimuthally symmetric, one can replace ρ(s) with δρ(s)
in the numerator of Eq. (2). To leading order in the
fluctuation, δρ(s), then, one can replace ρ(s) with 〈ρ(s)〉
in the denominator. Multiplying by the complex con-
jugate, ε∗n, and averaging over events, one immediately
obtains [34]:

εn{2}2 ≡ 〈|εn|2〉 =

∫
s1,s2

(s1)n (s∗2)n S(s1, s2)
(∫

s
|s|n〈ρ(s)〉

)2 . (3)

We now generalize to non-central collisions. The main
difference is that the mean density profile, 〈ρ(s)〉, is no
longer isotropic, but has an elliptic shape. Its departure
from isotropy is quantified by the mean anisotropy ε̄2,
which is given by replacing ρ(s) with 〈ρ(s)〉 in Eq. (2):

ε̄2 ≡
∫
s
s2〈ρ(s)〉∫

s
|s|2〈ρ(s)〉 . (4)

This is a quantity of direct phenomenological relevance.
Indeed, the fourth-cumulant measure of elliptic flow,

v2{4} ≡
(
2〈v22〉2 − 〈v4n〉

)1/4
[35], is, in the regime of lin-

ear hydrodynamic response, equal to v2{4} = κ2ε2{4},
where ε2{4} is the fourth-order cumulant of ε2 fluctua-
tions, that can be taken as:

ε2{4} ≈ ε̄2. (5)

Equation (5) assumes that ε̄2 coincides with the mean
eccentricity in the reaction plane [36] and that eccentric-
ity fluctuations are Gaussian [37, 38]. This turns out to
be a very good approximation for collisions up to ∼ 30%
centrality, after which non-Gaussian correction become
sizable [39–43].

The total rms eccentricity, ε2{2}, is obtained by adding
in quadrature the mean eccentricity and the contribution
of fluctuations, which is the right-hand side of Eq. (3).

Therefore, for non-central collisions, we simply replace
Eq. (3) with

σ2 ≡ ε2{2}2 − ε̄22 =

∫
s1,s2

(s1)2 (s∗2)2 S(s1, s2)
(∫

s
|s|2〈ρ(s)〉

)2

ε3{2}2 =

∫
s1,s2

(s1)3 (s∗2)3 S(s1, s2)
(∫

s
|s|3〈ρ(s)〉

)2 , (6)

where we introduce the notation σ2 for the variance of
ε2 fluctuations. Corrections from recentering and en-
ergy conservation modify Eq. (6) for non-central colli-
sions [36, 44], but we have checked numerically that such
contributions are negligible.

1- AND 2-POINT FUNCTIONS FROM THE CGC

Derivations of the initial average energy density, 〈ρ(s)〉,
in the CGC framework date back to several years [45, 46].
Following Ref. [23], with Nc = 3, it simply reads:

〈ρ(s)〉 =
4

3g2
Q2
A(s)Q2

B(s), (7)

where subscripts A and B label the two colliding nuclei, g
is the strong coupling constant, and QA,B(s) is the local
saturation scale of the nucleus. Q2

A(s) is proportional to
the density of nucleons per transverse area at point s,
which is traditionally denoted by TA(s), and is obtained
by integrating the nuclear density over the longitudinal
coordinate [15].

To the extent that the nuclear density is known, one
obtains a parameter-free prediction for the mean eccen-
tricity [47]:

ε̄2 ≡
∫
s
s2TA(s)TB(s)∫

s
|s|2TA(s)TB(s)

. (8)

Figure 1(a) displays |ε̄2| defined by Eq. (8) as a function
of impact parameter for a Pb+Pb collision. It is natural
to ask whether this calculation is able to match the re-
sults of a state-of-the-art Monte Carlo model of nucleus-
nucleus collisions, such as the IP Glasma model [21]. To
this purpose, we compare our result with the value of |ε̄2|
given by the TRENTo model [48] tuned as in Ref. [49],
that enables one to accurately reproduce the multiplic-
ity distributions and the cumulants of vn fluctuations
measured at the LHC, as well as the anisotropies of IP
Glasma. We find that the TRENTo and the CGC results
are almost identical.

The crucial new information coming from the CGC
theory is the two-point function, S(s1, s2), computed in
Ref. [23], which allows us to evaluate ε2{2} and ε3{2},
as given by Eq. (6). The CGC typically predicts that the
energy-density fluctuations are correlated over a trans-
verse extent of order 1/Qs [50], which is much shorter
than the nuclear radius, R. In other terms, S(s1, s2) is



3

0 2 4 6 8 10
0.0

0.1

0.2

0.3

0.4

0.5

ε̄ 2 (a)

trento p=0

CGC

0 2 4 6 8 10
0.00

0.02

0.04

0.06

0.08

σ
2 (b)

CGC, 0.95 < Qs0 < 1.25 GeV

0 2 4 6 8 10

b [fm]

0.0

0.2

0.4

0.6

ε 2
{2
}

=
√
ε̄2 2

+
σ

2 Pb+Pb,
√
s = 5.02 TeV

(c)

0 2 4 6 8 10

b [fm]

0.0

0.1

0.2

0.3

0.4

ε 3
{2
}

(d)

FIG. 1. Anisotropy fluctuations as function of impact parameter in 5.02 TeV Pb+Pb collisions. Dotted lines: TRENTo model
tuned to LHC data. The solid line in panel (a) corresponds to Eq. (8) while the shaded bands in panels (b), (c), and (d)
correspond to Eqs. (11). The shaded bands represent the variation of Qs0.

small if r = |s1 − s2| � 1/Qs. Therefore, it is natu-
ral to change variables to s1 = s + r/2, s2 = s − r/2,
and integrate first over r. Albacete et al. show that
S(s + r/2, s− r/2) falls off slowly at large distances, like
1/r2, so that the integral is logarithmically divergent. It
must be regulated by an infrared cutoff, m, correspond-
ing typically to a confinement scale, for which we choose

the pion mass, m = 0.14 GeV.
Hence, with the following separation of scales in the

system

1

Qs
� 1

m
� R (9)

one can take S(s1, s2) from Ref. [23], whose integral over
r yields:2

ξ(s) ≡
∫

r

S
(
s +

r

2
, s− r

2

)
=

16π

9g4
Q2
A(s)Q2

B(s)

(
Q2
A(s) ln

(
Q2
B(s)

m2

)
+Q2

B(s) ln

(
Q2
A(s)

m2

))
, (10)

where we keep only the logarithmically enhanced terms.
Equations (6) then give [34]:

σ2 = ε2{2}2 − ε̄22 =

∫
s
|s|4 ξ(s)

(∫
s
|s|2〈ρ(s)〉

)2

ε3{2}2 =

∫
s
|s|6 ξ(s)

(∫
s
|s|3〈ρ(s)〉

)2 , (11)

where we used the approximation that the range of cor-
relation is much smaller than the nuclear radius.

2 We use the MV model expression of Ref. [23], and neglect the
αs ln(Q/m) dependence of the saturation scales, where Q corre-
sponds either to a UV cutoff or to 1/r.

Inserting Eqs. (7) and (10) into Eqs. (11), one sees that
the coupling constant, g, cancels between the numerator
and the denominator. Thus, the only free parameter in
our calculation is the proportionality constant between
(QA)2 and TA, or, equivalently, the value of QA at the
center of the nucleus, which we denote by Qs0.

Finally, with Eqs. (11) at hand, it is important to ob-
serve how eccentricity fluctuations in our CGC picture
compare to a state-of-the-art Monte Carlo model, where
εn fluctuations are mostly due to fluctuating positions of
nucleons. Again, we compare our results to the previous
TRENTo calculation tuned to LHC data. Results from
TRENTo are shown as dotted lines in Fig. 1 (b), (c), (d).
The CGC result from Eq. (11) is shown as a shaded band
corresponding to a range of Qs0 around 1.1 GeV. CGC
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and TRENTo give similar results. For both models, fluc-
tuations (as measured by σ2 and ε3{2} in panels (b) and
(d)) increase as a function of impact parameter, which is
understood as a natural consequence of the smaller sys-
tem size. However, a closer examination reveals that the
increase is milder in our CGC calculation.

Note that the CGC framework uses expressions for
〈ρ(s)〉 and S(s1, s2) that describe the system right af-
ter the collision takes place, whereas TRENTo gives the
entropy profile of the system at the beginning of hydro-
dynamics. This difference is not important, as classi-
cal Yang-Mills evolution to a finite proper time does not
modify the eccentricity harmonics [51].

COMPARISON WITH RHIC AND LHC DATA

We now compare our CGC calculations to experimen-
tal data on v2{2}, v2{4} and v3{2} in Pb+Pb collisions
at
√
sNN = 5.02 TeV [41], and in Au+Au collisions at√

sNN = 200 GeV [52]. Linear hydrodynamic response
implies the following relations between final-state flow
harmonics and initial-state anisotropies:

v2{2} = κ2ε2{2},
v2{4} = κ2ε̄2,
v3{2} = κ3ε3{2}. (12)

We treat κ2, κ3, and Qs0 as free parameters which we ad-
just to data. We restrict our theory-to-data comparison
to the 0-30% centrality range, in which κn is essentially
constant in hydrodynamics [53]. We use the geometric
relation between the impact parameter and the central-
ity of a collision to express our results as function of the
centrality percentile, i.e., we use centrality = (πb2)/σinel,
where σinel is the inelastic nucleus-nucleus cross section,
which we take from the Glauber model: σinel = 685 fm2

in Au+Au collisions, and σinel = 777 fm2 in Pb+Pb col-
lisions. We now explain how the values of κ2, κ3, and
Qs0 are chosen.

Since the mean eccentricity in the reaction plane, ε̄2,
in Eqs. (8) does not depend on Qs0, we first use v2{4}
to fix the value of κ2. Figure 2 shows that with a single
rescaling factor, we are able to reproduce the measured
centrality dependence of v2{4}, both at RHIC and at
LHC.3

With the knowledge of κ2 at hand, we move on to the
description of v2{2} = κ2ε2{2}. This quantity is less triv-
ial because it depends on Qs0. The gray shaded bands in
Fig. 2 show the rescaled ε2{2} corresponding to a range
of values of Qs0, in excellent agreement with v2{2} data.

3 The sharp decrease of v2{4} at RHIC below 5% centrality is an
effect of centrality fluctuations [54], which are not included in
our description.

As expected from Fig. 1, LHC data [panel (a)] are re-
produced in our calculation with a value of Qs0 of order
1.1 GeV. At RHIC energies [panel (b)], on the other hand,
we find that Qs0 is lower, of order 0.7 GeV. This increase
of Qs0 by factor 1.6 from RHIC to LHC is precisely that

expected in the CGC picture, where Q2
s ∝

√
s
λ
, with

λ ∼ 0.28 [26], which gives a factor 1.6 from 200 GeV to
5.02 TeV. This energy dependence of fluctuations allows
the CGC formalism to capture very transparently the
nontrivial observation that the splitting between v2{2}
and v2{4} is larger at RHIC than at LHC.

Finally, we fit the value of κ3 to match the value of
v3{2} in central collisions. Agreement with data is excel-
lent throughout the chosen centrality range. Note that
it would not be as good with the TRENTo model, which
predicts a steeper increase of ε3{2} with the centrality.

DISCUSSION AND OUTLOOK

We have shown that energy fluctuations calculated in
the CGC effective theory yield initial anisotropies which
match values of v2{2}, v2{4} and v3{2} measured in cen-
tral to midcentral nucleus-nucleus collisions at RHIC and
LHC. Note that this is obtained for values of κ2 and κ3
that are very reasonable, in the sense that they are com-
patibble with those found in state-of-the art viscous hy-
drodynamic calculations [53].

Usual approaches to initial-state fluctuations start
with a Monte Carlo Glauber calculation, which is used
to sample the position of nucleons within nuclei. We now
briefly argue that this stage of the calculation should be
bypassed in modeling initial-state fluctuations.

The picture of the nucleus returned by the Monte Carlo
Glauber simulation is essentially that of an ideal gas of
pointlike particles [36], in the sense that correlations be-
tween nucleons have a negligible effect [55, 56] and that
observables are insensitive to the size of initial inhomo-
geneities [57]. In other terms, if one replaces ρ(s) in
Eq. (1) with the transverse density of participant nu-
cleons, the two point function S(s1, s2) is proportional
to δ(s1 − s2), and the proportionality factor is the mean
density of nucleons per transverse area as evaluated in
an optical Glauber model, 〈ρ(s)〉 ∼ TA(s) + TB(s).

This is reminiscent of the McLerran-Venugopalan
model [58] which lies at the root of the CGC effective
theory. One assumes that the color fields are generated
by pointlike, independent color charges whose two-point
function is proportional to δ(s1 − s2), where the propor-
tionality factor is proportional to the nuclear thickness
function TA(s). Therefore, the pointlike constituents of
the Glauber model are already implicitly present in the
CGC effective theory. Sampling the positions of nucle-
ons and giving them a transverse extension [59] prior to
evaluating locally the saturation scale, as is done in the
IP Glasma approach [21, 60], implies a double counting
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FIG. 2. Symbols: Experimental data on v2 and v3, as function of centrality percentile, measured by the ALICE Collaboration
in 5.02 TeV Pb+Pb collisions [panel (a)], and by the STAR Collaboration in 200 GeV Au+Au collisions [panel (b)]. Lines and
shaded bands represent results from our CGC formalism, rescaled according to Eq. (12). The shaded bands indicate a variation
in the value of Qs0.

of the relevant fluctuations.
Note that the CGC calculation of fluctuations, unlike

the Monte Carlo Glauber model, does not boil down to
an ideal gas of identical, pointlike sources. The statistics
of density fluctuations in an ideal gas follows Poisson
statistics, with a variance proportional to the mean. By
contrast, in the CGC picture, the mean is proportional
to Q4

s [Eq. (7)], while the variance is proportional to Q6
s

[Eq. (10)], neglecting the smoothly-varying logarithm.
This enhances the role of fluctuations at the center of
the fireball. The phenomenological consequences of this
prediction of high-energy QCD, which follows essentially
from dimensional analysis, deserve further investigations.
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