R. Brenner, O. Castelnau, and L. Badea, Mechanical field fluctuations in polycrystals estimated by homogenization technique, Proc. R. Soc. Lond, vol.460, pp.3589-3612, 2004.
DOI : 10.1098/rspa.2004.1278

G. F. Carrier, M. Krook, and C. E. Pearson, Functions of a complex variable: theory and technique, 1966.

J. Eshelby, Elastic inclusions and inhomogeneities, Progress in Solid Mechanics, vol.2, pp.89-140, 1961.
DOI : 10.1007/1-4020-4499-2_26

A. C. Gavazzi and D. C. Lagoudas, On the numerical evaluation of Eshelby's tensor and it's application to elastoplastic fibrous composites, Comp. Mech, vol.7, pp.13-19, 1990.

F. Ghahremani, Numerical evaluation of the stresses and strains in ellipsoidal inclusions in an anisotropic elastic material, Mech. Res. Commun, vol.4, issue.2, pp.89-91, 1977.

G. Gruescu, V. Monchiet, and D. Kondo, Eshelby tensor for a crack in an orthotropic elastic medium, C.R. Acad. Sci. Paris, Sér. II, vol.333, pp.467-473, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00137231

Z. Hashin and S. Shtrikman, A variational approach to the theory of the elastic behaviour of multiphase materials, J. Mech. Phys. Solids, vol.11, pp.127-140, 1963.

R. Hill, Continuum micro-mechanics of elastoplastic polycrystals, J. Mech. Phys. Solids, vol.13, pp.89-101, 1965.

J. W. Hutchinson, Bounds and self-consistent estimates for creep of polycrystalline materials, Proc. R. Soc. Lond, vol.348, pp.101-127, 1976.

G. Kneer, R. Lebensohn, and C. N. Tomé, A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: application to zirconium alloys, Acta Metall. Mater, vol.9, pp.2611-2624, 1965.

S. C. Lin and T. Mura, Elastic field of inclusions in anisotropic media (II), Phys. Stat. Sol, vol.15, pp.281-285, 1973.

A. Molinari, G. R. Canova, and S. Ahzi, A self-consistent approach of the large deformation polycrystal viscoplasticity, Acta Metall, vol.35, issue.12, pp.2983-2994, 1987.

T. Mori and K. Tanaka, Average stress in matrix and average elastic energy of materials with misfitting inclusions, Acta Metall, vol.21, pp.597-629, 1973.

T. Mura, Micromechanics of Defects in Solids, 1982.

P. Castañ-eda and P. , The effective mechanical properties of nonlinear isotropic composites, J. Mech. Phys. Solids, vol.39, issue.1, pp.45-71, 1991.

P. Castañ-eda and P. , Exact second-order estimates for the effective mechanical properties of nonlinear composite materials, J. Mech. Phys. Solids, vol.44, issue.6, pp.827-862, 1996.

P. Castañ-eda, P. Willis, and J. , The effect of spatial distribution on the effective behavior of composite materials and cracked media, J. Mech. Phys. Solids, vol.43, issue.12, pp.1919-1951, 1995.

A. Rekik, F. Auslender, M. Bornert, and A. Zaoui, Objective evaluation of linearization procedures in nonlinear homogeneization: a methodology and some implications on the accuracy of micromechanical schemes, Int. J. Solids Struct, vol.44, pp.3468-3496, 2007.

Y. Rougier, C. Stolz, and A. Zaoui, Self-consistent modelling of elastic-viscoplastic polycrystals, C.R. Acad. Sci, vol.318, pp.145-151, 1994.
URL : https://hal.archives-ouvertes.fr/hal-00092035

A. Suvorov and G. Dvorak, Rate form of the Eshelby and Hill tensors, Int. J. Solids Struct, vol.39, pp.5659-5678, 2002.

T. C. Ting and V. Lee, The three-dimensional elastostatic Green's Function for general anisotropic linear elastic solids, Q. J. Mech. Appl. Math, vol.50, pp.407-426, 1997.