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New explicit expressions of the Hill polarization tensor
for general anisotropic elastic solids

Renaud Masson *

Mechanics and Material Component Department, EDF Research and Development Division — Avenue des Renardieres,
F-77818 Moret sur Loing cedex, France

Abstract

Except for particular cases, the classical expressions of the Eshelby or Hill polarization tensors, depend, respectively, on
a simple or double integral for a fully anisotropic two-dimensional or three-dimensional elastic body. When the body is
two-dimensional, we take advantage of Cauchy’s theory of residues to derive a new explicit expression which depends
on the two pairs of complex conjugate roots of a quartic equation. If the body exhibits orthotropic symmetry, these roots
are explicitly given as a function of the independent components of the elasticity tensor. Similarly, the double integral is
reduced to a simple one when the body is three-dimensional. The corresponding integrand depends on the three pairs of
complex conjugate roots of a sextic equation which reduces to a cubic one for orthotropic symmetry. This new expression
improves significantly the computation times when the degree of anisotropy is high. For both two and three-dimensional
bodies, degenerate cases are also studied to yield valid expressions in any events.
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1. Introduction

Consider an infinite uniform elastic body with moduli denoted by the fourth-order tensor C. If an ellipsoi-
dal part Q of this infinite body is submitted to a uniform stress free strain &, the resulting strain ¢ is uniform
throughout Q (Eshelby, 1961) and equals to S : & (¢; = S;,¢, with summation on repeated indices) where S
denotes the Eshelby fourth-order tensor (S;;; its components in a Cartesian coordinates system). The Eshelby
S-tensor displays minor symmetry S;i; = S = S;;e but does not obey major (diagonal) symmetry in general.
Alternatively, the Hill polarization P-tensor (Hill, 1965) defined by § = P : C obeys both minor and major
symmetries. Considering a fully anisotropic three-dimensional body, the algebraic expression of Hill’s polar-
ization tensor depend on a double integral (Mura, 1982). Various numerical procedures have been developed
to evaluate theses tensors. Ghahremani (1977) proposed a double Gaussian quadrature to compute the Hill



2

polarization P-tensor while Gavazzi and Lagoudas (1990) applied a similar numerical method to compute the
Eshelby S-tensor. These latest authors studied different practical situations and reported that strongly aniso-
tropic situations require a high number of Gaussian points (up to 1000 in some cases) to reach a satisfactory
accuracy. More recently, Brenner et al. (2004) compared the accuracy achieved with the double Gaussian
quadrature with respect to a Romberg’s algorithm based on the extended trapezoidal rule. This latest method
turns to be efficient when a low accuracy is required.

The homogeneous inclusion problem has been used to derive well known bounds (Hashin and Shtrikman,
1963; Ponte Castaneda and Willis, 1995) or estimates (Kroner, 1958; Mori and Tanaka, 1973) of the effective
behaviour of linear elastic heterogeneous media. In many cases, this homogeneous inclusion problem is related
to an isotropic elastic body and spherical or spheroidal inclusions. Under these assumptions, the Hill polar-
ization tensor may be computed explicitly (see Ponte Castafieda and Willis, 1995 for spheroidal inclusions).
However, many other situations lead to more sophisticated homogeneous inclusion problems. In addition,
the homogenization of nonlinear heterogencous media generally proceeds by linearization of the nonlinear
constitutive laws to define a Linear Composite Material (Ponte Castafieda, 1991) which is often taken similar
to the one of the nonlinear media. The various linearization procedures proposed to derive this Linear Com-
posite Material (see Rekik et al., 2007) often yield fully anisotropic elastic moduli. If we consider a tangent
linearization (Molinari et al., 1987; Lebensohn and Tomé, 1993; Rougier et al., 1994; Ponte Castafneda,
1996) of an isotropic nonlinear constitutive law, the linearized moduli tensor should at the best exhibit a trans-
versely isotropic symmetry. In this specific case, the double integral can be reduced to a simple one (Kneer,
1965) with corrections in Hutchinson (1976), see (Lin and Mura, 1973) for a similar reduction when a sphe-
roidal inclusion is embedded in a cubic material). However, phases of the Linear Composite Material would
mostly exhibit a more general anisotropy (textured polycrystals, anisotropic composites, .. .).

Should it be possible to derive explicit expressions of Hill’s polarization tensor for a fully anisotropic body?
Mura (1982) suggested to take advantage of the Cauchy theory of residues to reduce the double integral to a
simple one. Ting and Lee (1997) applied this method to derive explicit expressions of the elastic Green function
in terms of the poles of the integrand (the Stroh eigenvalues). Alternatively, Suvorov and Dvorak (2002)
derived explicit expressions of the Hill polarization tensor for disk-shaped and cylindrical inclusions in aniso-
tropic solids (see also Gruescu et al., 2005).

In this work, we aim at applying the Cauchy theory of residues to derive new and simpler expressions of the
Hill polarization tensor whatever the shape of the ellipsoidal inclusion and the material symmetry may be.
Two-dimensional and three-dimensional body are, respectively, considered in Sections 2 and 3.

2. Explicit expressions of Hill’s polarization tensor for two-dimensional bodies

We consider in this section a two-dimensional elastic body. Let ©,, be an elliptical region specified by:

X 2 X 2
ORCR
ap as

Let C;; denote the components of the moduli tensor in these axis. This tensor is definite positive and satisfies
the full symmetry.
In this two-dimensional case, the Hill polarisation P-tensor reads:

1 2n
2n
with (xl = %ff’) and x, = sin(())):

a

Poaiju = M (24)i1(0) 40O,

| -1 1 1
M ayijur = 2 (A(zd)jkxix/ A A )X X1 + A g Xixe + A(Zd)ilxjxk> (1)

and A2:11 denotes the inverse of Agu = Cijux;x:
» 1 ( Apayn _A(Zd)IZ)

A
M det(Ax) \ ~Apas Apan
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It is clear that A, is the acoustic tensor in the case of a circular inclusion. C being a positive definite fourth-
order tensor, the determinant of A4,, (det(A4,,)) exhibits complex conjugate roots which are the Stroh eigen-
values for this two-dimensional anisotropic body.

2.1. Stroh eigenvalues for two-dimensional anisotropic body
The fourth components of the acoustic tensor read:

1 1 . 2 .
Apayt = a—% Cy1 cos®(0) + a—% Cs; sm2(0) + @CB cos(0) sin(0),

1 1 . 2 .
Apap = a—% Cxy 0052(0) + a—% Cs» smz(H) + e Cy; cos(0) sin(0), (3)

1 1 . .
Apayz = Apaz = = Cis cos?(0) + ;CB sm2(0) (C12 + C33) cos(0) sin(0),

+—
ay 5 aap

(with the use of contracted notations Cyy(; j—i3) for the moduli tensor C;y;: for instance Co3 = Cy ) while the

determinant of the tensor A,, reads (p = Z—l>

der(z]0) = 5 g (), @

where g(,,)(z) denotes a polynomial function of degree 4: g, (2) = Zﬁiéqi@dﬁ" .
For a full symmetric moduli tensor, the coefficients of the polynomial function g,, reduce to:

dopay = CnCss = Chy, @iy = 2(C1iCos — CiaCiy),
Gr0a) = 2(C13C23 — C13C33) + C11Cyy — C, (5)
G300y = 2(C13Cn — C12C3),  Guag) = C2Ca3 — Cs-
The roots of the quartic equation
qpa)(2) =0 (6)

are denoted by (z1,2,,2;,2,) hereafter (z denotes the complex conjugate of any complex number z), (z;,z,) hav-
ing a positive imaginary part. The explicit expressions of these roots are reported in Appendix A when the C
moduli tensor exhibits orthotropic or quadratic symmetries.

2.2. Explicit expressions of Hill's P-tensor

It is noted that M 4);/(0) is periodic in 6 with periodicity m. It follows that:

1 2n

L[
P =5 | M ayja (0)d0 = — / - Mau(0)do.
2

Substituting relations (2)—(4) in (1) yields:

, 1 /*"c Paayin (1)
2d)ijkl —_, (1+ (00)a-.(5)
(2d)ij ~1rJ . (1 + (pt)z)chd(t)

_1¢(0)
= P

Y

where the fourth-order tensor p,,(¢) is defined as (contracted notations):
C22t2 4+ 2Cn»t+ Cx3 —(C13t + C23l3 + (Clz + C33)l‘2) %(szl‘3 + Cz3l‘2 — Cpt — C13)
12(C33t2 + 2C53t + C]]) %(C]]l‘ + C13l‘2 — C1213 — C23l4) . (7)
%(Cll — 2C1212 + C2214)
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Fig. 1. Contour integral of Eq. (8).

We consider the closed path C; over the upper half of the complex plane (see Fig. 1). In the limit, as the radius
of the path R approaches infinity, the integral over the outer circle vanishes (Jordan’s lemma), leaving us with:

/W’ Payu(t) dt:/ Peayju(Z) &z (8)
o (14 (p1)*) (1) a (14 (p2)*)g54(2)

Using Cauchy’s theory of residues (see, for instance, Carrier et al. (1966)), the right term of the latest equation
reduces to 2im (7 = —1) times the sum of the residues of the following function of the complex variable (z):

Payijki (2)
(14 (p2)*)q24(2)
at poles ;’),zl,zz. As a result, we derive the following new expression of the Hill polarization P-tensor:

Paijki (ﬁ) 21 42 Poayin (Zu)

Pogijy = ———~=+— TN,
924 (ﬁ) = (,,_z + 25) Pr4(2u)
In this explicit relation:

® Gpq) and p(y) are polynomial functions of degree 4 whose coeflicients are given by relations (5) and (7) as
a function of the elastic moduli C tensor (¢5,(z) denotes the derivative of ¢,,(z)),
e the two complex numbers (z;,z,) are the roots with a positive imaginary part of the quartic equation

94(z) =0,
°p= Z—f is the aspect ratio of the elliptical inclusion.

2.3. Additional results (degenerate cases) for two-dimensional bodies

General expression (9) is no longer valid for the following degenerate cases. When z; = z, # > the residues
theorem gives (z; — z; = 21f3;):

Payijri (ﬁ) 1 (2ﬂ121 - l(# + Z%) )P(zd)zj/kz (z1) = ﬁ]pzw)ijkl (z1) (ﬁ + Z%)
Py = + ) ; 3
92a (E) 2194000 (,,Lz + Z%)

(Ploayiju(2) denotes the derivative of p)(2)) while if z; = z, = £, it yields:

4
o 1 3 1 1 1
Payijn = 3 Gue <3p(2d)ijkl (;) - ;p/(Zd)ijkl (;) - ;pzlzd)ijk/ (;)) 5

; (10)
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(i (2) denotes the second derivative of py,)(2)) which may be simplified further (contracted notations):

2

p*(Cxn +3p°Cy3)  —p*(Cia + Cx3) 2 (Cy — 3p*Cy3)
3C3 + p*Chy 1(p*Ci3 — 3Cxn) . (11)
1(3p*C1 = 2p*C12 4 3Cn)

1
8(CnCs3 — C3)

3. Hill’s polarization tensor expressed as a simple integral for three-dimensional bodies
Consider in this section a three-dimensional elastic body. Let @ be the ellipsoidal region specified by:

X 2 X 2 X 2
() -+
aj a) as

The components of the Hill polarisation P-tensor in the principal axis of the ellipsoidal are (see, for instance,
Suvorov and Dvorak, 2002):

P = 4n/00/¢ M (0, ¢)sin(0)d0de. (12)

As previously:

1
M = 1 (Aj’k]x,-x/ —l—A;{lxjx, —l—A;llxixk +A[71xjxk),
with
(0 (0)si 0
= sin( )cos(d))’ = sin( )sm(qﬁ)’ = cos( )7

a; a as

and A~! the inverse of:
Ay = Cyjuxjx,
which reduces to the acoustic tensor for a spherical inclusion (a@; = @, = a3 = 1). As for the two-dimensional

body, the determinant of 4 exhibits pairs of complex conjugate roots which are the Stroh eigenvalues for the
three-dimensional body.

3.1. Stroh eigenvalues for three-dimensional anisotropic bodies
As in Ting and Lee (1997), the vector x is denoted by:
x = ncos(0) + msin(0), (13)

(n and m are defined by (0, 0,;7) and (C(’Zl‘p) sin(¢) ,0), respectively). Denoting by:

? ar

Qik = Czj/kzn_/nz = Ci3k3n§7
Ry = Cijkln_/'ml = Criminz + Ciomyns,
Ty = Cijumym; = Cilklm% + (Ciiga + Ciopr )mymy + Cizkzmg
(the Euler angle ¢ is omitted hereafter to shorten notations) we have:
A= Qcos’(0) + (R + R") cos(0) sin(0) + T sin’(0).
——
s
Given that:
det(A4) = euudmdnds
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(&mn the permutation tensor), we obtain (6 # 0):
1

det(A)](0) = sin®(0 (—)

det()(0) = sin’(0)a 5

g being the polynomial function of degree six:

i=6
qz) =Y ¢
i=0
with

96 = emQm 020 45 = &mnt(Qot (S20p3 + ©,0S13) + S 0,0013):
94 = et (D1 (Sm2Sis + Qo T3 + T2 Qp3) + St (0,083 + 82013) + T 0,,013),
43 = Emnt( Q1 (S T3 + TaSi) + St (S8 + 00 T3 + T2 Qp3) + Tt (00813 + $1203)), (14)
qr = mnt(Qu1 T2 T3 + St (Si2 T3 + Ti2Si3) + Tt (O T3 + T2 Qp3 + SiaSi3)),
g1 = ot (S T2 T3 + Tt (Sw2Ti3 + T02S1i3))s 4o = emmt Tt Tz T13.
Hereafter, the three complex numbers (zi,z3,z3) denote the roots with a positive imaginary part of the sextic

equation ¢g(z) = 0. When the moduli tensor exhibits an orthotropic symmetry, this sextic equation reduces to a
cubic equation in z* (see Appendix B).

3.2. Hill's polarization P-tensor expressed as a simple integral

Consider now the following integral:
1 [ .
P((p)ijkl = 2— / M,-jk,(ﬁ) sm(@) d@ (15)
T Jo

The components P(4);; of the fourth-order tensor P are functions of the Euler angle ¢ (obviously M, de-
pends also on ¢ but the Euler angle ¢ is omitted in next expressions to shorten notations). Substituting rela-
tion (13) in the definition of My, yields:

M (0) = % (cosZ(H) (Ajfkln,-n, + Ay g + A;,ln,-nk + 4;,"'n;ny) + cos(0) sin(0) (A;k1 (nym; + nym;)
+4;," (nm; + nym,) —|—Aj_,1 (nimy, + ngmy) + A5, (nmy + mym)
+ sin2(0) (Aj_klmiml + A;{Imjml + Aj_llmimk + A,._llm,»mk)) .

Furthermore, the inverse of the matrix A reads:

-1
= A A7 4\ EiklgjmﬂAkmA[}’l

A
i~ 2det(A)

_ 1 210 4 ! 3 . %2 2 i 2 3 .3 ~4 - 4
= det(4) (45 cos*(0) + A}, cos™ (0) sin(0) + 42 cos2(0) sin’ (0) + 43, cos(0) sin’ (6) + 43 sin’(0) )

with
o1 .
Ay =5ttt jm Qe Qi Ay = Egik/‘sjmn(kaS/n + Sim0O),

N 1 N 1
A,2] - Egiklgjmn(kaTln + SkmS]n + Tka]n)7 A?j = igiklgjmn(Ska]n + TkmSln)7 (16)

4 1
A,‘/ = igiklgjmnTkaln-

As a result, the integrand M;;,(0) of the simple integral (15) is a rational function whose denominator is the
determinant of the matrix 4 while its numerator reads:



1 u=4 R . R . o
- (Asenin; + Ajning + Afning + Ajynng) cos® " (6) sin” (0)

+ Z(A;fk(n,«m; + mm;) + A" (nymy 4 nym;) + ﬁjl(nimk + memy) + A% (nymy + mem;)) cos® () sin' T(0)

u=4
+ Z(A(’;kmim; + Ajmm; + Afmimy + Ajymmy) cos*™(0) sin"+2(0)> :
u=0

When the inclusion is cylindrical (a; — o0), the former expression of M;;,(6) does not depend on Euler angle
0. In that particular case, the simple integral P, reduces to:

74 24 4 4
1 Aymmy + Agmgm + Ajmamy + Ajm;my

P ikl = —
(9o 4 gmanmlTnZTIS

Suvorov and Dvorak (2002) provided general expressions of the Hill polarization P-tensor in that situation
(orthotropic symmetry). More recently, Gruescu et al. (2005) developed explicit expressions for a crack (infi-
nite cylinder with low aspect ratio) in an orthotropic solid.

In general, the integrand M;;,(0) is a rational function. Its numerator and denominator are polynomial
functions of the variables (cos(0), sin(0)). By the substitution ¢ = 1/tg(9), the former integral P, reduces to:'

1 o tpy ([2;1)
Plyijpt = 5 / A,
nJo  (1+2)q(5)

where p,;, is a polynomial function of degree six, namely:

u=4

. « . « .
Piju(t) = (Ao + Afnng + Ajnin + Afnng) £

Plyiu

+ (;l;k(n,-ml + nym;) + ﬁfk(njml + nym;) —|—;17,(n,-mk + mmy) + ﬁi}(njmk + mm;)) £

i

Py

+ (A;fkm,-m/ + Ajmmy + Afmimy + Alymmy) A

Py
0 6 | 0 s P I 0 4 3 P | 3
=Pyl T Pyge T Pyt + Py + Poyiu T Pyt + Pl + Py + Pyt
4 3 ) 2 4 3 4
+ Pl + Py T Pyt + Pl + Pyt + Pl (17)

To calculate this last integral, we consider the closed path C, of the complex plane (see Fig. 2) and the line
integral:

/ln(z) ZPijklgf(Z)) dz
) (1+2%)°q(L(2))

where In(z) denotes the principal value of the natural logarithm and £(z) = 5. In the limit as the radius of the

path R approaches infinity, the integral over the outer circle vanishes (Jordan’s lemma) while:

2pw(E@) /+°0 t py(E(1))
) o (1+2)q(&()

lim In(z 3
=0 Jehuey (1+22)°q(l(z

! Notice that the degree of the polynomial function ¢(¢) is at the least equal to the one of the numerator polynomial function P ().
Then, the integrand tends to zero for the lower # = 0 and upper limit # — +oco. Hence, the improper integral is (as expected) convergent.
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Fig. 2. Contour integral of Eq. (18).

As a result:

[ )
P =512 |, MO Ay & -

Let Img(z) and Re(z) denote, respectively, the imaginary and real parts of any complex number z. Using Cau-
chy’s theory of residues (see Appendix C), this last integral reads:

P<¢>iﬂcz=$ Im <lpljkl ) ZR" (21n (Z“ V1+Zﬁ)_m>(L@()D' (19)

1+2)q'(z
Finally, the evaluation of Hill’s polarization P-tensor reduces to the calculation of the following simple

integrals:
(2 (2 /1422) - )%Dchp (20)

/27[ (lpljk/ ) Z Re
1 kI =
T 8n 1+ 22)q'(z

where:

* q(z) and p;;,(z) are polynomial functions of degree six whose coefficients are defined by relations (14) and
(17) as a function of the shape of the ellipsoid, the angle ¢ and the moduli tensor (¢'(z) denotes the deriv-
ative of ¢(z)),

e the three complex numbers (z,z,,z3) are the complex roots with a positive imaginary part of the sextic
equation ¢(z) = 0.

3.3. Additional relations (degenerate cases) for three-dimensional body
General expression (19) is no longer valid for the following degenerate cases. If 7 is one of the root of the

sextic equation (z; = 1), we define the polynomial function of degree four ¢ as g(z) = (1 + z%)§(z). The residues
theorem gives:

319;1//{/(1)@(1) + Dy (1) (41 (1) — 35]/(1))}
6¢°(1)

_ iRe (2 In (Z,, +4/1 —|—z£) - lTC) 7(1 fljfj)(%z(;?(zu)] ) . (21)

If z; = z, # 1, the polynomial function of degree four ¢ is now defined by ¢(z) = (z — z1)*(z — z1)*4(z) and the
valid expression is:

1
Pgyijkt = in Img[




1 1 , Z1
P = g5, —Re| S (fiuta) = 2 fwten) ) @1n(z) - )
1
2f.. . .
+ fz./kl(zzl) + (2 In <Z3 + 1 +Z§) o lTC) pt_/kl(323) + Img (lpl]kl(l)> , (22)
1 +2z (1+22)q/(z3) q(1)
with fiu(z) = % and Z; =z, + /1 +z}. The degenerate case z; =z, and z; =i may easily be

deduced from the previous relations (21) and (22). However the case z; =z, =1 has not been investigated.
If z; = z, = z3 # 1, the residues theorem yields:

Proist =~ (Re|Zogh (20) + Zigs(Z2) — 2 (Z))(2In(Z I Pyt 23
@imt = 73— | Re| 22810 (21) + 2180 (Z2) = 581y (£1) (2In(Z1) —1m) | + Img q(1) %)

N 22 (E(z . .
(= 1,25 g = 285, Guyu(z) = — 28— and Z, = 7, = 2/1+2) while if 2 =2 =z, =1, the
valid expression is: e o

1 /1 2 8
Py = an (7p?l)ijk1 + 35 (P%l)ijkl +p(lz)fjkl +p(()3)ijk1) + 105 (p?l)ijkl +p?2)ijkl +p(23)ijk1 + 619?3)1‘,‘/(1)) . (24)

3.4. Application

Here, we consider a spheroidal inclusion (a; = a3 = 1) embedded in an infinite elastic body. This elastic

Cint 7 Cin
puted by the two following methods:

body exhibits a cubic symmetry (C“ZZ =0.57,5 — 0.49). In that case, Hill’s polarization P-tensor is com-

o the former (classical) method: the double integrals defined by the relations (12) are computed numerically.
In the sequel, Ny and N, denote, respectively, the numbers of integration steps over the two Euler angles
¢ and 0.

e the new method proposed in this work: for a given ¢ Euler angle, the integrals P,y are computed algebra-
ically to reduce the previous double integrals to simple ones over Euler angle ¢ (see the new expression (20)).

Both methods make use of the same numerical method of integration (the trapezoidal rule) with the same
required accuracy.

For different aspect ratios a;/a; of the inclusion, the numbers of integrations steps (N4, Ny) have been
determined to achieve the required accuracy (see Table 1). As expected, the numbers of integration steps
increase with the degree of anisotropy. For each value of a;/a;, we have also reported on Table 1 the ratio
of computation times defined as follows { = #,/#; where #, and ¢, denote, respectively, the times needed to
compute Hill’s polarization P-tensor according to the new method and the former one. The following obser-
vations can be made:

e The computation time of the double integrals (12) increases as Ny % N, while the simple integrals (20)
depend linearly on N 4. As a result, the {-ratio depends linearly on 1/N, and this ratio decreases significantly
when the aspect ratio a;/a; ranges from 1 to 100.

Table 1

Numbers of integration steps (N4, Ny) and computation times ratio ({) as a function of a;/a;

a/as 1 10 100
Ng 64 256 1024
Ny 32 128 512

{ 0.16 0.04 0.011
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e When a;/a; = 1, the {-ratio is upper than 1/Ny, =1/32 = 0.03. This result is related to the fact that the
algebraic computation of P,-tensor requires significantly more operations (approximately 5 times more)
than the computation of the integrand of expression (12).

In conclusion, the new proposed expressions turned to be efficient, especially for high degree of anisotropy.
In this application, the degree of anisotropy was driven by the shape of the ellipsoidal inclusion. However,
high degree of anisotropy should also be encountered for many other applications like homogenization of
nonlinear heterogeneous media (see, for instance, Ghahremani, 1977). In all cases, the new expression (20)
should improve significantly the computation of Hill’s polarization P-tensor.

4. Conclusions

In this work, the Cauchy theory of residues was used to derive new expressions of the Hill polariza-
tion tensor for general anisotropic bodies. When the body is two-dimensional, the final expression is
explicitly given as a function of the roots with a positive imaginary part of a quartic equation (Eq.
(9), Section 2). When the body is three-dimensional the double integral (Mura, 1982) is reduced to a
simple one, the integrand being a function of the three roots (with a positive imaginary part) of a sextic
equation (Eq. (20), Section 3). As expected, this reduction have been shown to improve significantly the
computation time needed to evaluate Hill’s polarization P-tensor, especially when the degree of anisot-
ropy is high (Section 3.4). Exact expressions have also been derived for degenerate cases (see Egs. (10),
(11), (21)~24)).
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Appendix A. Additional results for particular bi-dimensional media

If C is a definite positive fourth-order tensor, explicit expressions of the complex conjugate roots of the
quartic equations are derived hereafter for particular material symmetry (the “material” axis coincide with
the prinicipal axis of the elliptical inclusion). Contracted notations of fourth-order tensors C;;(I,J = 1,2,3)
are adopted in this section.

A.1. Orthotropic C tensor

In that case, the non-zero components of the moduli tensor C are
Ci, Cn, Cip=Cy, Css.
Since C is positive definite:
CiiCyn—CL>0 C;3>0 CCy>0 CpnCy>0,
and the quartic equation reduces to a quadratic equation in Z = z*:
C11Cx + (—2C12C33 + C11Co — CH)Z + CpCZ* =0 (A.1)
with positive coefficients. If
—2C15C33 + C11Cxp — €2, — 24/C11C337/CnCy (A.2)

is negative, this quadratic equation displays complex conjugate roots. Denoting by Z; the root with positive
imaginary part, the four roots of the quartic Eq. (6) are:

21 =V2Z\, z=-Z1, Z3=ZI, Z4=1I.
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Alternatively, if expression (A.2) is positive, the four roots of the quartic equation are given by:

C
1 =w-Z, =1 —Zrlén’ Z3 =121, Z4=12,
where Z, denotes one of the two real (negative) roots of the quadratic Eq. (A.1). If expression (A.2) is zero, the

Cu

L 1
quartic display two roots (degenerate case) z; = z, = l(C22 Viz3=z4 = 7.

A.2. Quadratic C tensor

The additional relation C;; = Cy, holds in that case. If Z =z + ﬁ, the quartic equation reduces to
ZP4+c=0,
with:

o Cl, —2CinCyy — Ch, o 2(%(C11 —Cin) — Cx3)(C1 + Ch2)
o C11C33 N C11C33 .

If ¢ > 0, the fourth roots of the quartic equation are pure imaginary numbers, namely:
n=1(Vd+c—e), n=1(Vd+c+ec), zmz=-z1=2, z=-n=7n,

while the case ¢ < 0 yields:

1 1
Z1:§(\/—_C+l\/4+c), 2225(—\/—C+l\/4+0)7 23:217 24222.
The case % (C1 — C1p) — C33 = 0 corresponds to a transversely isotropic C tensor (this is equivalent to the iso-

tropic case for two-dimensional media). In this degenerate case the determinant of A4,; reduces to the constant
90(24)-

Appendix B. Additional results for orthotropic C tensor (three-dimensional media)

Contracted notations of fourth-order tensors are adopted in this section (for instance: Cy3 = Ch33,
Cys = Cr313, C16 = Ci112. . .). If the moduli tensor exhibits an orthotropic symmetry (with respect to the prin-
cipal axis of the ellipsoidal inclusion), the following elastic stiffness vanish:

Cis =Coy=C34=Ci5=Cp;5s =C35 = Cy4s = Ci5 = Cps = C36 = C46 = C5¢ = 0.

The matrices Q, S and T are symmetric. Their remaining non zero components are:

0, =Cssn3, Oy = Cunj, Qs = Cynj,
S13 = (Css 4+ C31)minz,  Saz = (Cas + C3o)mans,
T, = Cllm% + Céémga Ty = C66m% + C22m§7

T1y = (Ciy + Ces)mimy, T3y = Cssmj + Cagm.
Further, the sextic equation reads: ¢(z) = g¢z° + ¢,2* + ¢,2° + ¢, = 0, where

gs = 01100033, ¢4 = 011(02T33 — 832523 + T2033) — 531055513 + 71102053
g, = 01/ T2T33 + S31(T12523 — T28513) + T11 (00733 + 722033 — $3252)
+ T (802813 — T12033), g = (Tt T — T1,) T3

This sextic equation can be easily reduced to a cubic equation in z* (algebraic resolution with the Cardan-
Tartaglia method).
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Appendix C. Derivation of relation (19)

Consider the rational function:
z pijkl(é(z))
(1+22)°q(&(2))

Obviously, (1,—1) are poles of this rational function. Let Z, =z + /1 +23,Z, =z — /1 +2},

. Zs =z3 — /1 + 23 and since ¢(&(Z;)) = q(z;)) = 0 = g(Z,), the six complex numbers (Z, ..., Zs) and their
complex conjugates are also poles of this function. As a result, the following development holds:

Pwl0) _§4 (alZ) | o)) o0, BO ), o)
(1+22)7q(lE) F\e—4 2=Z4) 2=t (z—1)° Z+L (z+1)

with (1 <i<6):

o Ipzjkl( ( l))
a(Z;) = 1+ 22 Vlim, , (% (q(¢ )
1 Pi (€ (Zz)) 5 _ =
4 (ZZ + 1) f(Z, ) ) a(Z,-) - a(Z,-),
(

I N ) ))
0 =1z (dz(( 4(6(2)

o —z pyulé(2) Z+1 d P (E(2)) — 0= a(—s
“im ) e e ))‘0‘ =)
b(1) = lim Zpiju(f(z)) _ lpijkl(l) b(—1) = Z)(l).

= (z+1)q(E) 4q(1) °

To proceed further, we consider the integrand z — In(z )% (the right term of (18)) to derive (Cauchy’s
theory of residues) the following algebraic result:

1
Py = Img <p”” ) ZRe (In(Z )) (C.1)

Since Zy_1Zy = —1 (1 < i< 3), the poles Z; satisfy:
2Z,‘ ZZ i— 1 ZZ i— 3 il Zi
. 2 : 2i-1 :>a(22[)<2 2i—1 >P,k/(é( 2))
Zy+1 Zy +1 4\Z5_, +1 q'(&(Zy))

Since &(Z-1) = zi = &(Zy) and In(Zy_y) + In(Zy;) = mm, the right term of (C.1) can be further simplified as
follows:

=6 i=3
> Re(In(Z))a(Z ZRe In(Zy-1)a(Zoi1) + In(Za)a(Zy)) = Y Re((2In(Zy—1) — m)a(Zy-1))
i=1 i=1 i=1
= 1 ( 275 ) Pi(zi)
= Re (2In(Zy_;) —im)=~ — Y )
; ( ( 2 l) )4 Z%,‘,l + 1 q/(zi)

Substituting z2 4+ 1 = ((Z%,_, + 1)/(2Zx_1))" in the latest relation yields the final expression (19).
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