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ABSTRACT
Imaging genetic studies of large control cohorts such as UK
Biobank enable to assess the range of normal variations in
brain structures. Previous studies by our group have shown
that the width of several cortical sulci is associated with a
variant in the upstream region of KCNK2 gene even if this
effect is corrected with age. Here we propose to analyze in
a multivariate setup the associations between sets of genetic
variants and multiple sulci widths. The genetic variants we
consider are sets of SNPs of known phase called haplotypes,
taken from the upstream region of KCNK2 gene. To the best
of our knowledge, multivariate analysis in imaging genetics
has never been used in haplotype studies. Our method was
able to recover the expected association signal and uncover
new associations between imaging data and genetic variants.

Index Terms— Imaging genetics, haplotype, multivariate
analysis

I. INTRODUCTION
Grey matter thickness is known to shrink with aging in

both diseased and normal brains [1], [2], [3]. A related effect
is the cortical sulcus widening [4], [5]. The width of a sulcus
can be estimated using a feature called opening [6] shown to
be robustly related to grey matter thickness and which does
not require spatial normalization nor regional atlas. Heri-
tability studies pointed to a dozen sulci that appeared to be
under strong genetic control [7]. Furthermore, in [8], GWAS
has identified a reproducible genetic marker associated with
the opening of the left, posterior, Calloso-Marginal sulcus.
In this work, we used the Brainvisa cortical sulci recognition
pipeline to automatically segment [9] and label [10] nearly
one hundred brain sulci. GWAS use a univariate approach
and as such, suffer from several drawbacks, in particular
the use of an unduly conservative multiple test correction
and the fact that the correlation structure of the genome is
not accounted for. In the context of complex traits, where
individual variant effect size is expected to be small, only
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SNPs that are frequent in the population can significantly be
associated with the phenotype. Moreover, univariate analyses
are unable to model or predict the role of a genetic variant
within the genomic region. Finally, univariate approaches
are inadequate in situations where a set of variants are
jointly associated to multiple phenotypes (pleiotropy). Using
a multiple phenotype multivariate approach, we propose
to alleviate these drawbacks by simultaneously analyzing
one hundred related phenotypes and to model interactions
between genetic variants within the same genomic segment.

II. MATERIAL AND METHODS
We obtained 20,060 T1-weighted MRI from the January

2018 release, under UK Biobank (UKB) data appl. #25251.
UKB cohort is particularly suited to study aging, with a
mean participants age of 57 years, and a standard deviation
of 8.2. We retained 15,612 subjects after QC protocol,
British ancestry selection, and additional filtering for high
heterogeneity, high missingness, first-degree relatedness and
sex mismatch.

II-A. Imaging
For each selected subject, the brain mask of

the T1-weighted image is obtained using SPM8
(fil.ion.ucl.ac.uk/spm). Next, individual brain images were
segmented into grey matter, white matter and cerebro-
spinal fluid (CSF) in BrainVisa. Finally, individual sulci
were extracted using Morphologist, the sulcus identification
pipeline of BrainVisa. We retained the 96 (out of 126) most
sample-wide identified sulci : a sulci was retained if it was
missing in less than 1000 individuals (94.6% presence rate,
see [11]). For each retained sulcus and for each subject,
sulcus width or opening (the average distance between both
banks) was estimated as the ratio of CSF volume and surface
area of the sulcus [7], [8].

II-B. Genetics
Genotyping data in UKB (UK Biobank Axiom Array)

contains 820, 967 SNPs. In such data, for a given SNP,
the variant status is obtained without knowing if it lays

http://fil.ion.ucl.ac.uk/spm


on the paternal or maternal chromosome for a heterozygote
subject. This raises an issue when one wants to use the chain
of consecutive SNPs. In the 2018 release of UK Biobank,
the so-called “phased data” are available for the 500,000
subjects. With this preprocessing, the succession of SNPs
alleles is inferred in contiguous small regions of maternal
or paternal chromosomes. Based on the results of a GWAS
[8] where SNP rs864736 is found to be associated with the
opening of several sulci, we chose a genomic region of 55.8
kbp on chromosome 1, which contained all the SNPs in
linkage desequilibrium with rs864736 (i.e., SNPs which are
supposed to be inherited together from the parents). This
region consists in 18 SNPs. Using the “phased data” of our
15,612 subjects in this region, we derived all the haplotypes
with a length of 3 to 18 SNPs.

II-C. Haplotype multivariate association analysis
The interplay between neuroimaging and genetic data is

uncovered using Regularized Generalized Canonical Corre-
lation Analysis (RGCCA), a general framework for multi-
block data analysis [12], [13].

The first block, denoted X1, is related to neuroimaging
and is defined by p1 = 96 sulci measured on n = 15, 612
individuals. The second block X2 is related to genetic
information and is defined by p2 = 604 haplotypes measured
on the same set of n individuals. RGCCA aims to find
block components yj = Xjwj ; j = 1, 2 (where wj is
a column vector with pj elements) summarizing the relevant
information between and within the blocks. In this context,
RGCCA is defined as the following optimization problem :

max
w1,w2

cov2 (X1w1,X2w2)

s.t. w>j Ŝjjwj = 1, j = 1, 2.
(1)

where Ŝjj = τjI+
(1−τj)
n−1 X>j Xj and τj is a scalar between

0 and 1. Ŝjj can be considered as a shrinkage estimate
of the true variance-covariance matrix Σjj [14]. [15] gives
an analytical formula for the optimal τj that minimizes the
mean square error between Σjj and its estimate Ŝjj .

II-D. Bootstrap procedure and missing data imputation
A balanced bootstrap procedure [16] is used to assess the

reliability of estimated weights. For that purpose B = 2000
bootstrap samples are considered. Some sulci were not
detected in all individuals, therefore a simple regression
imputation strategy is used to avoid missing values in each
bootstrap sample of sulci opening data. A simple regression
model is built to predict each opening value from the
covariates Age, Sex, and the 10 first components of UK
Biobank-provided MDS. Residuals where reported in a new
n× p1 matrix, where subjects with missing sulci (i.e. where
not accounted for in the regression model) are set to 0. This
procedure allows both to impute missing values and remove
effects of covariates which are confounding factors in our

case. Finally, each residual bootstrap sample is standardized
within each block in order to make the variables comparable.
To make blocks comparable, each block was divided by the
square root of its number of variables [13]. The RGCCA
package (freely available at CRAN : cran.r-project.org) was
then used to yield the weights vectors wb

1 and wb
2 for each

bootstrap sample b = 1, . . . , 2000.

II-E. Confidence intervals and variable selection
In order to assess the reliability of estimated weights, α-

level confidence intervals (Cjk,α, j = 1, 2) were derived for
each element w1k (corresp. to the kth sulcus) of w1 and
w2k (corresp. to the kth haplotype) of w2. Non-parametric
(Cj,NPk,α ) and parametric (Cj,Pk,α) methods were considered to
estimate these confidence intervals.

For Cj,NPk,α , the empirical bootstrap distribution of wj,k
was used to estimate the confidence interval. In order to
be as restrictive as possible, we chose to only look at

Cj,NPk,αmin
=

[
min(wbj,k)
b∈J1,BK

,max(wbj,k)
b∈J1,BK

]
, which corresponds to

a level αmin = 2/B = 10−3.
For Cj,Pk,α , similarly to [17], we estimated the mean and

variance for each element w1k and w2k across the bootstrap
samples, from which we derived confidence intervals under
the assumption that the weights estimation exhibited asymp-
totic normality.

Since simultaneous multiple bootstrap confidence intervals
estimates were desired with an overall confidence coefficient
1 − α for each block Xj , j = 1, 2, we constructed each
interval with confidence coefficient 1 − (α/pj), j = 1, 2.
The procedure is similar to a Bonferroni correction. For non-
parametric estimation, there is no advantage in exploring
levels lower than αmin since their confidence intervals
correspond to the full distribution.

Nevertheless, non-parametric estimation still offers prac-
tical advantages as being closer to the real distribution, thus,
we chose to look at three confidence intervals : Cj,NPk,αmin

,
Cj,Pk,5%,BF and Cj,Pk,10%,BF . The last two confidence intervals
are Bonferroni corrected as mentioned earlier. This correc-
tion is likely very conservative w.r.t. the independence of the
pj variables since many haplotypes are subsets of others.
For these reasons we chose to explore the two levels of
confidence α = 0.05 and α = 0.1.

A weight element wjk is considered as relevant if zero is
excluded from its confidence interval, since the probability
of this weight being zero is lower than the level of confidence
associated to this interval.

III. RESULTS
Figure 1 represents the weights wj , j = 1, 2 computed

with RGCCA. Only relevant weights according to Cj,NPk,αmin

are shown. The ones associated to a single star were relevant
for Cj,Pk,10%,BF , the ones with a double star were significant
according to both Cj,Pk,10%,BF and Cj,Pk,5%,BF .

https://cran.r-project.org/web/packages/RGCCA/vignettes/vignette_RGCCA.pdf


Fig. 1. (Left) : Weights w1 associated with the selected vari-
ables of the imaging block. Selected features were the bilat-
eral Posterior Calloso-Marginal Sulci ; (Top, Right) : Weights
w2 associated with the selected variables of the genetic block.
All displayed variables were selected using Cj,NPk,αmin

(see text for de-
tail) with (∗∗) : variables selected with parametric confidence level
Cj,Pk,5%,BF and (∗) : variables selected with parametric confidence
level Cj,Pk,10%,BF . (Bottom, Right) : SNP composition of selected
haplotypes : light grey bars show the extent of the sequence and
dots indicate the location of alternative alleles (see text for details).

III-A. Selected variables for imaging block
Figure 1 (top, left) shows a barplot of the weights as-

sociated with the 2 selected features of the imaging block.
The selected variables correspond to the bilateral Posterior
Calloso-Marginal Sulci, of which the opening of the for-
mer was reported significantly associated with rs864736.
Variables were relevant according to the three confidence
intervals considered. There were 2 supplemental imaging
features (right Subcallosal and Superior precentral sulci, not
shown) relevant according to Cj,Pk,10%,BF . However, they were
excluded since they were not selected using Cj,NPk,αmin

.

III-B. Selected variables for genetic block
Figure 1 (top, right) depicts the weights associated with

the 12 selected haplotypes (in decreasing order) according to
Cj,NPk,αmin

. Figure 1 (bottom, right) gives the composition of the
haplotypes : selected sequences of variants are represented as
a grey box. In each sequence, grey dots indicate the alternate
alleles. Haplotypes are named as follows : [index of starting
SNP - sequence of variants], e.g. [4 − 000001] refers to

the haplotype that starts on position #4 with 5 reference
alleles and a single alternative allele at position #9. Selected
haplotypes included various combinations of variants (from
3 to 10), however none of the haplotypes included variants
between position 11 to 18. [4-000001] and [3-1000001] are
relevant to Cj,Pk,5%,BF . If the confidence level is decreased to
10% using Cj,Pk,10%,BF , 3 additional haplotypes appear : [7-
0011], [5-000011] and [4-0000000]. Only the last one has a
positive weight.

III-C. Interpretation findings
We will interpret the sign of the weights using haplo-

type [4-000001] and Left Posterior Calloso-Marginal Sulcus
(FCMpost left) as an example. These both variables have
negative weights in the model meaning that they are neg-
atively correlated to their block component yj , j = 1, 2.
However, over the B = 2000 bootstrap samples, correlation
between y1 and y2 was always negative. To summarize,
the presence of haplotype [4-000001] is associated to a
lower opening for FCMpost left : haplotypes with a negative
weight have a protective effect on the sulcus opening w.r.t
aging. Opposite conclusions are drawn for haplotypes with a
positive weight in the model. However, interpretation of the
values of these weights is not straightforward. To assess the
magnitude of the association with the phenotypes we rely
on explained variance in the following section.

IV. DISCUSSION
Previous studies by our group identified SNP rs864736

(and marginally rs59084003) as significantly associated with
sulci opening and grey matter thickness for left Posterior
Calloso-Marginal, Intra-Parietal and Central sulci. RGCCA
was run two last times, first with only relevant variables
according to Cj,Pk,5%,BF (RGCCA-5%) then with variables
based on Cj,Pk,10%,BF (RGCCA-10%). For comparison pur-
poses, we computed the explained variance using univariate
analysis of the most significant variant (rs864736) and the
sulci opening most associated with it (FCM posterior left
and right). Several haplotypes had better or similar explained
variance than rs864736 (see top and middle rows of Table I).
Moreover, in RGCCA-10%, variance explained by the ge-
netic block component y2 = X2w2 (where here, X2 is only
composed of selected variables based on Cj,Pk,10%,BF ) largely
outperformed the single-SNP model. When we evaluated the
variance of the imaging block component y1, as explained
by the full genetic block component y2, both RGCCA-5%
and RGCCA-10% outperformed the single-SNP model.

Several selected haplotypes are subsets of each other, and
differ by one variant. If the SNP they differ from is not
frequent, they represent very similar variables. To evaluate
the impact of such co-linear variables, haplotype variables
were excluded if the percentage of subject that differs for two
haplotypes is less than 1%. In this case, only the variable for
most frequent haplotype was kept. On this new dataset, we



Variants/Model FCM-Post. left FCM-Post. right
rs864736 0.46 0.44
[4− 000001] 0.46 0.53
[3− 1000001] 0.46 0.53
[8− 011] 0.38 0.36
[5− 000011] 0.48 0.35
[4− 0000000] 0.48 0.35
RGCCA-5% - y2 0.46 0.53
RGCCA-10% - y2 0.75 0.69
RGCCA-5% - y1 & y2 0.59
RGCCA-10% - y1 & y2 0.71

Table I. Percentage of Explained Variance for univariate analysis
using : (top row) single-SNP ; (five middle rows) selected variables
at confidence level Cj,Pk,10%,BF ; (RGCCA-5% and RGCCA-10%)
model-derived haplotype combination and (2 bottom rows) variance
of the imaging block component y1, explained by the genetic block
component y2

used the same bootstrap procedure to derive a new Cj,Pk,5%,BF .
In a similar fashion to RGCCA-5%, we then derived a third
model. For this model, 3 variables in the genetic block were
selected ([2-01000001], [4-000001] and [8-011]). Variables
in the imaging block remained the same and their associated
weights were similar to RGCCA-5%. The combination of
the 3 genetic variables exhibits similar explanatory power as
RGCCA-10%, with an explained variance of 0.64 and 0.7
for left and right Calosso-Marginal sulci, respectively.

Work in progress includes application of sparse versions
of RGCCA [18], [19] and comparisons with the presented
results.

V. CONCLUSION AND FUTURE WORKS

We proposed a multivariate model for haplotype associa-
tions with multiple quantitative traits that successfully recov-
ered previously known associations, and gained substantial
knowledge regarding the genomic region and associated
sulci. We present three new findings : 1) only the genomic
region located before rs864736 and rs59084003 seems to be
implicated in the association ; 2) haplotype combinations
are explanatory variables regarding Calloso-Marginal sulcus
in both hemispheres ; and 3) an alternate allele at the
third position (rs504473) seems to be associated with an
antagonistic effect w.r.t rs864736 and rs59084003. Future
works will extend this approach to gene clusters, gene
pathways and larger intergenic regions to detect regulating
patterns that interact with the observed phenotypes.

This method relies on a critical variable selection proce-
dure based on the bootstrap folds. This procedure has shown
to be sensitive to strongly co-linear variables, therefore we
intend to propose several developments that could enhance
this step. First, using a tree-like representation of haplotypes,
we could regularize or combine variables, thus allowing
us to keep more observations for the model estimation.
Second, using block sparsity and regularization, multivariate
procedures such as sparse group-lasso could better account
for co-linearity of the variables. In the context of imaging
genetics, we argue that insights provided by multivariate

approaches are key in uncovering the complex interactions
between genes, structure and function.
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