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ABSTRACT
Imaging-genetics is a growing popular research avenue which
aims to find genetic variants associated with quantitative phe-
notypes that characterize a disease. In this work, we com-
bine structural MRI with genetic data structured by prior
knowledge of interactions in a Canonical Correlation Anal-
ysis (CCA) model with graph regularization. This results in
improved prediction performance and yields a more inter-
pretable model.

Index Terms— Imaging-Genetics, Networks, Structured
constraints, Generalized Canonical Correlation Analysis

1. INTRODUCTION

The joint study of brain images and genetic data is of grow-
ing interest to find associations between genetic variants and
disease-related features that can be measured on brain MRI.
The rationale behind this research avenue is that imaging en-
dophenotypes stand as proxies to disease status and evolution,
that can be measured with non-invasive methods to facilitate
early diagnosis and follow-up. However, genetic information
is expected to provide insights into the underlying disease
mechanisms and valuable tracks to finding therapies.

Existing studies seek pairwise associations between a set
of genetic variants and brain regions or at the whole genome
and whole brain scale [1]. In this work, we demonstrate how
combining multiple sources and layers of information, i.e.
imaging and genetic experimental data and prior knowledge,
with data integration methods brings supplemental informa-
tion, both in terms of performance and interpretability com-
pared to univariate approaches. The aim of data integration
methods is to account for known interactions between vari-
ables and data from each modality.

Nonetheless, they raise many methodological challenges
as both data types are very high-dimensional (104 vari-
ables) [2]. Canonical Correlation Analysis (CCA), and its
regularized generalization to multiple blocks, RGCCA [3], is
a framework that allows to model and quantify interactions
within and between blocks of variables of heterogeneous

types, and with respect to the disease status. Variants of
RGCCA and CCA allow to select the variables that are the
most relevant in the model [4, 5, 6].

However, biomarker identification from genotyping data
usually fails to provide biologically relevant associations.
This is because, different alterations in the same biological
pathway often lead to the same pathological phenotype, but
they will all fail to pass significance thresholds. Moreover,
empirical evidences show that many segregating variants af-
fect multiple traits and a precise estimation of the proportion
of such variants remains elusive [7]. Therefore including
genetic interaction networks as prior knowledge to wisely
concentrate the information from genome-wide disseminated
single-nucleotide polymorhpisms (SNPs) is a promising ap-
proach.These can be used in a data pre-processing step or
to compute a regularization constraint [8], or both as in [9].
Azencott [8] gives a review of statistical methods to regu-
larize variable selection with graphs, however the focus is
mainly on univariate regression.

Following the framework formulated in [10], we present
here the use of the GraphNet penalty on a multiblock CCA
model at a genome-wide scale. We use the graph Pathway
Commons (PC) (http://www.pathwaycommons.org)
as prior knowledge to predict the disease status and illustrate
our method on the Alzheimer’s Disease Neuroimaging Initia-
tive (ADNI) cohort (http://adni.loni.usc.edu/).
In Section 2, we present the method and evaluation scheme,
then in section 3 we present the data used to assess the
method. In section 4 we present the results and discuss them
in section 5.

2. METHOD

Let X ∈ Rn×p and Z ∈ Rn×q represent two blocks of vari-
ables, for n individuals with respectively p and q features
(e.g. imaging and genetics data). We denote by y ∈ {0, 1}n
the disease status or target. X and Z are scaled respectively
by
√
p and

√
q to balance for the different number of fea-

tures [11] and we assume that X,Z,y have been centred and
scaled to unit variance.
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Structured Sparse CCA The SGCCA [4] optimization
problem in the context of two blocks and a target is the
following:

max
x∈Rp

z∈Rq

C(x, z) = xTXTy + zTZTy + xTXTZz (1)

s.t. ‖x‖22 = ‖z‖22 = 1 and ‖x‖1 ≤ s1, ‖z‖1 ≤ s2 (2)

The first two terms aim at maximizing the covariance between
the two latent variables representing each block and the target,
while the third term is the interaction between the two blocks.
The problem is constrained with an `1-norm with parameters
s1 and s2, in order to obtain sparse loadings x and z, to select
the key variables in the model.

We propose to add a structured penalty to the objective
function of SGCCA in order to select variables that are known
to interact. Let G = (V,E) be a graph with q vertices (e.g.
the genes), representing the known interactions between the
q variables. Let A ∈ Rq×q be its adjacency matrix, and L ∈
Rq×q be its Laplacian matrix. The penalty is composed of
two parts, the first enforces the weights of variables that are
connected in G to be close to one another. The second part is
an `2-norm penalty for isolated nodes, as they would be more
likely to be selected otherwise. Let 1 ≤ d < q be the number
of isolated variables in G, and suppose variables are ordered
so that these nodes are the last d columns of Z. Let Jd be the
q × q diagonal matrix with the last d coefficients equal to 1,
all others to 0:

Pλ,γL (z) = λ
1

2

q∑
i=1

q∑
j=1

Aij(zi − zj)2 + γ

q∑
j=q−d

z2j (3)

= zT (λL+ γJd)z (4)

When used in combination with the `1 norm, this penalty is
known as GraphNet [12]. The final optimization problem is
thus:

max
x∈Rp

z∈Rq

f(x, z) = C(x, z)− Pλ,γL (z) (5)

s.t. ‖x‖22 ≤ 1, ‖z‖22 ≤ 1 and ‖x‖1 ≤ s1, ‖z‖1 ≤ s2 (6)

where λ, γ, s1, s2 are regularization hyper-parameters. We
henceforth call this model GraphNet-GCCA (GN-GCCA).
Notice that the `2 constraints (2) are changed to inequality
constraints in (6) in order to make the feasible set convex.
For certain choices of parameters s1 and s2, the `2 constraints
will be active at the optimum solution as discussed in [5].

Model fitting The problem does not have an analytical so-
lution and is non-convex, but it is multi-convex in the sense
that the loss function −f is convex when considered as a
function of each individual block loading, while the others
are kept fixed. Minimizing such functions under convex con-
straints can be achieved with a so called block relaxation al-
gorithm. It consists in alternating between the blocks to min-
imize the partial loss w.r.t each vector, as in the procedure

Algorithm 1 Block relaxation algorithm for GN-GCCA, with
desired precision ε

Initialize: x(0), z(0)

1: repeat
2: for k = 1..max iter do
3: gradx ← XT (y + Zz(t))
4: x(t+1) ← projP(x

(t) + αx · gradx)
5: end for
6: for k = 1..max iter do
7: gradz ← ZT (y +Xx(t+1))− L̃z(t)

8: z(t+1) ← projQ(z
(t) + αz · gradz)

9: end for
10: until f(x(t), z(t))− f(x(t+1), z(t+1)) ≤ ε
11: return x(t+1), z(t+1)

described in [10, alg. 2]. Let P ⊂ Rp and Q ⊂ Rq be the
convex sets where the constraints (6) are satisfied, and projP
and projQ the orthogonal projections on those sets. Details to
compute these projections are given in [10]. Each partial con-
strained minimization problem is solved with a few FISTA
iterations [13] with step sizes αx and αz . Algorithm 1 de-
scribes the full procedure. This algorithm was implemented
using the pylearn-parsimony package (https://github.
com/neurospin/pylearn-parsimony).

Model selection and evaluation The previous model has
four regularization hyperparameters: s1 and s2 control the
sparsity, while λ controls the roughness of z over G, and γ
controls the shrinkage for isolated features because of its in-
teraction with λ, this parameter was set manually . To com-
pare our method with SGCCA, we set aside a test set and a
training set. The prediction performance is evaluated by fit-
ting a Linear Discriminant Analysis (LDA) model on the pro-
jections t1 = Xx and t2 = Zz. This allows to seek the best
hyperparameters, assessing them in a 5-fold cross-validation
(CV) scheme, on the training set. We then choose the combi-
nation of parameters that achieved the highest area under the
ROC curve (AUC) on the classification task with target y, and
train the model on the whole training set with this choice of
parameters. Finally the AUC is computed for this model on
the test set.

3. DATA AND EXPERIMENTS

We used brain structural MRI data and genotype data from
the ADNI database. The individuals are classified in four cat-
egories: Healthy Control (HC), Mild Cognitive Impairment
(MCI), MCI who converted to AD in the 24 months follow-
ing screening (MCIC), and Alzheimer’s Disease (AD).

The Imaging data We used the computed mean corti-
cal thickness for 75 ROI for each hemisphere and sub-
cortical volumes for 63 brain regions with FreeSurfer on
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the Aparc2009 atlas, resulting in p = 213 features. Images
for 406 individuals were available. We corrected the features
for age and sex with a linear regression (the model is fitted
separately on each fold of the CV).

The genetic data SNPs data were pruned for missing geno-
types, Hardy-Weinberg test and minor allele frequency, and
discarded when on chromosome Y or mitochondrial chromo-
somes, resulting in 491616 loci. As in PC, vertices are genes
and not SNPs, we computed a score for each gene to reflect
the burden of SNPs contained in this gene and its flanking re-
gions (40kb upstream and downstream), thus accounting for
cys-regulating SNPs. For an individual i, the state of the SNP
sk is encoded as αik ∈ {0, 1, 2} for the number of alterna-
tive alleles, w.r.t the reference genome. A multiple-SNP risk
score for each gene is then computed as a weighted sum of
the allelic counts αik of each SNP:

Xig =

pg∑
k=1

βkαik

for individual i and gene g, where β is the log odds ratio es-
timated in the IGAP meta-analysis [14]. pg is the number of
SNPs mapped to gene g. Genetics data where available for
757 patients and SNPs were mapped to q = 19217 genes.

The Network In this work, we used a network of physi-
cal interactions from Pathways Commons (PC), keeping only
undirected, highly confident edges i.e. interactions supported
by PubMed references with at least 2 different sources. It was
extracted with XGR (eXploring Genomic Relations) [15].

4. RESULTS

Performance To probe the model’s performance in learning
early signs of the disease, we used the individuals with status
HC and AD to train the models (n = 214 individuals), and
individuals with status MCI or MCIC as test set (n = 157).
The predictive power of the genetics data alone, and of the
imaging data alone were assessed with an `1, `2 regularized
logistic regression (we refer to these models as LR Gen and
LR Im). We also assessed the impact of the GraphNet penalty
with a logistic regression and `1 regularization (LR GN Gen).
The mean performance in the CV of the selected model and
the performance on the test set of the best model trained on the
whole training data are reported for the five models in Table 4.
We also reported the number of selected features (signature).
s2 clearly stood out as a key parameter for performance and
we observed better CV-mean AUC for smaller values. λ was
searched in a range of small values (10−3 − 102) to avoid
z = 0 from being an optimal but uninteresting solution.

Selected brain regions The brain ROI selected by GN-
GCCA on the structural MRI data are represented in Figure 1.

Model Signature CV Score
(Acc/AUC)

Test Score
(Acc/AUC)

LR Gen 19200 genes 0.53/0.56 0.52/0.55
LR GN Gen 35 genes 0.61/NC 0.57/0.62
LR Im 42 ROI 0.88/0.94 0.68/0.72

SGCCA
2 genes
23 ROI 0.90/0.95 0.68/0.74

GN-GCCA
196 genes
18 ROI 0.86/0.94 0.70/0.75

Table 1. Results of the experiments for models with genetics
data only (LR Gen, LR GN Gen), imaging only (LR Im) and
both (SGCCA, GN-GCCA).

The regions selected consist in areas where atrophy is clas-
sically observed in the early stage of AD: hippocampus and
temporal lobes, but not the exhaustive set of involved regions
[16]. These might be the regions where AD related atrophy is
linked to a specific molecular mechanism.

Fig. 1. Visualization of the brain ROI selected by GraphNet-
GCCA

Selected gene network The subgraph formed by the 196
genes selected by GN-GCCA is represented Figure 2. Among
these, five are linked to AD by previous publications (APOC1,
IFNA4, NDUFA5, SDHC, TOMM40). There are nine con-
nected components (165 singletons). The biggest one com-
prises seven genes. A functional analysis using DAVID
(https://david.ncifcrf.gov/) shows that three
genes belong to the Reactome Pathway R-HSA-977225 Amy-
loid fiber formation (underlined in Fig 2).

5. DISCUSSION AND CONCLUSION

We demonstrated a significant gain in prediction performance
when integrating imaging and genetic data to build predic-
tive models of AD. The gain is even more important when
adding structured prior knowledge to the genetic data. Du et
al. in [6] and references therein investigated graph regular-
ized CCA on ADNI on up to a few hundred candidate SNPs,
and a few hundred imaging ROIs while our method is tested
on the whole genome. Moreover, the graphs they used were
weighted by sample correlations and did not leverage prior

https://david.ncifcrf.gov/


Fig. 2. Visualization of the subgraph formed by the genes se-
lected by GN-GCCA. Colors show different connected com-
ponents and genes that belong to HSA 977225 are underlined

knowledge of gene interactions. Their algorithm also consid-
ered the `1 norm to be smooth by adding a small constant to
zero weights. Moreover their approach is not scalable to the
whole-genome as it requires inverting a p×pmatrix at each it-
eration. In comparison, our method uses an `1 projection that
naturally results in sparse solutions. Lorenzi et al. [16] in-
stead applied a hard threshold on many bootstrapped samples
to select SNP-sets that are then mapped back to genes, and
did not use graph constraints. None of these methods jointly
use the target and both data types to compute the canonical
loadings. Finally we identified several pathways that seem to
play a role in the disease at an early stage. Note that a similar
regularization could be applied to the imaging data where the
graph would encode spatial proximity or connections between
regions.

6. REFERENCES

[1] L. Shen et al., “Genetic analysis of quantitative pheno-
types in AD and MCI: imaging, cognition and biomark-
ers,” Brain Imaging and Behavior, vol. 8, no. 2, pp. 183–
207, 6 2014.

[2] F. S. Nathoo, L. Kong, and H. Zhu, “A Review of Sta-
tistical Methods in Imaging Genetics,” 2018.

[3] A. Tenenhaus and M. Tenenhaus, “Regularized Gener-
alized Canonical Correlation Analysis,” Psychometrika,
vol. 76, no. 2, pp. 257–284, 4 2011.

[4] A. Tenenhaus et al., “Variable selection for generalized

canonical correlation analysis,” Biostatistics, vol. 15,
no. 3, pp. 569–583, 7 2014.

[5] D. M. Witten, R. J. Tibshirani, and T. Hastie, “A penal-
ized matrix decomposition, with applications to sparse
principal components and canonical correlation analy-
sis,” Biostatistics, vol. 10, no. 3, pp. 515–534, 7 2009.

[6] L. Du et al., “Structured sparse canonical correlation
analysis for brain imaging genetics: an improved Graph-
Net method,” Bioinformatics, vol. 32, no. 10, pp. 1544–
1551, 5 2016.

[7] P. M. Visscher et al., “10 Years of GWAS Discovery: Bi-
ology, Function, and Translation,” The American Jour-
nal of Human Genetics, vol. 101, no. 1, pp. 5–22, 7
2017.

[8] C.-A. Azencott, “Network-Guided Biomarker Discov-
ery,” in Machine Learning for Health Informatics:
State-of-the-Art and Future Challenges, A. Holzinger,
Ed. Cham: Springer International Publishing, 2016,
pp. 319–336.

[9] M. Hofree et al., “Network-based stratification of tumor
mutations,” Nature Methods, vol. 10, no. 11, pp. 1108–
1115, 11 2013.
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