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ARCTIC CURVES FOR PATHS WITH ARBITRARY STARTING
POINTS: A TANGENT METHOD APPROACH

PHILIPPE DI FRANCESCO AND EMMANUEL GUITTER

Abstract. We use the tangent method to investigate the arctic curve in a model of non-
intersecting lattice paths with arbitrary fixed starting points aligned along some boundary
and whose distribution is characterized by some arbitrary piecewise differentiable function.
We find that the arctic curve has a simple explicit parametric representation depending
of this function, providing us with a simple transform that maps the arbitrary boundary
condition to the arctic curve location. We discuss generic starting point distributions as
well as particular freezing ones which create additional frozen domains adjacent to the
boundary, hence new portions for the arctic curve. A number of examples are presented,
corresponding to both generic and freezing distributions.
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1. Introduction

Many tiling problems of finite plane domains of large size are known to exhibit the so-
called arctic curve phenomenon, namely the existence of a sharp phase separation between
“crystalline” (i.e. regularly tiled) phases often induced by boundary corners and “liquid”
(i.e. disordered) phases away from the influence of boundaries. For instance, the celebrated
problem of tiling the Aztec diamond with dominoes is known to display an arctic circle
separating frozen phases induced by the corners of the domain from an entropic phase in the
center [CEP96, JPS98]. Typically, one studies the asymptotics of tilings of scaled domains
whose limits are polygons. More generally, dimer models on regular graphs, which are a
dual version of tiling problems, exhibit the same arctic phenomenon, which received a fairly
general treatment in the recent years [KO06, KO07, KOS06]. Free boundary conditions,
where portions of the boundary are allowed to fluctuate were also studied [DFR12].

The general method to obtain the arctic curve location is the asymptotic study of bulk
expectation values, which requires a certain amount of technology, resorting for instance
to the machinery of the Kasteleyn matrix. Other rigorous methods use the machinery of
cluster integrable systems of dimers [DFSG14, KP13].

All the models above have an interesting common feature: they can be rephrased in terms
of configurations of non-intersecting lattice (or graph) paths, which arise from conservation
laws of the models, and display their underlying fermionic character. Typically, we have
a set of paths with steps along oriented edges of a regular graph, with fixed starting and
ending points, and subject to the condition that no two paths share the same vertex.
These occupy a maximal domain D, which is then scaled to reach a continuum limit. In
the path formulation, frozen phases correspond to regular compact configurations (such as
zones with parallel paths only), or to empty domains not visited by any path. With such
an interpretation, it is easy to track down the arctic curve (or portions thereof) as the
asymptotic “outer shell” of the path configurations, determined by the outermost paths.
Inspired by this remark, Colomo and Sportiello [CS16] recently devised a new method for
determining the arctic curve in path models, coined the tangent method. The idea is to
move the endpoint of one of the outermost paths to some distant point p on the regular
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graph, so as to force this path to exit the domain D say at a point `. It is then argued that
between ` and p, away from the influence of the other paths the most likely asymptotic
trajectory is a straight line. Inside the domain D, the outermost path is expected to first
follow the outer shell, then escape this shell tangentially and continue on towards `, again
along a straight line since the crossed region is empty from other paths. For any fixed p, the
most likely position ` = `(p) corresponds to having both straight lines identical. Solving
the corresponding extremization problem therefore provides a parametric family of straight
lines (`(p) p), all tangent to the arctic curve, which is then recovered as the envelope of this
family of tangents. The main advantage of this method is that it only requires to estimate
a boundary one-point function, namely that for which the endpoint of an outer path is
moved to a position ` on the boundary of D. Such a function is considerably simpler to
compute than bulk expectation values.

The method, though non-rigorous, was successfully tested in a number of examples [CS16,
DFL18]. Remarkably, it seems to even apply to situations where the lattice paths interact,
such as the so-called osculating paths describing configurations of the six-vertex model. In
this model, the path configurations are allowed to form “kissing points” where a vertex is
shared by two neighboring paths. The tangent method predicts in particular the asymptotic
shape of large alternating sign matrices (ASM) [CS16] as well as vertically symmetric
alternating sign matrices (VSASM) [DFL18].

In the present paper, we use the tangent method to investigate path/tiling models with
new kinds of boundary conditions: in the path language, we consider path configurations
where the starting points of the paths take fixed but arbitrary positions aligned along some
boundary segment. Asymptotically, the distribution of these points is simply characterized
by some arbitrary piecewise differentiable function α(u) : [0, 1] → R. Our main result is
that the corresponding arctic curve has an explicit parametric representation (X(t), Y (t))
for its coordinates in the plane, which takes the following simple form:

X(t) = t− x(t)(1− x(t))
x′(t)

Y (t) =
(1− x(t))2

x′(t)

with x(t) := e
−
∫ 1

0
du

t−α(u) .

(1.1)

This provides us with a direct transform that maps the “boundary shape” α(u) to the
arctic curve, made in general of several portions corresponding to various allowed domains
of the parameter t.

The paper is organized as follows. In Section 2, we present the general path model that
we will consider, together with its tiling interpretation, and compute its partition function.
The model involves paths on the edges of the square lattice with starting points fixed at
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arbitrary positions along a horizontal segment. As just mentioned, these positions are
entirely characterized asymptotically by their limiting boundary shape α(u). The tiling
interpretation allows to rephrase the model in three different (but equivalent) ways, using
different sets of paths.

The tangent method is then applied in Sections 3 and 4 using two different sets of paths
to obtain two different portions of the arctic curve. The derivation involves the computation
of a boundary one-point function, which is performed by using the LU decomposition of the
Lindström-Gessel-Viennot matrix, a method advertised and successfully used in [DFL18]
for similar problems. Both computations lead to the same parametric equations for the
arctic curve, as given above, in two different parameter domains.

Section 5 presents various examples: the “pure” case α(u) = p u, the case of a piecewise
linear α(u) and finally two instances of some non-linear α(u). Subtleties arise whenever
α′(u) = 1 on finite segments, corresponding to a certain type of freezing boundary condition
inducing new macroscopic frozen regions inside the path domain. Likewise, macroscopic
gaps in the distribution of starting points induce another type of freezing. These “freezing
boundaries” are investigated in detail in Section 6, and give rise to additional portions of
the arctic curve, still described by the parametric equations (1.1) above, but for yet other
domains of t.

We gather a few concluding remarks in Section 7.

2. Definition of the model and partition function

2.1. Non-intersecting lattice paths with arbitrary starting points. In its simplest
formulation, the model that we wish to study simply describes configurations of non-
intersecting lattice paths (NILP) with prescribed extremities. More precisely, a config-
uration consists of n+ 1 lattice paths making only west- or north-oriented unit steps along
the edges of the regular square lattice, with respective starting points Oi and endpoints Ei,
i = 0, . . . , n, chosen as follows: the endpoints Ei are taken with coordinates (0, i) so as to
span a vertical segment of length n; the starting points Oi have coordinates (ai, 0) where
(ai)0≤i≤n is a given arbitrary strictly increasing sequence of integers of length n + 1 with
a0 = 0. These vertices therefore lie on a horizontal segment of length an (with an ≥ n)
with prescribed but arbitrary strictly increasing positions along this segment. The paths
are required to be non-intersecting in the sense that any two paths cannot share a common
vertex of the lattice. Figure 1 shows an example of such path configuration with n = 6.
Note that, due to the non-intersection constraint, the portions of the paths lying above the
line Y = X in the (X, Y ) plane (dashed line in the figure) are ”frozen” as they necessarily
form horizontal segments.

2.2. Tiling interpretation and alternative path formulations. As displayed in Fig-
ure 2, any of the above defined configurations of non-intersecting lattice paths may be
transformed into a particular tiling for the domain of the plane covered by the paths.
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Figure 1. A configuration of n+ 1 = 7 non-intersecting lattice paths made
of west- or north-oriented unit steps, with starting points Oi = (ai, 0) and
endpoints Ei = (0, i), i = 0, . . . , n, here in the particular case (ai)0≤i≤n =
(0, 2, 3, 6, 10, 12, 15). The portions of paths above the dashed line are neces-
sarily ”frozen” into horizontal segments.

More precisely, to each horizontal edge (p + 1, q) → (p, q) carrying a west-oriented step
is associated an upper tile which is the rhomboid with vertices (p − 1/2, q − 1/2), (p +
1/2, q − 1/2), (p+ 3/2, q + 1/2), (p+ 1/2, q + 1/2), to each vertical edge (p, q)→ (p, q + 1)
carrying a north-oriented step is associated a right tile which is a rhomboid with ver-
tices (p− 1/2, q − 1/2), (p− 1/2, q + 1/2), (p+ 1/2, q + 3/2), (p+ 1/2, q + 1/2) and finally,
to each unvisited vertex (p, q) is associated a front tile which is a square with vertices
(p− 1/2, q − 1/2), (p− 1/2, q + 1/2), (p+ 1/2, q + 1/2), (p+ 1/2, q − 1/2). Apart from the
original NILP configuration, the resulting tiling naturally gives rise to two other sets of
NILP as displayed in the figure.

The second set of paths is obtained by associating to the right and front tiles introduced
above northeast- and east-oriented steps of the form (p − 1/2, q) → (p + 1/2, q + 1), and
(p− 1/2, q)→ (p+ 1/2, q) respectively. This leads to a configuration of (n+ 1) NILP with
endpoints Ẽi of coordinates (an + 1/2, i) and starting points Õi of coordinates (an + 1/2−
ãi, 0) for i = 0, . . . , n, where (ãi)0≤i≤n is the strictly increasing sequence (with ã0 = 0)
defined as:

(2.1) ãi := an − an−i .

As for the the third set of paths, it is obtained by associating to the upper and front tiles
mentioned above northeast- and north-oriented steps of the form (p, q− 1/2)→ (p+ 1, q+
1/2), and (p, q − 1/2) → (p, q + 1/2) respectively. We omit here those upper tiles above
the Y = X line as they form a regular crystalline pattern and the associated paths play no
role. This leads to a configuration of m = an − n NILP with endpoints Êi of coordinates
(n + i, n + 1/2) and starting points Ôi of coordinates (bi,−1/2) for i = 1, . . . ,m, where
the strictly increasing sequence (bi)1≤i≤m is the complementary sequence of the sequence
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a0 a6a5a4a3a2a1

ã6 ã0ã1ã2ã3ã4ã5

b1 b9b8b7b4b3b2 b5 b6

Figure 2. Top: the path configuration of Figure 1 together with the asso-
ciated tiling configuration, made of upper, right, and front tiles, correspond-
ing respectively to edges carrying a horizontal path step, edges carrying a
vertical path step, and vertices not visited by the paths. Middle: connect-
ing the vertical sides of both front tiles and right tiles by elementary seg-
ments creates a configuration of (n + 1) = 7 non-intersecting lattice paths
made of east- and northeast-oriented elementary steps. These paths (num-
bered from right to left) have starting points Õi = (an + 1/2− ãi, 0), where
ãi := an− an−i, and endpoints Ẽi = (an + 1/2, i), i = 0, . . . , n. Here, an = 15
and (ãi)0≤i≤n = (0, 3, 5, 9, 12, 13, 15). Bottom: connecting the horizontal
sides of both front tiles and upper tiles (except for those in the frozen region
above the dashed line) by elementary segments creates a configuration of
m = an−n = 9 non-intersecting lattice paths made of north- and northeast-
oriented elementary steps. These paths have starting points Ôi = (bi,−1/2)

and endpoints Êi = (n+i, n+1/2), i = 1, . . . ,m, where (bi)1≤j≤m is the “com-
plementary sequence” of (ai)0≤j≤n in Z ∩ [0, an]. Here, (bi)1≤i≤m =
(1, 4, 5, 7, 8, 9, 11, 13, 14).



ARCTIC CURVES FOR PATHS WITH ARBITRARY FIXED STARTING POINTS 7

(ai)0≤i≤n, defined for instance via the polynomial identity

(2.2)
m∏
i=1

(t− bi)
n∏
i=0

(t− ai) =
an∏
i=0

(t− i) , with m = an − n .

Clearly, the data of any of the three path configurations allows to recover the two others
so that each of the three descriptions carries all the information about the configuration at
hand. We may therefore use any of the three path formulations to describe our model.

2.3. Partition function. Returning to the original formulation of Section 2.1 with paths
made or west- and north-oriented steps, the partition function Zn := Z ((ai)0≤i≤n) of the
model, namely the number of non-intersecting path configurations, may be obtained via the
famous Lindström-Gessel-Viennot (LGV) lemma [Lin73, GV85], which states that Zn =
det ((Ai,j)0≤i,j≤n) where Ai,j denotes the number of paths made of west- and north-oriented
steps along edges of the square lattice and connecting the starting point Oi to the endpoint
Ej. In the present case, we have clearly

Ai,j =

(
ai + j

j

)
since a path from Oi to Ej is made of a total of ai + j steps among which exactly j
are oriented north. This latter determinant may be easily computed in various ways.
We present here a derivation using the so-called LU decomposition of the matrix A with
elements Ai,j above. This method will indeed prove adapted when we will extend our
calculation to some more involved determinants with the same flavor and was successfully
applied for determining the arctic curve for various path problems in [DFL18]. Recall that
the LU decomposition consists in writing the square matrix A, of size (n + 1) × (n + 1),
as the product A = LU of a lower triangular square matrix L by an upper triangular
square matrix U (both matrices having the same size as A). Such a decomposition exists
for suitable matrices (among which is the desired matrix A, as made explicit below) and is
moreover unique if we demand that L is lower uni-triangular, i.e. Li,i = 1 for all i = 0, . . . , n.
From the knowledge of the matrices L and U , we immediately obtain Zn via

Zn = det(A) = det(L)× det(U) =
n∏
i=0

Ui,i

since U is upper triangular and det(L) = 1. Note that, in practice, only the knowledge of
the diagonal elements of U is required to get Zn.

In order to get the LU decomposition of the matrix A, it is enough to find a lower
triangular square matrix L−1 with diagonal elements equal to 1 such that L−1A is upper
triangular. We have the following result:
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Theorem 2.1. The lower uni-triangular matrix L−1 with matrix elements

(2.3) L−1
i,j =



i−1∏
s=0

(ai − as)
i∏

s=0
s 6=j

(aj − as)
for i ≥ j

0 for i < j

is such that U := L−1A is upper triangular.

Proof. The diagonal elements of L−1 are clearly equal to 1 and, for any i and j, we may
write

L−1
i,j =

i−1∏
s=0

(ai − as)
∮
C(aj)

1
i∏

s=0

(t− as)

dt

2iπ
,

where C(aj) is a counterclockwise contour in the complex plane which encircles aj but
none of the other as for 0 ≤ s ≤ i. Here and throughout the paper, when referring to a
contour integral, we use the notation C(z1, . . . , zm) to indicate that the integral runs over a
counterclockwise contour in the complex plane which encircles all the points z1, . . . , zm and
does not encircle any pole of the integrand which is not this list. The specified zs’s will in
general be themselves poles of the integrand but it may happen that some of them are not,
in which case they do not influence the value of the integral. Written this way, we have

Ui,j ≡
n∑
k=0

L−1
i,kAk,j =

i∑
k=0

L−1
i,k

(
ak + j

j

)

=
i−1∏
s=0

(ai − as)
∮
C(a0,a1,...,ai)

1

j!

j−1∏
s=0

(t+ j − s)

i∏
s=0

(t− as)

dt

2iπ
,

(2.4)

where the summation over k is automatically achieved by the choice of contour which
encircles all the poles of the denominator at t = a0, . . . , ai. Here we simply used the trivial
equality (

a

m

)
=

1

m!

m−1∏
s=0

(a− s)

for any integers a ≥ 0 and m ≥ 0 to transform the binomial coefficient into a polynomial
in t. Since the contour in (2.4) encircles all the poles of the integrand for finite t, the value
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of the integral may be obtained as minus the residue of its integrand at infinity. Using

1

j!

j−1∏
s=0

(t+ j − s)

i∏
s=0

(t− as)
∼
t→∞

1

j!
tj−i−1 =


O
(

1
t2

)
for i > j

1

i!
× 1

t
for i = j ,

we immediately deduce that Ui,j = 0 for i > j since there is no pole at infinity in this case,
hence U is upper triangular as wanted. �

Moreover, we have

(2.5) Ui,i =
1

i!

i−1∏
s=0

(ai − as)

for i = 0, . . . , n since the residue at infinity is −1/i!.
From this latest result, we deduce the following expression for the partition function:

Theorem 2.2. The partition function reads

(2.6) Zn =
n∏
i=0

i−1∏
s=0

(ai − as)

i−1∏
s=0

(i− s)
=

∆(a0, a1, . . . , an)

∆(0, 1, . . . , n)
,

where ∆(a0, a1, . . . , an) denotes the Vandermonde determinant:

∆(a0, a1, . . . , an) := det
(
(aji )0≤i,j≤n

)
=

∏
0≤i<j≤n

(aj − ai) .

Example 2.3. In the particular case ai = p i for some integer p ≥ 1, this Theorem yields
a partition function

Zn = p
n(n+1)

2

in agreement with the result of [DFL18] for p = 2. Note also that the matrix L−1 then has
elements L−1

i,j = (−1)i+j
(
i
j

)
independently of p.

To conclude this section, we note that, by consistency, the same expression for the
partition function should be obtained upon using any of the three possible path formulations
of Section 2.2. From the LGV lemma, this allows us to express Zn as the determinant of the
matrix Ã of size (n+ 1)× (n+ 1) whose elements Ãi,j enumerate paths made of northeast-

and east-oriented elementary steps joining Õi to Ẽj, or equivalently as the determinant of

the matrix Â of size m×m whose elements Âi,j enumerate paths made of northeast- and
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north-oriented elementary steps joining Ôi to Êj. The simple combinatorial formulas for

Ãi,j and Âi,j lead to the identities:

det

(
ai + j

j

)
0≤i,j≤n

= det

(
ãi
j

)
0≤i,j≤n

= det

(
n+ 1

bi − j + 1

)
1≤i,j≤m

=
∆(a0, a1, . . . , an)

∆(0, 1, . . . , n)

with ãi as in (2.1), bi as in (2.2) and m = an − n as before.

3. Tangent method and one-point function: the first piece of the puzzle

The aim of this paper is to further study the arctic curve phenomenon, roughly summa-
rized as follows. For large NILP configurations, two distinct phases can be distinguished: a
frozen phase in which paths follow lattice-like regular patterns, and a liquid entropic phase
where paths display more erratic behaviors. It turns out that for special setups, large NILP
configurations develop a sharp separation between these two phases, along a curve coined
“arctic” for obvious reasons (see Figure 3 for an illustration).

3.1. Tangent method and LU decomposition. Let us first describe here the general
setting of the tangent method, as devised by Colomo and Sportiello [CS16] for the derivation
of arctic curves in path models. As opposed to the standard approach consisting in com-
puting bulk expectation values, this method only requires the knowledge of a much simpler
boundary one-point function. The method goes as follows: we consider NILP configurations
with fixed starting and ending points say v = {vi}i=0,1,...,n and w = {wj}j=0,1,...,n with steps
along the oriented edges of some given underlying lattice. The partition function Zv,w

is given by a LGV determinant: Zv,w = det(A), where the matrix element Ai,j = Zvi,wj
enumerates the possible configurations for a single path joining vi to wj. At finite n, the
NILP configurations for this problem occupy a maximal domain D whose size grows with
n. We may now consider an asymptotic version of the problem with n large, with a suitable
rescaling of the underlying lattice so that D tends to a scaled domain D remaining finite
when n→∞.

The tangent method relies on the assumption that outermost paths say from vn to wn will
follow asymptotically the boundary between the frozen and liquid phases of the system,
which sharpens into the arctic curve as n becomes large. To investigate this curve, we
simply have to move the endpoint wn to another point w′n away from D so that paths
from vn to w′n must escape the domain D (see Figure 3). Let w be the last vertex of D
(w ∈ ∂D) visited by such a path. It is then argued that asymptotically, as it lies away from
the influence of the other paths, the escaping path is most likely to follow a straight line
from w to w′n. This line extends within D until the arctic curve is met, and is argued to be
tangent to the latter if we picked for w the most likely escape point from D. By moving
around the new endpoint w′n, we may thus determine lines of most likely escape, which form
a parametric family of tangents to the arctic curve. The latter is then recovered as the
envelope of this family of lines. The modified partition function, normalized by the original
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vn

w′
n

w

D
wn

Figure 3. A schematic picture of the tangent method: moving the endpoint
of the outermost path from wn to w′n forces the path to escape from the
originally reachable domain D at some point w on the boundary of D. The
most likely choice for w is such that the straight line (ww′n) is tangent to
the arctic curve since the most likely route followed by the outermost path,
starting from vn, consists in sticking to the arctic curve and escaping from
this curve tangentially towards w′n.

one, reads simply Zv,{w0,...,wn−1,w′n}/Zv,w. By an asymptotic analysis, we may determine the
most likely exit point w from D of the outermost path, which together with w′n defines the
tangent line. This is done is all generality by performing the decomposition

(3.1)
Zv,{w0,...,wn−1,w′n}

Zv,w

=
∑
w∈∂D

H(w)
v,wYw,w′n ,

where H
(w)
v,w = Zv,{w0,...,wn−1,w}/Zv,w is the so-called boundary one-point function in which

the outermost path ends at w on the boundary of D. The last term Yw,w′n simply enumerates
path configurations outside D from w to w′n.

In practice, the boundary one-point function H
(w)
v,w can be computed explicitly by the

LU decomposition method [DFL18]: first we use for the new partition function the LGV
determinant expression Zv,{w0,...,wn−1,w} = det(A′), where the matrix A′ differs from A only
in its last column, which now consists of the partition functions Zvi,w, i = 0, 1, . . . , n.
Assume we found a lower uni-triangular matrix L such that L−1A = U is upper triangular.
Then, since A and A′ differ only in their last column, L−1A′ = U ′ is again upper triangular
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(0, n+ r)

(`, n)
`

r

Figure 4. The tangent method applied to the NILP under study: the end-
point of the outermost path is moved from En = (0, n) to E ′n = (0, n+r) with
r ∈ Z+, forcing the path to escape from the domain D (here the displayed
grid) by a north-oriented step at some position (`, n) on the boundary of D.

and differs from U in its last column only. We immediately deduce that

(3.2) H(w)
v,w =

U ′n,n
Un,n

.

As for Yw,w′n , it is in general obtained straightforwardly as it involves configurations of a
single path from w to w′n lying outside D, hence away from the domain of influence of the
other paths. The most likely exit point w for fixed endpoint w′n can then be found by an
asymptotic analysis of the explicit decomposition (3.1), which leads to a parametric family
of tangents to the arctic curve.

3.2. One-point function. Let us now apply the tangent method to our specific problem.
As clear from Figure 1, the domain D in which the paths are confined is here a rectangle
of vertical size n and horizontal size an. As described above, we now modify the partition
function for NILP by moving the topmost endpoint En = (0, n) along the vertical line to
some other position say E ′n = (0, n + r) with a varying r ∈ Z+. This choice is somewhat
arbitrary but it is easy to check that the final result for the arctic curve would be the same
for any other prescription of endpoint that would induce an exit point on the segment
(0, n)–(an, n) (for instance by taking E ′′n = (r, n+ r) instead).

Let us first compute the one-point function Hn,` corresponding to an outermost path
from On = (an, 0) exiting at the position E = (`, n) from the rectangular domain D along a
north-oriented vertical step (`, n)→ (`, n+ 1) pointing out of D (see Figure 4). The LGV
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matrix A′ for such paths reads:

A′i,j =


Ai,j if j < n(

ai + n− l
n

)
if j = n .

Theorem 3.1. The one-point function Hn,` reads:

(3.3) Hn,` =

∮
C(S`)

dt

2iπ

n∏
s=0

1

(t− as)
n∏
s=1

(t− `+ s) ,

where S` = {as |as ≥ `}.
Proof. We use the LU decomposition method with the matrix L−1 displayed in (2.3) to
compute:

U ′n,n =
n∑
k=0

(L−1)n,kA
′
k,n =

n∑
k=0

n−1∏
s=0

(an − as)
n∏
s=0
s 6=k

(ak − as)

(
ak + n− `

n

)

=
n−1∏
s=0

(an − as)
∮
C(S`)

dt

2iπ

1
n∏
s=0

(t− as)

1

n!

n−1∏
s=0

(t+ n− `− s) ,

where the contour integral picks up the residues at all the poles for which the binomial
coefficient is well-defined and non-zero, namely at all the points as such that as ≥ `. The

Theorem follows from the identity (3.2), by normalizing by Un,n = 1
n!

n−1∏
s=0

(an− as), as given

by (2.5), and changing s into n− s in the last product.
�

Remark 3.2. Note that the contour C(S`) in (3.3) may be extended into C(S`−n) i.e.
encircle also those as between `−n and `− 1 since

∏n
s=1(t− `+ s) vanishes for all integers

t in this range.

Finally, the single path partition function from the exit point (`, n + 1) to the remote
endpoint (0, n+ r) is simply

(3.4) Y`,r =

(
`+ r − 1

`

)
.
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3.3. Asymptotic analysis and arctic curve I. We now study the large n asymptotics
of the identity (3.1) for our model. To this end, let us introduce rescaled variables

(3.5) ` = n ξ, r = n z, ai = nα

(
i

n

)
,

where u 7→ α(u) is a fixed piecewise differentiable increasing function from [0, 1] → R+

encoding the fixed limiting endpoint distribution. Note that moreover α′(u) ≥ 1 whenever
the derivative of α is well-defined due to the condition ai+1 − ai ≥ 1. The main result of

this section may be summarized into the following theorem.

Theorem 3.3. The portion of arctic curve obtained with the tangent method for the path
setup in which the target endpoint is moved away from D in the northwest corner and the
escape point is on the top boundary of D has the following parametric representation:

(3.6)


X = X(t) := t− x(t)(1− x(t))

x′(t)

Y = Y (t) :=
(1− x(t))2

x′(t)

(t ∈ [α(1),+∞)) ,

where the quantity x(t) is defined as:

(3.7) x(t) := e
−
∫ 1

0
du

t−α(u) .

Here X and Y denote rescaled coordinates in the plane, as obtained by after rescaling all
coordinates by n so that D becomes a rectangle D of vertical size 1 and horizontal size
α(1).

Proof. The exact formulas (3.3)-(3.4) lead to the following leading asymptotic behaviors:

Hn,nξ ∼
∮

dt

2iπ
enS0(t,ξ) , Ynξ,nz ∼ enS1(ξ,z) ,

S0(t, ξ) =

∫ 1

0

duLog

(
t+ u− ξ
t− α(u)

)
(3.8)

= −1 + (t+ 1− ξ)Log(t+ 1− ξ)− (t− ξ)Log(t− ξ)−
∫ 1

0

duLog(t− α(u)) ,

S1(ξ, z) = (ξ + z)Log(ξ + z)− ξLog(ξ)− zLog(z) .

Note that we performed a harmless rescaling of the integration variable t → nt. In this
new variable, the integration contour (originally C(S`)), must encircle the segment [ξ, α(1)].
On the left side of this segment, we note, using remark 3.2, that the contour may cross
the real axis anywhere between ξ − 1 and ξ. On the right side, it may cross the real axis
at any position t ∈ [α(1),+∞). At large n, the contour integral is evaluated by a simple
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saddle-point estimate, i.e. picking t such that ∂tS0 = 0. Note that it is important that
the saddle-point solution is compatible with the contour constraint. As it will appear, the
corresponding value of t is real and must lie in [α(1),+∞).

The most likely rescaled exit position ξ must maximize the total action1 S(t, ξ, z) =
S0(t, ξ) + S1(ξ, z). Writing ∂tS0 = ∂ξS = 0, we find:

t+ 1− ξ
t− ξ e

−
∫ 1

0
du

t−α(u) = 1 and
(ξ + z)(t− ξ)
ξ(t+ 1− ξ) = 1 .

In terms of the quantity x(t) of (3.7), this leads to the solution:

ξ = ξ(t) := t− x(t)

1− x(t)
and z = z(t) := t

1− x(t)

x(t)
− 1 .

Clearly, we want ξ(t) and z(t) real, which implies t real. Moreover, we have (ξ(t)− t)(t−
(ξ(t) − 1)) = −x(t)/(1 − x(t))2 < 0 as x(t) > 0, which means that t cannot lie in the
interval [ξ − 1, ξ]. This leaves us with the range t ∈ [α(1),+∞): the result above is only
valid if t lies in this range. Letting t vary from α(1) to +∞ corresponds in turn to letting
x(t) increase from 0 to 1.

The (tangent) line passing through the rescaled escape point (ξ(t), 1) and the rescaled
moved endpoint (0, 1 + z(t)) is defined by the equation ξ(t)Y + z(t)X = ξ(t)(1 + z(t)), or
equivalently

(3.9) x(t)Y + (1− x(t)) (X − t) = 0 .

In particular, this allows us to interpret the parameter t as the intercept of the tangent line
with the X-axis. The range t ∈ [α(1),+∞) corresponds to negative slopes −(1−x(t))/x(t).
The envelope of this parametric family of lines is obtained by solving the system

x(t)Y + (1− x(t)) (X − t) = 0

x′(t)Y − x′(t) (X − t)− 1 + x(t) = 0

and leads immediately to (3.6). �

Let us stress again that, due to the setup that we have used for applying the tangent
method, namely that we decided to move the topmost endpoint En = (0, n) to E ′n =
(0, n+r), the Theorem 3.3 above provides us only with a portion of the arctic curve. Other
portions will be studied below. Let us examine the limiting points of the current portion:
in the limit t→∞ (x(t)→ 1), we have the expansion

x(t) = 1− 1

t
+

1

t2

(
1

2
−
∫ 1

0

α(u)du

)
+O

(
1

t3

)
,

1Indeed, at the saddle-point t = t∗(ξ), we have d
dξS(t∗(ξ), ξ, z) = ∂ξS(t∗(ξ), ξ, z).
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hence the limiting point on the arctic curve has coordinates (X1, Y1) with

(3.10) X1 =
1

2
+

∫ 1

0

α(u)du, Y1 = 1

and corresponds to a horizontal tangent. Note that, from the conditions α(0) = 0 and
α′(u) ≥ 1 for all u, we deduce the bounds 1 ≤ X1 ≤ α(1). At the other end when t→ α(1)
(x(t)→ 0), writing t = α(1) + θ for small θ leads to the estimate:

Log(x(t)) = −
∫ 1

0

du

θ + (1− u)α′(1)
−
∫ 1

0

du

{
1

θ + α(1)− α(u)
− 1

θ + (1− u)α′(1)

}
=

1

α′(1)
Log

(
θ

α′(1)

)
−
∫ 1

0

du

{
1

α(1)− α(u)
− 1

(1− u)α′(1)

}
+O(θ) ,

where the subtraction term was devised so that the integral in the second line is finite. We
deduce from (3.6) that, since x(t)/x′(t) ∼ α′(1) θ, X → α(1) whereas

Y =
(1− x(t))2

x′(t)
' θ

1− 1
α′(1)

α′(1)
1+ 1

α′(1)
e

∫ 1

0
du
{

1
α(1)−α(u)

− 1
(1−u)α′(1)

}
.

We see that if α′(1) > 1 then Y → 0, and the endpoint of the arctic curve has coordinates
(X0, Y0) = (α(1), 0) with a vertical tangent. On the other hand, if α′(1) = 1, then Y has a
finite limit, and the endpoint is:

(3.11) X0 = α(1), Y0 = e

∫ 1

0
du
{

1
α(1)−α(u)

− 1
(1−u)

}
with a vertical tangent. The case where α′(u) = 1 on a finite interval [1 − γ, 1] will be
treated in Section 6 below.

The above discussion assumed implicitly that α′(1) is finite. For α′(1) = +∞, we must

consider the two integrals I1 =
∫ 1

0
du

α(1)−α(u)
and I2 =

∫ 1

0
du

(α(1)−α(u))2
. Assuming the behavior

α(1) − α(u) ∼ C(1 − u)a for 0 < a < 1, we see that both I1 and I2 are finite for a < 1
2
,

while I1 is finite positive and I2 diverges for a ≥ 1
2
. When both I1 and I2 are finite, we

have limt→α(1) x(t) = e−I1 < 1 and limt→α(1)
x′(t)
x(t)

= I2 > 0. This leads to the endpoint

X0 = α(1)− 1− e−I1
I2

, Y0 =
(1− e−I1)2

I2 e−I1
,

with a tangent of negative slope limt→α(1)(x(t)− 1)/x(t) = 1− eI1 so that the arctic curve
is tangent to the line connecting (X0, Y0) to (α(1), 0). When I1 is finite and I2 diverges,
this leads as before to an endpoint (X0, Y0) = (α(1), 0) but with now a finite negative slope
1− eI1 .
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(X1, Y1)

(X0, Y0)
t

Figure 5. The portion of arctic curve given by (3.6) in the particular case
α(u) = 3u (thick solid line), with extremities (X0, Y0) = (3, 0) and (X1, Y1) =
(2, 1). We also displayed a set of tangents enveloping this curve, as given by
(3.9) for values of t in the range [α(1),+∞) (here α(1) = 3). The parameter
t corresponds to the abscissa of the intersection point of the tangent with the
X-axis.

Example 3.4. To illustrate our result, we display in Figure 5 the portion of arctic curve
given by (3.6) in the particular case α(u) = 3u together with some set of tangents enveloping

this curve. In this case x(t) =
(
t−3
t

)1/3
from (3.7), (X0, Y0) = (3, 0) and (X1, Y1) = (2, 1).

4. The second piece of the puzzle

As we just mentioned, Theorem 3.3 solves only one part of the puzzle by providing only
a portion of the arctic curve, corresponding to an X-coordinate larger than X1, as given
by (3.10). Let us now derive a second portion of the arctic curve, corresponding to X-
coordinates smaller than X1. This is done by repeating the tangent method analysis, now
applied to the second family of NILP, made of northeast- and east-oriented elementary
steps.

4.1. A simple reflection principle. Let us consider the equivalent formulation of our
problem in terms of the second family of paths. These paths, made of northeast- and east-
oriented elementary steps, connect starting points Õi of coordinates (an+1/2−ãi, 0), with ãi
as in (2.1), to endpoints Ẽi of coordinates (an+1/2, i), for i = 0, . . . , n. We may again apply
the tangent method and compute the one-point function H̃n,` corresponding to an outermost
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(`+1/2, n)

`+1/2
r

(an+1/2, n+ r)

Figure 6. The tangent method applied to NILP made of east- and
northeast-oriented steps: the endpoint of the outermost path is moved from
Ẽn = (an + 1/2, n) to E ′n = (an + 1/2, n + r) with r ∈ Z+, forcing the path
to escape from the domain D (displayed rectangle) by a northeast-oriented
step at some position (`+ 1/2, n) on the boundary of D.

path starting from Õn = (1/2, 0) and escaping at the position Ẽ = (` + 1/2, n) from the
rectangular domain D along a northeast-oriented diagonal step (`+1/2, n)→ (`+3/2, n+1)
pointing out of D (see Figure 6). Note that, since elementary steps are northeast- or east-
oriented, the smallest possible X-coordinate for the escape point is (n+1/2) hence we have
now the condition ` ≥ n. The escape path is then eventually extended to a new endpoint,
say Ẽ ′n = (an + 1/2, n + r), r ∈ Z+, corresponding to moving the original endpoint Ẽn by
r elementary steps to the north. The single path partition function from the exit point
(`+ 3/2, n+ 1) to the remote endpoint (an + 1/2, n+ r) is simply

(4.1) Ỹ`,r =

(
an − `− 1

r − 1

)
.

As for the new one-point function, we have the following theorem:

Theorem 4.1. The one-point function H̃n,` (` ≥ n) reads:

(4.2) H̃n,` = −
∮
C(S0\S`−n+1)

dt

2iπ

n∏
s=0

1

(as − t)
n−1∏
s=0

(`− t− s) ,

where S0 \ S`−n+1 = {as |as ≤ `− n}.
Proof. Let us show how to derive the expression of H̃n,` directly from our previous result

for Hn,` via a simple reflection principle. As displayed in Figure 7, the endpoints Ẽi of
coordinates (an+1/2, i) for the second family of paths can be moved toward east to position
(an + 1/2 + i, i) without changing the path enumeration problem. Indeed, the constraint
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ã6 ã0ã1ã2ã3ã4ã5

ã6 ã0ã1ã2ã3ã4ã5

Figure 7. For a NILP configuration with paths made of east- and northeast-
oriented steps, moving the endpoints Ẽi from position (an+1/2, i) to position
(an + 1/2 + i, i) does not modify the enumeration problem since the added
portions of path are frozen into horizontal segments. A simple shear trans-
forms this extended NILP into a NILP made of north- and east-oriented
steps which, upon reflection is of the same type as that of Figure 1 up to the
change of sequence from (ai)0≤i≤n → (ãi)0≤i≤n.

of non-intersection of the paths forces the path extensions to form straight horizontal
segments. The obtained configuration may then be transformed into a set of north- and
east-oriented NILP on a square grid by the simple (shear) mapping (X, Y ) 7→ (X − Y, Y )
(see Figure 7). Up to a reflection (X, Y ) → (1/2 + an −X, Y ), we immediately recognize
the setting of our first set of NILP (made of north- and west-oriented elementary steps),
where the strictly increasing sequence (ai)0≤i≤n is simply replaced by the strictly increasing
sequence (ãi)0≤i≤n. This identification holds also in the presence of some escape point
for the uppermost path. If this point has coordinates (` + 1/2, n) as in Figure 6, its X-
coordinate is transformed by the two successive mappings above (shear and reflection) and

takes the value ˜̀ = an − ` + n. We may therefore transpose the expression (3.3) for Hn,`

and write directly, without new calculation,

H̃n,` =

∮
C(S̃˜̀)

dt

2iπ

n∏
s=0

1

(t− ãs)
n∏
s=1

(t−˜̀+s) =

∮
C(S̃˜̀)

dt

2iπ

n∏
s=0

1

(t−an+an−s)

n∏
s=1

(t−an+`−n+s) ,
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where S̃˜̀ = {ãs |ãs ≥ ˜̀}. Performing the change of variable t 7→ an − t (and changing
s→ n− s in both products), we immediately obtain (4.2). Indeed, after changing variable,

the contour explored by the (new) t variable must encircle the an − ãs such that ãs ≥ ˜̀

hence, using ˜̀ = n + an − ` and ãs = an − an−s (and changing the dummy variable s into
n−s), the as with as ≤ `−n. This latter set {as |as ≤ `−n} is nothing but S0\S`−n+1. �

As before, we have the following remark:

Remark 4.2. The contour C(S0 \ S`−n+1) in (4.2) may be extended to C(S0 \ S`+1) i.e.
encircle only those as between 0 and `. Indeed, the integrand in (4.2) vanishes for all
integers t between `− n+ 1 and `.

4.2. A combinatorial sum rule. Before we discuss the asymptotics of H̃n,` and the
associated tangent method result, let us make some comment on the close relation between
the one-point functions H̃n,` and Hn,`. From their expressions (3.3) an (4.2), we deduce the
equality, for ` ≥ n+ 1,

Hn,` + H̃n,`−1 =

∮
C(S`)

dt

2iπ

n∏
s=0

1

(t−as)
n∏
s=1

(t−`+s)−
∮
C(S0\S`)

dt

2iπ

n∏
s=0

1

(as−t)
n−1∏
s=0

(`−1−t−s)

=

∮
C(S0)

dt

2iπ

n∏
s=0

1

(t− as)
n∏
s=1

(t−`+s)

where, using Remark 4.2, we extended the contour for H̃n,`−1 from C(S0\S`−n) to C(S0\S`).
The final contour C(S0) encircles all the as, s = 0, . . . , n, hence all the (finite) poles of the
integrand. The integral may thus be computed as minus the residue at infinity. At large t,
the integrand behaves as 1/t, hence the residue is −1, leading to the sum rule

(4.3) Hn,` + H̃n,`−1 = 1 .

This sum rule has a nice combinatorial interpretation, which we explain now. In the
original setting with north- and west-oriented step paths, the quantity ZnHn,` enumerates
configurations where the n’th path exits the domain D by a north-step starting at position
(`, n). Alternatively, ZnHn,` may be interpreted as configurations where the n’th path
goes from On to En, hence remains in the domain D but is required to pass via the position
(`, n). Indeed, once the position (`, n) is reached, the path from (`, n) to (0, n) is uniquely
determined, made of a straight horizontal segment of length `. The quantity ZnHn,` −
ZnHn,`+1 therefore enumerates NILP in D where the n’th path passes via (`, n) but not
via (` + 1, n). This path necessarily reaches (`, n) by a north step (`, n − 1) → (`, n),
which is moreover the unique vertical step in the uppermost horizontal strip of D (i.e.
the subdomain of D with Y -coordinate between n − 1 and n), see Figure 8. Using now
the equivalent description by east- and northeast-oriented step paths, the corresponding
n’th path in this set necessarily has a northeast-oriented step from (` − 1/2, n − 1) to
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(`, n)

Figure 8. A configuration of NILP in D. In the language of paths made of
north- and west-oriented steps, the configuration has a unique vertical step
in the uppermost horizontal strip of D, which is part of the outermost path
and leads to position (`, n) on the boundary. In the equivalent description
by east- and northeast-oriented step paths, this step is dual to the unique
northeast-oriented step in the uppermost strip, itself part of the outermost
path and leading to position (`+ 1/2, n) on the boundary.

(`+1/2, n) hence reaches position (`+1/2, n) without passing via position (`−1/2, n). By
the same argument as above, configurations satisfying this requirement are enumerated by
Zn H̃n,`−Zn H̃n,`−1. Using this bijective correspondence and simplifying by Zn, we deduce
the identity

Hn,` −Hn,`+1 = H̃n,` − H̃n,`−1 ⇔ Hn,`+1 + H̃n,` = Hn,` + H̃n,`−1 .

This equality states that the quantity Hn,` + H̃n,`−1 does not depend on `, and remains

valid for ` = n with the convention that H̃n,n−1 = 0 since the outermost path in the second
path family setting cannot pass via the vertex (n − 1, n). Note that Hn,n = 1 (since the
outermost path in the original path family setting necessarily passes through the vertex
(n, n)) so that the actual common value of Hn,` + H̃n,`−1 for all ` ≥ n is 1. This is precisely
the sum rule (4.3).

4.3. Asymptotic analysis and arctic curve II. Applying now the tangent method to
the second family of paths, we may complete Theorem 3.3 by the following statement:

Theorem 4.3. The portion of arctic curve obtained with the tangent method for the path
setup in which the target endpoint is moved away from D in the northeast corner and the
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escape point is on the top boundary of D has the following parametric representation:

(4.4)


X = X(t) := t− x(t)(1− x(t))

x′(t)

Y = Y (t) :=
(1− x(t))2

x′(t)

(t ∈ (−∞, 0]) ,

with x(t) as in 3.3.

In other words, the arctic curve parametrization of Theorem 3.3 extends to values of t
in (−∞, 0], leading to a new portion of the arctic curve which we will describe below.

Proof. Using the same rescaling (3.5) as in Section 3.3, we now get from the exact formulas
(4.2)-(4.1) the asymptotic behaviors, valid for ξ ≥ 1 (recall that ` ≥ n in H̃n,`):

H̃n,nξ ∼ −
∮

dt

2iπ
enS̃0(t,ξ) , Ỹnξ,nz ∼ enS̃1(ξ,z) ,

S̃0(t, ξ) =

∫ 1

0

duLog

(
ξ − t− u
α(u)− t

)
= −1− (ξ − t− 1)Log(ξ − t− 1) + (ξ − t)Log(ξ − t)−

∫ 1

0

duLog(α(u)− t) ,

S̃1(ξ, z) = (α(1)− ξ)Log(α(1)− ξ)− zLog(z)− (α(1)− ξ − z)Log(α(1)− ξ − z) .

Here the contour in the (rescaled) t variable must encircle the segment [0, ξ − 1] and,
using remark 4.2, may cross the real axis anywhere between ξ − 1 and ξ on the right side
of this segment. On the left side, any position t ∈ (−∞, 0] is acceptable. As in Section 3.3,
the asymptotic evaluation of the contour integral amounts to picking t such that ∂tS̃0 = 0
which will produce a real value of t in the interval (−∞, 0]. The most likely rescaled exit
position ξ is obtained as before by maximizing the total action S̃(t, ξ, z) = S̃0(t, ξ)+S̃1(ξ, z).
Setting ∂tS̃0 = ∂ξS̃ = 0 now leads to:

ξ − t− 1

ξ − t x(t) = 1 and
(ξ − t)(α(1)− ξ − z)

(α(1)− ξ)(ξ − t− 1)
= 1

with x(t) as in (3.7). We deduce

ξ = ξ(t) = t+
x(t)

x(t)− 1
and z = z̃(t) = (α(1)− t) x(t)− 1

x(t)
− 1 .

Again t must be real and cannot lie in the segment [ξ − 1, ξ] and this leaves us with the
range t ∈ (−∞, 0]. Letting t vary from −∞ to 0 corresponds to letting x(t) increase from
1 to +∞.
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The (tangent) line passing through the rescaled escape point (ξ(t), 1) and the rescaled
endpoint (α(1), 1 + z̃(t)) is defined by the equation (ξ(t) − α(1))Y + z̃(t)X = ξ(t)(1 +
z̃(t))− α(1), or, after substitution and simplification,

(4.5) x(t)Y + (1− x(t)) (X − t) = 0 .

Remarkably, the equation for the tangent lines is the same as that (3.9) in the setting of
Section 3.3. Only the range of t, now in the interval (−∞, 0], is changed and corresponds
to positive slopes (x(t)− 1)/x(t). The envelope of this new parametric family of lines has
therefore the same parametric form (3.6) as for Theorem 3.3 and this leads immediately to
(4.4), hence Theorem 4.3. �

Again we may examine the limiting points of the new portion of arctic curve: in the limit
t→ −∞ (x(t)→ 1), we recover the point (X1, Y1) of (3.10) with a horizontal tangent. At
the other end of the curve, when t→ 0 (x(t)→ +∞), we have the estimate:

Log(x(t)) = −
∫ 1

0

du

t− uα′(0)
−
∫ 1

0

du

{
1

t− α(u)
− 1

t− uα′(0)

}
= − 1

α′(0)
Log

( −t
α′(0)

)
−
∫ 1

0

du

{
1

uα′(0)
− 1

α(u)

}
+O(t)

with a second integral being finite. We obtain the estimates

x(t) ∼
t→0−

K

(
α′(0)

−t

)1/α′(0)

,

x′(t) ∼
t→0−

K

α′(0)2

(
α′(0)

−t

)1+1/α′(0)

,

K = e
−
∫ 1

0
du
{

1
uα′(0)

− 1
α(u)

}
.

Note that both x(t) and x′(t) tend to ∞ for t→ 0 with

x(t)2

x′(t)
∼

t→0−
K α′(0)2

(
α′(0)

−t

)1/α′(0)−1

.

For α′(0) > 1, this ratio tends to 0 and the endpoint of the arctic curve has coordinates
(X∞, Y∞) = (0, 0) with a slope 1 since (x(t) − 1)/x(t) tends to 1. On the other hand, if
α′(0) = 1, then X and Y have a finite limit, and the endpoint is:

X∞ = Y∞ = e
−
∫ 1

0
du
{

1
u
− 1

α(u)

}
with again a slope 1. Since the paths cannot enter the domain Y > X, the arctic curve is
naturally extended from (X∞, Y∞) to (0, 0) by a segment. The case where α′(u) = 1 on a
finite interval [0, γ] is special in this respect, and will be discussed in Section 6 below.
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The above discussion assumed implicitly that α′(0) is finite. For α′(0) = +∞, we have to
be more precise. Let us assume the behavior α(u) ∼ Cua when u→ 0 with 0 < a < 1. We

have to consider the two integrals J1 =
∫ 1

0
du
α(u)

and J2 =
∫ 1

0
du

α(u)2
. We note that for a < 1

2

both integrals are finite, while for a ≥ 1
2
, J1 is finite and J2 diverges. If both integrals are

finite, then limt→0 x(t) = eJ1 and limt→0
x′(t)
x(t)

= J2, and we find the endpoint for t→ 0:

X∞ =
eJ1 − 1

J2

, Y∞ =
(eJ1 − 1)2

J2 eJ1

with a tangent of positive slope limt→0(x(t) − 1)/x(t) = 1 − e−J1 < 1 so that the arctic
curve is tangent to the line connecting (X∞, Y∞) to (0, 0). If J2 diverges and J1 is finite,
then (X∞, Y∞) = (0, 0), and the tangent at the origin has slope 1− e−J1 < 1.

As a final remark, we note that when the starting point pattern is symmetric by reflection,
i.e. whenever ãi = ai, hence α(u) = α(1)−α(1−u), the arctic curve is symmetric under the
involution (X, Y ) 7→ (α(1) −X + Y, Y ) as a direct consequence of the reflection principle
detailed in Section 4.1 above. This is visible in the parametric equation of the curve: indeed,
using α(u) = α(1) − α(1 − u), we get the identity x(α(1) − t) = 1/x(t). Plugged into the
parametric equation, it yields X(α(1)−t) = α(1)−X(t)+Y (t) and Y (α(1)−t) = Y (t). The
above symmetry of the arctic curve is therefore associated with the involution t 7→ α(1)− t
for the parameter t .

5. Examples

In this section, we present various examples to illustrate the general results of Sections 3
and 4 above. As a preliminary remark, we note that any continuous piecewise differentiable
increasing function α(u) on [0, 1] with α′(u) ≥ 1 (when it is defined) may be realized by
taking starting points (ai, 0) with

(5.1) ai =
⌊
nα

(
i

n

)⌋
.

The condition α′(u) ≥ 1 guarantees that this sequence is indeed strictly increasing2 and its
scaling limit is clearly described by α(u).

5.1. The pure case α(u) = p u. We consider the case where α(u) = p u for some real
number p > 1. For instance, the particular case p ∈ N \ {1} is obtained as the large n limit
of the points ai = p i, i = 0, 1, . . . , n.

2As we shall see later, it is interesting to also address the case where α(u) presents discontinuities with
positive jumps δk. In that case, eq. (5.1) is only valid for large enough n ≥ maxk(1/δk) to ensure that the
sequence (ai) is strictly increasing.
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Substituting α(u) = p u into (3.7) yields

(5.2) x(t) = e
−
∫ 1

0
du
t−pu =

(
1− p

t

) 1
p
.

The two portions of the arctic curve correspond respectively to t ∈ (−∞, 0] and t ∈
[p,+∞)], namely to x(t) ∈ [0,+∞). More precisely, we may express the arctic curve of
Theorems 3.3 and 4.3 in terms of the parameter x ≡ x(t), by noting that t = p/(1 − xp)
and x′(t) = (1− xp)2/(p2 xp−1) as:

(5.3)


X =

p

(1− xp)

(
1− p (1− x)

(1− xp) x
p

)
Y =

p2(1− x)2

(1− xp)2
xp−1

(x ∈ [0,+∞)) .

The special points on the curve, corresponding respectively to x = +∞, 1, 0, are the ori-
gin (X∞, Y∞) = (0, 0) with a tangent of slope 1, the maximum (X1, Y1) = (p+1

2
, 1) with

horizontal tangent and the endpoint (X0, Y0) = (p, 0) with vertical tangent. When p is an
integer, eq.(5.3) may be recast into:

(5.4)


X =

p (1 + 2 x+ 3x2 + · · ·+ p xp−1)

(1 + x+ x2 + · · ·+ xp−1)2

Y =
p2 xp−1

(1 + x+ x2 + · · ·+ xp−1)2

(x ∈ [0,+∞)) .

For p = 2, this simplifies drastically, as we may eliminate x = Y/(2(X−Y )), and we recover
the arctic parabola of [DFL18]:

(2X − Y )2 − 8(X − Y ) = 0 .

For p = 3, eliminating x leads to the following quartic arctic curve:

(3X2 − 3XY + Y 2)2 − 2(3X − Y )(9X2 − 15XY + 7Y 2) + 81(X − Y )2 = 0 .

The corresponding curve is displayed in Figure 9 for illustration. For higher integer values
of p, by eliminating x, one can show that the arctic curve is an algebraic curve of degree
2p− 2. The case of rational p ≥ 1 also leads to an algebraic arctic curve. For instance, for
p = 3/2 we find:

32(3X2 − 3XY + Y 2)2 − 16(54X3 − 135X2Y + 99XY 2 − 19Y 3)

+ 162(5X − 8Y )(X − Y )− 243(X − Y ) = 0 .

It is interesting to notice that there is a well-defined large p limit of the arctic curve,
provided one rescales the X coordinate by a factor 1/p. In the new coordinates (X̃, Ỹ ) =
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(X1, Y1)

(X∞, Y∞) (X0, Y0)

Figure 9. The arctic curve in the case α(u) = 3u. The slope is horizontal
at (X1, Y1) = (2, 1) on the upper boundary of D, vertical at (X0, Y0) = (3, 0)
on the right boundary of D, and 1 at (X∞, Y∞) = (0, 0) on the left boundary
of D so that the arctic curve is tangent to the indicated line Y = X (above
which paths are fully frozen even for finite n).

(X/p, Y ), using the finite parameter ey = xp, i.e. setting Log(x) = y
p

and letting p → ∞,

we find

(5.5)


X̃ =

1

(1− ey)

(
1 +

y ey

(1− ey)

)
=

y

4 sinh2(y/2)
− e−y/2

2 sinh(y/2)

Ỹ =
y2ey

(1− ey)2
=

y2

4 sinh2(y/2)

(y ∈ R) .

Note the following symmetry: under y → −y, we have (X̃, Ỹ ) → (1 − X̃, Ỹ ) so that the
arctic curve is symmetric with respect to the vertical line X̃ = 1/2. The tangents at the
endpoints (0, 0) and (1, 0) are vertical, while that at the maximum (1

2
, 1) is horizontal.

To end this section, it is interesting to revisit the connection between the asymptotic
result for the one-point function Hn,` and its discrete counterpart. Let us for instance
consider the case ai = 3i (p = 3). The one-point function Hn,` may easily be obtained from
the LU decomposition as

Hn,` =

n∑
k=b`/3c

(−1)k+n

(
n

k

)(
3 k + n− `

n

)
n∑
k=0

(−1)k+n

(
n

k

)(
3 k + n

n

) .
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Hn,`

`/n

ξ=`/n

1
nLog(Hn,`) X1

S0(ξ)

Figure 10. Top: the one-point function Hn,` for the sequence ai = 3 i
and for finite n = 20, 50, 100 versus `/n presents a sharp transition around
`/n = 2 from a limiting value 1 for small `/n to a limiting value 0 for large
`/n. Bottom: the asymptotic limiting shape of the right part of the transition
curve is captured by the quantity 1

n
Log(Hn,`) as a function of ξ = `/n, which,

for ξ ≥ X1 = 2, tends at large n towards the scaling function S0(ξ) of (5.6).

Figure 10 shows a plot of Hn,` as a function of `/n for increasing values of n = 20, 50, 100.
We observe a sharp jump from the value 1 to the value 0 taking place at a value of `/n
tending to X1 = 2 in this case. The corresponding asymptotics, describing the large n



28 PHILIPPE DI FRANCESCO AND EMMANUEL GUITTER

behavior of Hn,` for `/n ≥ X1 is captured by the quantity 1
n
Log(Hn,`) which tends to

a continuous function S0(ξ) equal to S0(t, ξ) of (3.8) taken at the saddle-point solution
t = t∗(ξ) where ∂tS0(t, ξ) = 0. We find the parametric expression

ξ = t− x(t)

1− x(t)

S0(ξ) =
1

3
(t−3)Log(t−3)− 1

3
tLog(t) +

1

1−x(t)
Log

(
1

1−x(t)

)
− x(t)

1−x(t)
Log

(
x(t)

1−x(t)

)
x(t) :=

(
t− 3

t

)1/3

.

(5.6)

This asymptotic analysis is corroborated by the plot of 1
n
Log(Hn,`) as a function of `/n

displayed in Figure 10, for increasing values of n = 20, 50, 100, together with the expected
limit S0(`/n). The function S0(ξ) is well defined for ξ between X1 = 2 (t → ∞) and 3
(t→ 3) and vanishes at ξ = 2. For 0 ≤ ξ ≤ 2, the limit of 1

n
Log(Hn,`) vanishes identically,

meaning that Hn,` → 1 at large n for ` ≤ 2n.

5.2. The case of a piecewise linear α(u). Let us consider real numbers γ1, γ2, . . . , γk > 0

such that
∑k

i=1 γi = 1, and real numbers p1, p2, . . . , pk ≥ 1. We define the function α(u) to
be continuous and piecewise linear with constant derivative p1 on the interval [0, γ1], p2 on

[γ1, γ1+γ2], etc. , pk on [γ1+· · ·+γk−1, 1]. Define variables ϕi :=
∑i

j=1 γj and θi :=
∑i

j=1 pjγj
for i = 0, 1, . . . , k with ϕ0 = 0, ϕk = 1, and 0 = θ0 < θ1 < · · · < θk−1 < θk = α(1). We
have for i = 1, 2, . . . , k:

α(u) = θi−1 + pi(u− ϕi−1) (u ∈ [ϕi−1, ϕi]) .

The corresponding value of x(t) from (3.7) reads:

(5.7) x(t) = e
−

k∑
i=1

∫ ϕi
ϕi−1

du
t−θi−1−pi(u−ϕi−1)

=
k∏
i=1

(
t− θi
t− θi−1

) 1
pi

=
k∏
i=1

(
1− θi

t

) 1
pi
− 1
pi+1

with the convention that pk+1 = +∞.
The maximum with horizontal tangent has coordinates:

X1 =
1

2
+

k∑
i=1

θ2
i − θ2

i−1

2 pi
, Y1 = 1 .

The other special points on the arctic curve depend crucially on the values of p1 and pk.
We have (X∞, Y∞) = (0, 0) unless p1 = 1, and (X0, Y0) = (α(1), 0) = (θk, 0) unless pk = 1.
The situation where either p1 = 1 or pk = 1 is more subtle and will be discussed in Section
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(X1, Y1)

θ1 θ2 θ3
(X∞, Y∞) (X0, Y0)

p3=3p1=2 p2=4

Figure 11. The arctic curve when α(u) is continuous piecewise linear, made
of k = 3 linear pieces of respective widths γ1 = γ2 = γ3 = 1/3 and slopes
p1 = 2, p2 = 4 and p3 = 3 (so that θ1 = 2/3, θ2 = 2 and θ3 = 3).

6 below. Figure 11 presents a plot of the arctic curve in the particular case of k = 3 linear
pieces, with γ1 = γ2 = γ3 = 1/3, p1 = 2, p2 = 4 and p3 = 3.

5.3. A first non-linear case: α(u) = p u+ q u2. In the case when α(u) = p u+ q u2 with
p, q real numbers such that p ≥ 1 and q > 0, we have by eq. (3.7):

x(t) = e
−
∫ 1

0
du

t−pu−qu2 =

(
p− 2t+

√
p2 + 4qt

p− 2t−
√
p2 + 4qt

) 1√
p2+4qt

.

The special points are for p > 1:

(X∞, Y∞) = (0, 0) , (X1, Y1) =

(
p+ 1

2
+
q

3
, 1

)
, (X0, Y0) = (p+ q, 0) ,

whereas for p = 1 we have (X∞, Y∞) =
(

1
1+q

, 1
1+q

)
. Figure 12 presents a plot of the arctic

curve in the particular case p = q = 1.

5.4. A second non-linear case: α(u) = 1
a
ua. We consider the case α(u) = 1

a
ua for some

fixed real number a ∈ (0, 1). We have by eq. (3.7):

x(t) = e
−
∫ 1

0
du

t− 1
a
ua = e

−2F1

(
1, 1

a
; 1 + 1

a

∣∣∣ 1
a t

)
/t
,

in terms of the hypergeometric function

2F1

(
1,

1

a
; 1 +

1

a

∣∣∣x) =
∑
n≥0

xn

na+ 1
.
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(X1, Y1)

(X∞, Y∞)

(X0, Y0)

Figure 12. The arctic curve when α(u) = u + u2 hits the Y = X line
at the point (X∞, Y∞) = (1/2, 1/2). For X < 1/2, the limit between the
“crystalline” and the “liquid” phase occurs on the Y = X line.

The special points are as follows: for t → ∞: (X1, Y1) =
(

1
2

+ 1
a(a+1)

, 1
)

with horizontal

tangent. For t→ 0, we have, according to the discussion at the end of Section 4.3:

(X∞, Y∞) =


(

(1− 2a)
e

a
1−a − 1

a2
, (1− 2a)

(e
a

1−a − 1)2

a2 e
a

1−a

)
if a <

1

2

(0, 0) if a ≥ 1

2
,

where we have used the value J1 = a
1−a while J2 = a2

1−2a
when a < 1

2
and diverges otherwise.

In both cases the tangent has slope 1 − e−
a

1−a . Finally, when t → α(1) = 1/a, we have
α′(1) = 1, leading to the endpoint

(X0, Y0) =

(
1

a
,

1

a
e−γE−ψ(a−1)

)
by applying (3.11), and where γE = .5772... is Euler’s Gamma constant and ψ(u) =
Γ′(u)/Γ(u). We have represented the cases a = 1

3
and a = 2

3
in Figures 13 and 14 re-

spectively. The special points read respectively:

a =
1

3
: (X1, Y1) =

(
11

4
, 1

)
, (X∞, Y∞) =

(
3(
√
e−1), 3

(
√
e−1)2

√
e

)
, (X0, Y0) =

(
3,

3

e
√
e

)
,

a =
2

3
: (X1, Y1) =

(
7

5
, 1

)
, (X∞, Y∞) = (0, 0), (X0, Y0) =

(
3

2
,

6

e2

)
,
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(X1, Y1)

(X∞, Y∞)

(X0, Y0)

Figure 13. The arctic curve when α(u) = 3u1/3 (see text for the values of
the special points). The slope at the point (X∞, Y∞) is equal to 1 − 1/

√
e.

For X < X∞, the limit between the “crystalline” and the “liquid” phase
occurs on the line Y = (1− 1/

√
e)X.

(X1, Y1)

(X∞, Y∞)

(X0, Y0)

Figure 14. The arctic curve when α(u) = 3
2
u2/3 (see text for the values of

the special points). The slope at the point (X∞, Y∞) is equal to 1− 1/e2.

with horizontal tangents at (X1, Y1), vertical tangents at (X0, Y0), and tangents of respective
slopes 1− 1/

√
e and 1− 1/e2 at (X∞, Y∞).

6. Freezing boundaries

So far we discussed two portions of the arctic curve, one going from (X∞, Y∞) to (X1, Y1)
and one from (X1, Y1) to (X0, Y0). For a generic function α(u), we expect that these two
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(X1, Y1)

(X∞, Y∞) (X0, Y0)

U type F type

Figure 15. Frozen domains for a generic α(u) (here in the case α(u) = 3u)
are made of upper tiles (U-type) above the portion of arctic curve from
(X∞, Y∞) to (X1, Y1) and made of front tiles (F-type) above the portion of
arctic curve from (X1, Y1) to (X0, Y0).

portions build the entire arctic curve, which therefore defines two frozen domains in D.
The domain lying above the portion from (X∞, Y∞) to (X1, Y1) corresponds in the original
path family setting to a region where the paths are frozen into horizontal segments, or
equivalently, in the second path family setting, to a region not visited by the paths. In
the tiling language, this corresponds to a frozen domain made of upper tiles : we therefore
shall refer to such freezing as being of type U (for upper), see Figure 15 for an illustration.
As for the domain lying above the portion from (X1, Y1) to (X0, Y0), it corresponds to a
region not visited by the paths in the original path family setting and to a region where
paths of the second family form horizontal segments. In other words, we have here a frozen
domain of type F (i.e. made of front tiles). A frozen domain with the third possible type of
freezing, of type R (i.e. made of right tiles with paths of the first family frozen vertically,
or equivalently, paths of the second family frozen along diagonal lines) will not appear
in general since for a generic increasing sequence, the spacing between the successive ai’s
leaves enough space for the paths to develop some fluid erratic behavior in the horizontal
direction.

New portions of arctic curve may still appear in the presence of what may be called
freezing boundaries, i.e. for particular sequences (ai)0≤i≤n which induce new frozen domains
adjacent to the lower boundary of the domain D.

A first kind of such freezing boundary corresponds to a case for which there is no (horizon-
tal) spacing left in-between successive ai’s. In other words, it may happen that ai+1−ai = 1
for i lying in one or several ”macroscopic” intervals Ik = {qk, qk + 1, . . . , qk +mk−1} where
the length mk of Ik scales like n. As displayed in Figure 16, the non-intersection constraint



ARCTIC CURVES FOR PATHS WITH ARBITRARY FIXED STARTING POINTS 33

aqk aqk+mk
. . . . . . . . . . . .

Figure 16. A schematic picture of a freezing boundary, where ai+1−ai = 1
for i in some interval Ik = {qk, qk + 1, . . . , qk +mk− 1}. The non-intersection
constraint creates a fully frozen triangular region made of right tiles only.
This region will serve as a germ for a larger frozen domain of type R around
it.

in this case creates, for any such interval, a triangular region which is fully frozen, of type
R. We expect these fully frozen regions to then serve as germs for even larger frozen do-
mains of type R, hence to create new portions for the arctic curve. Note that, for the third
family of paths made of north- and northeast-oriented steps, these freezing domains of type
R correspond to regions not visited by the paths.

The condition that ai+1 − ai = 1 for i ∈ Ik translates into the condition α′(u) = 1 for
u in some finite interval [uk, uk + γk] (with uk = qk/n and γk = mk/n > 0 in the large n
limit). When several intervals co-exist, they may be arranged into a family of (maximal)
disjoint intervals [uk, uk+γk] (where uk+1 > uk+γk), which may possibly include boundary
intervals of the form [0, γ] or [1− γ, 1].

Another type of freezing boundary corresponds to the opposite case where there is one
or several ”macroscopic” gaps in the sequence (ai)0≤i≤n, namely intervals Ik = {qk, qk +
1, . . . , qk + mk − 1} (with mk scaling like n) which contain no ai at all. As displayed in
Figure 17, this case creates, for any such interval, a fully frozen layer made of a sequence
of front tiles followed by a sequence of upper tiles (so that the lower boundary of the layer
is horizontal). We expect these frozen layers to serve as germs for extended frozen domains
of type F above their left part and of type U above their right part, creating again new
portions for the arctic curve.

The presence of gaps translates into the fact that α(u) is discontinuous and presents a
jumps of height δk = mk/n at uk = qk/n.
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ai ai+1

Figure 17. A schematic picture of a freezing boundary corresponding to
a “macroscopic” gap in the sequence between ai and ai+1 for some i. This
forces the lower layer to be made of a sequence of front tiles followed by a
sequence of upper tiles. This frozen layer will serve as germ for two extended
frozen domains: one of type F above the left part and one of type U above
the right part.

This section is devoted to a heuristic study of these freezing boundaries, of both types,
creating new portions of arctic curve.

6.1. The case of a piecewise linear α(u) revisited. We may easily introduce freezing
boundaries in the framework studied in Section 5.2 where α(u) is a continuous and piecewise
linear function made of k pieces, as defined in Section 5.2. Let us start with freezing
boundaries creating frozen domains of type R. Such boundaries exist whenever pi = 1 for
one or several i’s in {1, . . . , k}.

To describe new portions of the arctic curve, we note that, in all generality, the two
already known portions are described by the same parametric equations, given by (3.6) or
(4.4) with the same expression (3.7) for x(t). Only the range of t differs between the two
portions, namely (−∞, 0] for one portion and [α(1),+∞) for the other. This range covers
the allowed X-coordinates of the points at which the tangents intersect the X-axis, whose
value is precisely t. The allowed values of t correspond moreover to positive real values
of x(t) ranging from 0 to ∞, the slope of the tangent parametrized by t being precisely
−(1− x(t))/x(t).

It is tempting to conjecture that, in the presence of freezing boundaries, the expected
new portions of the arctic curve are again given by (3.6) (or (4.4)) and simply correspond to
new possible values of the parameter t. In order for these parametric equations to remain
meaningful, we must insist on having a real value for x(t). On the other hand, releasing the
constraint that x(t) be positive seems harmless. Let us now see how this may be realized
in the piecewise linear case.

From the expression (5.7) for x(t), written as

x(t) =
k∏
i=1

(
t− θi
t− θi−1

) 1
pi

,
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we immediately see that the i-th term in the product leads to a cut of x(t) on the real
interval [θi−1, θi] when pi > 1. If all the pi’s are strictly larger than 1, then x(t) has a
cut on the real axis along the whole interval [0, θk] and, for real t, is well-defined only for
t ≥ θk = α(1) or t ≤ 0 (for which x(t) is moreover real and positive) corresponding to the
known two portions of the arctic curve. On the other hand, if pm = 1 for some m, then the
above formula is well defined on [θm−1, θm] and takes the value:

x(t) = −
m−1∏
i=1

(
t− θi
t− θi−1

) 1
pi×
(

θm − t
t− θm−1

)
×

k∏
i=m+1

(
θi − t
θi−1 − t

) 1
pi

for t ∈ [θm−1, θm] (pm = 1) .

Taking pm = 1 therefore gives rise to a domain [θm−1, θm] of t for which x(t) is real and
negative. This new range of t in turn gives rise via the equation (3.9) (or equivalently (4.5))
to a new set of tangent lines with positive slope −(1 − x(t))/x(t) crossing the X-axis at
(t, 0) with t ∈ [θm−1, θm], which is precisely the location of the base of the triangular fully
frozen region of type R (as displayed in Figure 16). It is easily checked that the slope of
the tangent is equal to 1 for t = θm−1 and ∞ for t = θm and that the envelope of these
tangents for t ∈ [θm−1, θm] presents a cusp. We conjecture that this envelope is precisely
the outer boundary of a larger frozen domain enclosing the fully frozen triangular region
and tangent to this region at its endpoints. We thus have here a new portion of arctic
curve.

Figure 18 displays for illustration the complete (including conjectured portions) arctic
curve in the case k = 3, γ1 = γ2 = γ3 = 1/3, p1 = p3 = 2 and p2 = 1. Clearly, when pm = 1
for several values of m (which we take non consecutive as, in the piecewise linear setting, it
is implicitly assumed that consecutive slopes are different), each piece where pm = 1 gives
rise to a new frozen domain. When a freezing boundary occurs in the first piece (i.e. when
p1 = 1), it is easily checked that Y∞ > 0 and that the new frozen domain is enclosed by a
new portion of arctic curve from (X∞, Y∞) to (θ1, 0). Similarly, when a freezing boundary
occurs in the last piece (i.e. when pk = 1), the new frozen domain is enclosed by a new
portion of arctic curve from (X0, Y0) (where Y0 > 0) to (θk−1, 0). Figure 19 displays a
situation where both p1 and pk are equal to 1, namely the case k = 5, p1 = p3 = p5 = 1,
p2 = p4 = 2 and γi = 1/5 for i = 1, . . . , 5, giving rise to three new frozen domains.

Let us now come to the case of freezing boundaries arising from a gap in the ai’s, creating
frozen domains of type F and U. This situation also occurs in the setting of piecewise linear
functions α(u) in the following limit. A discontinuity in the function α(u) may be obtained
by letting γm → 0 for some m together with pm → ∞, keeping the product pmγm = δm
finite. This creates a jump in the function α(u) by δm at the position u = ϕm−1 = ϕm
(recall that ϕi :=

∑i
j=1 γj). Using again the parameters θi :=

∑i
j=1 pjγj to express x(t),

we have the identification δm = θm − θm−1 so that we may use the form (5.7) for x(t), now
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θ1 θ2p2 = 1

p3 = 2p1 = 2

R type

Figure 18. The complete arctic curve when α(u) is continuous piecewise
linear with k = 3 linear pieces of respective widths γ1 = γ2 = γ3 = 1/3 and
slopes p1 = 2, p2 = 1 and p3 = 2 (so that θ1 = 2/3 and θ2 = 1), giving rise
to a freezing boundary along the segment [θ1, θ2]. A new frozen domain of
type R emerges above this segment, separated from the “liquid” phase by a
new portion of arctic curve forming a cusp. As displayed, this new portion
is obtained as the envelope of a family of tangents whose intercepts with the
X-axis have abscissa t ∈ [θ1, θ2].

with pm =∞ to write

x(t) =
m−1∏
i=1

(
t− θi
t− θi−1

) 1
pi ×

k∏
i=m+1

(
θi − t
θi−1 − t

) 1
pi

(pm =∞) .

Apart from the domains t ≤ 0 and t ≥ α(1) = θk, this opens a new domain [θm−1, θm]
of linear size δm for the allowed values of t, leading to real and positive values of x(t). As
displayed in Figure 20 (which shows the resulting complete arctic curve in the simple case
k = 3, γ1 = γ3 = 1/2, p1 = p3 = 2 and p2 →∞, γ2 → 0, p2γ2 → δ2 = 1), the corresponding
family of tangents creates a new portion of arctic curve made of three parts: a part on the
left leaving the point (θm−1, 0) with a vertical slope, a part on the right leaving the point
(θm, 0) with a slope 1 and a middle part which is tangent to the X-axis at a point (θ, 0)
for some θ ∈ [θm−1, θm]. This in turn creates two frozen domains, one of type F on the left,
and one of type U on the right.
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(X1, Y1)

θ1 θ2 θ5

(X∞, Y∞)
(X0, Y0)

p4=2 p5=1p2=2

θ3 θ4

p1=1 p3=1

Figure 19. The complete arctic curve when α(u) is continuous piecewise
linear, made of k = 5 linear pieces of widths γi = 1/5 (i = 1, . . . , 5) and
slopes p1 = p3 = p5 = 1, p2 = p4 = 2. The three pieces where pi = 1 give rise
to freezing boundaries which generate frozen domains of type R. The first
frozen domain of type R is separated from the “liquid” phase by a portion
of arctic curve joining (θ1, 0) to (X∞, Y∞) and from a frozen domain of type
U by the Y = X line for X ≤ X∞. The third frozen domain of type R is
separated from the “liquid” phase by a portion of arctic curve joining (θ4, 0)
to (X0, Y0). For each frozen domain we indicated its triangular “germ”.

6.2. Freezing the right edge: exact derivation. So far, the expressions for the new
portions that we obtained are based on the conjecture that the parametric equation for
the arctic curve is not only valid for t in the range (−∞, 0] ∪ [α(1),+∞) but holds in
a larger range of values corresponding to real values of x(t). This hypothesis may be
tested in the particular case where the freezing boundary lies on the edge of the domain
D. More precisely, this section is devoted to the study of the effect of “freezing the right
edge” of our paths by imposing that the rightmost starting points obey ai+1 − ai = 1 for
i = n−r+1, n−r+2, . . . , n−1, while an−r+1−an−r > 1, and letting r grow proportionally
to n when n becomes large. In turn, letting r = ρn, this amounts to the condition α′(u) = 1
on the segment [1 − ρ, 1]. We expect in this case a frozen domain of type R below a new
portion of arctic curve connecting the point (α(1−ρ), 0) to the point (X0, Y0) (where Y0 > 0
in this case). Let us show that this is indeed the case.

6.2.1. Partition function: a new derivation. It is easier to describe the present situation in
terms of the complementary starting points bi, i = 1, 2, . . . ,m, for the paths with north-
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θ1 θ2

p2 → ∞

p3 = 2p1 = 2

(γ2p2 → 1)

U typeF type

Figure 20. The complete arctic curve when α(u) is a piecewise linear func-
tion made of two pieces with a discontinuity in-between, obtained as limit
of a continuous piecewise linear function made of k = 3 pieces of widths
γ1 = γ3 = 1/2, γ2 → 0, and slopes p1 = p3 = 2, p2 →∞, with p2γ2 → δ2 = 1
(so that θ1 = 1 and θ2 = θ1 + δ2 = 2). The discontinuity gives rise to a freez-
ing boundary with a gap along the segment [θ1, θ2]. Two new frozen domains
of respective type F and U emerge above this segment, separated from the
“liquid” phase by a new portion of arctic curve forming two cusps and being
tangent to the X-axis at some point with abscissa between θ1 and θ2 (here
equal to 3/2 by symmetry). As displayed, this new portion is obtained as
the envelope of a family of tangents whose intercepts with the X-axis have
abscissa t ∈ [θ1, θ2]. For clarity, the Y -axis has been stretched.

and northeast-oriented steps of Section 2.3, where m+n = an. The above condition simply
forces the position bm = an − r of the rightmost starting point. As mentioned in Section
2.3, the partition function for paths with north- and northeast-oriented steps, starting at
(bi,−1/2), i = 1, 2, . . . ,m and ending at (n + j, n + 1/2), j = 1, 2, . . . ,m is given by the

determinant of the LGV matrix Âi,j with entries:

(6.1) Âi,j =

(
n+ 1

bi − j + 1

)
(i, j = 1, 2, . . . ,m) .

Let us use again the LU decomposition method to compute the determinant directly in
terms of the b’s. We have the following explicit result:
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Theorem 6.1. The lower uni-triangular matrix L̂−1 with elements:

(6.2) L̂−1
i,j =



(
n+m

bi

)(
n+m− bi
m+ 1− i

)
(
n+m

bj

)(
n+m− bj
m+ 1− i

)
i−1∏
s=1

(bi − bs)
i∏

s=1
s 6=j

(bj − bs)
for i ≥ j

0 for i < j

is such that Û := L̂−1Â is upper triangular.

Proof. We compute:

Ûi,j =
m∑
k=1

(L̂−1)i,k

(
n+ 1

bk − j + 1

)

=
i∑

k=1

(
n+m

bi

)(
n+m− bi
m+ 1− i

)
(
n+m

bk

)(
n+m− bk
m+ 1− i

)
i−1∏
s=1

(bi − bs)

i∏
s=1
s 6=k

(bk − bs)

(
n+ 1

bk − j + 1

)
.

Note that, due to the binomial factors, only the values of k for which j − 1 ≤ bk ≤ n + j
and bk ≤ n + i − 1 contribute to the sum. When this holds, the combination of the five
binomial factors above may then be rewritten as

(n+ 1)!

bi!(n+ i− 1− bi)!

j−2∏
s=0

(bk − s)
i−1∏

s=j+1

(n− bk + s) for i > j

(n+ 1)!

bi!(n+ i− 1− bi)!

j−2∏
s=0

(bk − s)

j∏
s=i

(n− bk + s)

for i ≤ j .

Assume now that i > j so that the constraint over bk reduces to j − 1 ≤ bk ≤ n + j. We
way then write

Ûi,j =
(n+ 1)!

bi!(n+ i− 1− bi)!
i−1∏
s=1

(bi − bs)
∮
C(Ŝj)

dt

2iπ

j−2∏
s=0

(t− s)
i−1∏

s=j+1

(n− t+ s)
i∏

s=1

1

(t− bs)
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where the contour encompasses only the set Ŝj = {bs|j − 1 ≤ bs ≤ n+ j}.
Due to the factor

∏i−1
s=j+1(n−t+s) which vanishes for t = n+j+1, n+j+2, . . . , n+ i−1

and to the factor
∏j−2

s=0(t−s) which vanishes for t = 0, 1, . . . , j−2, the contour of integration
can be extended harmlessly so as to encircle all the poles b1, b2, . . . , bi as the residues of the
unwanted contributions vanish (recall that bi ≤ n+i−1 since bi < bi+1 < · · · < bm < n+m).
In turn, by the Cauchy theorem, the integral can be expressed as minus the contribution
of the pole at ∞. But for large t, the integrand behaves as t−2, hence the residue at ∞
vanishes, and we conclude that Ûi,j = 0 for i > j, i.e. Û is upper triangular. �

The diagonal matrix elements Ûi,i are also easily obtained from the above:

Ûi,i =
(n+ 1)!

bi!(n+ i− 1− bi)!
i−1∏
s=1

(bi − bs)
∮
C(b1,b2,...,bi)

dt

2iπ

i∏
s=1

1

(t− bs)

i−2∏
s=0

(t− s)

(n+ i− t)

where the contour encompasses all bs for s = 1, 2, . . . , i, but not n+ i. Indeed the original
contour must select those bs with i− 1 ≤ bs ≤ n + i− 1 and may be extended to those bs
with 0 ≤ bs ≤ n+ i− 1 (due to the vanishing of

∏i−2
s=0(t− s) for t = 0, 1, . . . , i− 2), which

includes all bs for s = 1, 2, . . . , i since the condition bs ≤ n+ i− 1 is automatically satisfied
(due to bi ≤ n + i − 1). As before we note that the integrand behaves as 1/t2 for large t,

hence the residue at∞ vanishes. By the Cauchy theorem, we may therefore re-express Ûi,i
as minus the residue at the excluded pole n+ i. We find:

Ûi,i =
(n+ 1)!

bi!(n+ i− 1− bi)!
i−1∏
s=1

(bi − bs)
i∏

s=1

1

(n+ i− bs)
i−2∏
s=0

(n+ i− s)

=

(
n+ i

bi

) i−1∏
s=1

(bi − bs)
(n+ i− bs)

.

This leads to the following result:

Theorem 6.2. The partition function expressed in terms of the sequence (bi)1≤i≤m reads:

Zn =
∆(0, 1, . . . , n+m)

∆(0, 1, . . . , n)

∆(b1, b2, . . . , bm)
m∏
i=1

bi!(n+m− bi)!
.
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Proof. We compute

Zn =
m∏
i=1

Ûi,i =
m∏
i=1

{(
n+ i

bi

) i−1∏
s=1

(bi − bs)
(n+ i− bs)

}
=

m∏
i=1

{
(n+ i)!

bi!(n+m− bi)!
i−1∏
s=1

(bi − bs)
}

=

m+n∏
i=1

{
i!

i−1∏
1≤i<j≤m

(bj − bi)
}

n∏
i=1

{
i!

m∏
i=1

bi!(n+m− bi)!
} =

∆(0, 1, . . . , n+m)

∆(0, 1, . . . , n)

∆(b1, b2, . . . , bm)
m∏
i=1

bi!(n+m− bi)!
.

�

Note that this evaluation of the determinant of the matrix Â of (6.1) is a particular limit
q → 1 of a more general formula [Kra99], Theorem 26, eq. (3.12).

Using the complementarity of the a’s and b’s, namely {as} ∪ {bq} = {0, 1, . . . , n + m}
and {as} ∩ {bq} = ∅, we have the identity

∆(0, 1, . . . , n+m) = ∆(a0, a1, . . . , an)∆(b1, b2, . . . , bm)
∏
as<bq

(bq − as)
∏
bq<as

(as − bq)

=
∆(a0, a1, . . . , an)

∆(b1, b2, . . . , bm)

m∏
q=1

bq!(n+m− bq)!

which allows to identify (6.2) with (2.6).

6.2.2. One-point function. Let us now apply the tangent method to the configurations of
north- and northeast-oriented step paths with the frozen boundary bm = an−r = m+n−r,
by moving the endpoint of the rightmost path from (n + m,n + 1/2) to another point on
the right (n + m + p, n + 1/2), p ≥ 0. This induces an escape of the rightmost path from
the domain D at a point (n+m,n+ 1/2− `) (see Figure 21 for an illustration). As usual,

the corresponding one-point function reads: Ĥn,m,` =
Û ′m,m
Ûm,m

, where Û ′ = L̂−1Â′, Â′ the LGV

matrix for the configurations with an escaping path, with entries:

(6.3) Â′i,j =


Âi,j for 1 ≤ j < m(
n− `+ 1

n+m− bi

)
for j = m .
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(n+m,n+1/2−`)

n+1 (n+m+p, n+1/2)

b1 bmb3b2 r

n+m

p

`

Figure 21. The tangent method applied to NILP made of north- and
northeast-oriented step paths with bm = an − r = m + n − r, i.e. with a
freezing boundary of linear size r on the right of the lower boundary of the
domain D (displayed here as a rectangle) creating a frozen triangular region
made of right tiles only. Moving the endpoint of the rightmost path from
(n + m,n + 1/2) to (n + m + p, n + 1/2) with p ∈ Z+ forces the rightmost
path to escape from the domain D at some point (n+m,n+ 1/2− `).

Theorem 6.3. The one-point function Ĥn,m,` reads

(6.4) Ĥn,m,` =

m∏
s=1

(n+m− bs)(
n+m

n− `+ 1

) ∮
C(b1,b2,...,bm)

dt

2iπ

1

(m+n−t)
m∏
s=1

1

(t− bs)

m+̀−2∏
s=0

(t− s)

(m+`−1)!
,

where the contour leaves the point m+ n out.
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Proof. We compute

Ĥn,m,` =
1

Ûm,m

m∑
k=1

(L̂−1)m,k

(
n− `+ 1

n+m− bk

)

=
m∏
s=1

(n+m− bs)
m∑
k=1

(
n− `+ 1

n+m− bk

)
(
n+m

bk

) 1

(n+m− bk)
m∏
s=1
s 6=k

(bk − bs)
,

where only those values of k for which bk ≥ m + ` − 1 contribute to the sum (recall also
that bk < an = m+ n for all k) . Using(

n− `+ 1

n+m− bk

)
(
n+m

bk

) =
1(

n+m

n− `+ 1

)
m+`−2∏
s=0

(bk − s)

(`+m− 1)!
,

we may thus write

Ĥn,m,` =

m∏
s=1

(n+m− bs)(
n+m

n− `+ 1

) ∮
C({bs|bs≥m+`−1})

dt

2iπ

1

(n+m− t)
m∏
s=1

1

(t− bs)

m+`−2∏
s=0

(t− s)

(m+ `− 1)!
.

We may harmlessly extend the integral contour so as to encompass all the bs, as all the
extra poles at bs < m − ` − 1 have vanishing residues (due to the factor

∏m+`−2
s=0 (t − s)),

and the formula (6.4) follows. �

The partition function for the single path from the escape point (n+m,n+1−`), starting
with a northeast-oriented step, and ending at the target point (n+m+ p, n+ 1) is simply

(6.5) Ŷp,` =

(
`− 1

p− 1

)
.

Note in particular the condition ` ≥ p (which is saturated only if all steps taken by the
path are of the northeast type).

6.2.3. Asymptotic analysis. For large n, we use the scaling m = µn, r = ρn, p = wn,
` = ξ̂n, and bi = nβ(i/n) with a piecewise differentiable function β(u) with β′(u) ≥ 1 when
defined. Moreover the freezing condition implies that bm = an − r = n + m − r, hence
β(µ) = 1 + µ− ρ, with ρ > 0.
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Theorem 6.4. The tangent method for the case of a target endpoint to the east of D and
an escape point on the right boundary of D, leads to the following portion of arctic curve:

(6.6)


X = X(t) := t− x(t)(1− x(t))

x′(t)

Y = Y (t) :=
(1− x(t))2

x′(t)

(t ∈ [1 + µ− ρ, 1 + µ]) ,

with

(6.7) x(t) = −1 + µ− t
t y(t)

, y(t) = e
−
∫ µ

0
du

t−β(u) .

Proof. From the explicit expressions (6.4) and (6.5) for Ĥn,m,` and Ŷp,`, we may infer the
scaling limits

Ĥn,µn,ξ̂n ∼
∮

dt

2iπ
enŜ0(t,ξ̂), Ŷwn,ξ̂n ∼ enŜ1(ξ̂) ,

where we have performed the customary redefinition t → nt,. The contour, which, before
rescaling, encompasses all the bi’s but leaves the point (n+m) out, must encircle the real
segment [0, 1 + µ− ρ] but leave the point (1 + µ) out, i.e. cross the real axis strictly inside
the segment [1 + µ− ρ, 1 + µ] as well as on the negative real axis (−∞, 0]. Here we have

Ŝ0(t, ξ̂) =

∫ µ

0

Log

(
1 + µ− β(u)

t− β(u)

)
+ tLog(t)− (t− µ− ξ̂)Log(t− µ− ξ̂)

−(1 + µ)Log(1 + µ) + (1− ξ̂)Log(1− ξ̂)
Ŝ1(ξ̂) = ξ̂Log(ξ̂)− wLog(w)− (ξ̂ − w)Log(ξ̂ − w) .

The saddle-point and maximum equations ∂tŜ0 = ∂ξ̂(Ŝ0 + Ŝ1) = 0 lead to

y(t)
t

(t− µ− ξ̂)
= 1 ,

(t− µ− ξ̂)ξ̂
(1− ξ̂)(ξ̂ − w)

= 1 ,

where y(t) is as in (6.7). We find the solution

(6.8) ξ̂(t) = t− µ− t y(t) , w(t) =
t(1− y(t))− µ

1 + µ− t(1− y(t))
(1 + µ− t) .

As just mentioned, the contour of integration in t must cross the real axis strictly inside the
segment [1 +µ− ρ, 1 +µ] and on the negative real axis (−∞, 0]. The saddle-point solution

must have t = (1 − ξ̂)(ξ̂ − w)/ξ̂ + µ + ξ̂ > 0, as ξ̂ ≥ w (from the condition ` ≥ p), and

0 ≤ ξ̂ < 1. The range of validity of (6.8) is therefore for t ∈ [1 + µ− ρ, 1 + µ]. The tangent
line through the rescaled points (1 + µ, 1− ξ(t)) and (1 + µ+ w(t), 1) has the equation

(6.9) w(t)Y − ξ̂(t) (X − t) = 0



ARCTIC CURVES FOR PATHS WITH ARBITRARY FIXED STARTING POINTS 45

We may compare this result with that of Eqs. (3.6) and (4.4). Introducing the quantity
x(t) defined by (6.7), we may express

ξ̂(t) = t− µ− t− 1− µ
x(t)

, w(t) = ξ̂(t)
x(t)

x(t)− 1
,

which allows to identify the parametric representation (6.9) for the tangents with that (3.9)
obtained in Section 3.3, or that (4.5) obtained in Section 4.3. We deduce that the arctic
curve has the same parametric expression in terms of t and x(t) as before, and Theorem
6.4 follows. �

To relate the function x(t) of Theorem 6.4 to that given by (3.7), we use again the
complementarity of the a’s and b’s which implies that

∑n
i=0

1
t−ai +

∑m
j=1

1
t−bj =

∑n+m
i=0

1
t−i .

This leads immediately to

e
−
∫ 1

0
du

t−α(u) e
−
∫ µ

0
du

t−β(u) =
t− 1− µ

t

which allows to identify the quantity x(t) defined by (6.7) to that defined by (3.7) when
both terms are well-defined (and positive), i.e. for t ≤ 0 or t ≥ α(1) = 1 + µ. Eq.(6.7)
allows to extend the definition of x(t) to values of t > β(µ) = 1 + µ − ρ, i.e. to the new
domain [1 + µ− ρ, 1 + µ] = [α(1)− ρ, α(1)]. This corresponds to an analytic continuation
of x(t) in this interval, leading to real values x(t) ≤ 0 (from (6.7), as y(t) > 0), a scheme
which matches precisely that described in Section 6.1 to extend the arctic curve for a
freezing boundary creating a frozen domain of type R. The analytic continuation of x(t)
may be obtained directly from the original definition (3.7) of x(t) which states that, for
t ≥ α(1) = 1 + µ,

(6.10) x(t) = e
−
∫ 1−ρ

0
du

t−α(u)
−
∫ 1

1−ρ
du

t−α(u) = − 1 + µ− t
t− 1− µ+ ρ

e
−
∫ 1−ρ

0
du

t−α(u)

where we have used the freezing condition that α(u) = u+µ on the segment [1−ρ, 1] (with
µ = α(1)−1). The last expression above allows to define x(t) for t ≥ α(1−ρ) = α(1)−ρ =
1 + µ − ρ and is equivalent to the definition (6.7) (as easily deduced from the identity∑n−r

i=0
1

t−ai +
∑m

j=1
1

t−bj =
∑n+m−r

i=0
1
t−i). When t increases from 1 + µ − ρ to 1 + µ, x(t)

increases from −∞ to 0, or equivalently the slope (x(t)− 1)/x(t) of the tangent increases
from 1 to +∞.
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Let us examine the extremities of the new portion of arctic curve. For t → (1 + µ)−,

writing t = 1+µ− ε in (6.10) yields x(t) ∼
ε→0+

−ε C with C = 1
ρ
e−

∫ 1−ρ
0

du
1+µ−α(u) , which yields

X(t) →
t→(1+µ)−

1 + µ = α(1) = X0

Y (t) →
t→(1+µ)−

ρ e

∫ 1−ρ
0

du
1+µ−α(u) = e

∫ 1−ρ
0

du
{

1
α(1)−α(u)

− 1
1−u

}

= e

∫ 1

0
du
{

1
α(1)−α(u)

− 1
1−u

}
= Y0

with X0 and Y0 as in (3.11) (again we used α(1)−α(u) = 1−u for u ∈ [1−ρ, 1]). The new
portion of the arctic curve therefore connects to the previous known portion at (X0, Y0). For
t→ 1+µ−ρ = β(µ), writing t = β(µ)+η and letting η → 0+, we have y(t) ' η1/β′(µ) (with
some unimportant multiplicative constant), hence x(t) ' η−1/β′(µ) and x′(t) ' η−1/β′(µ)−1,
leading to X(t)→ (1 + µ− ρ) and Y (t)→ 0 in the generic case β′(µ) > 1. The extremity
of the new portion is thus at (1 + µ− ρ, 0), as expected.

To summarize this section, the explicit computation above proves our conjecture of Sec-
tion 6.1 in the particular case where the freezing occurs on the right edge of the lower
boundary of D. Clearly, the freezing of the left edge is amenable to the same exact cal-
culation by a simple application of the reflection principle of Section 4.1, thus proving the
conjecture in this case as well.

6.3. Examples.

6.3.1. Fully frozen boundaries. We display here examples where the boundary is fully
frozen, namely where the distribution of starting points ai alternates between macroscopic
portions with ai+1− ai = 1 and macroscopic gaps with no a’s. In turn, this corresponds to
piecewise linear α(u) with pieces corresponding exclusively of p = 1 and p = ∞ portions.
In general, we consider 2k− 1 positive numbers γ1, γ2, . . . , γk, δ1, δ2, . . . , δk−1, together with

δ0 = γ0 = 0 and such that
∑k

i=1 γi = 1. As before we introduce the quantities ϕi :=
∑i

j=0 γi,

i = 0, 1, . . . , k, with ϕ0 = 0 and ϕk = 1, as well as θ2i =
∑i

j=0(γj +δj) and θ2i+1 = θ2i+γi+1

for i = 0, 1, . . . , k − 1. We have for i = 1, 2, . . . , k:

α(u) = u+
i−1∑
j=1

δj (u ∈ [ϕi−1, ϕi)) .

This immediately gives:

x(t) =
k∏
j=1

t− θ2j−1

t− θ2j−2

.
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The simplest non-trivial example is for k = 2. Let us denote γ1 = a, δ1 = b and
γ2 = c = 1 − a. The path problem is then equivalent (up to a simple shear/dilation) to
that of the rhombus tiling of a hexagon with edge lengths na, nb, nc (see Figure 22), and
the arctic curve is well known to be an ellipse. Noting that

X(t) = (a+ c)

(
a(a+ b+ c)− (a+ c)t

)2
+ bct2(

a(a+ b+ c)− (a+ c)t
)2

+ abc (a+ b+ c)

Y (t) = (a+ c)

(
a(a+ b+ c)− (a+ c)t

)2(
a(a+ b+ c)− (a+ c)t

)2
+ abc (a+ b+ c)

and eliminating t, we indeed find the equation of the arctic ellipse:(
(c− b)Y − (a+ c)X + a(a+ b+ c)

)2
+ 4bc Y (Y −X) = 0 .

The case a = 1
3
, b = 1, c = 2

3
is represented in Figure 22.

We display a more involved case with k = 4 in Figure 23, with γ1 = γ2 = γ4 = 1
6
, γ3 = 1

2
,

δ1 = 1
4
, δ2 = 1 and δ3 = 1

2
, so that θ1 = 1

6
, θ2 = 5

12
, θ3 = 7

12
, θ4 = 19

12
, θ5 = 25

12
, θ6 = 31

12
,

θ7 = 11
4

.

6.3.2. Mixed boundaries. We now consider a “mixed” boundary case, with:

α(u) =

{
u+ u2 for u ∈ [0, 1/2]

1 + u for u ∈ (1/2, 1] .

This combines a non-linear distribution on [0, 3
4
], a gap with no a’s on (3

4
, 3

2
], and a frozen

boundary with α′(u) = 1 on (3
2
, 2]. The corresponding x(t) reads

x(t) =
t− 2

t− 3
2

(
1− 4t+

√
1 + 4t

1− 4t−
√

1 + 4t

) 1√
1+4t

and the associated arctic curve is represented in Figure 24.

7. Conclusion

7.1. Summary and discussion. In this paper, we have studied non-intersecting path
models in the Z2 lattice with fixed arbitrary starting points along the X-axis. These
fixed positions a0, a1, ..., an are described in the scaling limit n→∞ by a single piecewise
differentiable increasing function α(u) with α′(u) ≥ 1 when defined, such that ai ∼ nα(i/n)
for large i, n with i/n → u. Our main result (1.1) is a parametric expression (1.1) of the
arctic curve for the large n asymptotic path model, involving some function x(t) directly
related to α(u) via (3.7) (or its analytic continuation via (6.7)). Several portions of the
arctic curve are obtained from several intervals in the variable t. Explicit calculations were
performed for three portions: two generic ones and one arising in the presence of a freezing
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(X1, Y1)

(X∞, Y∞)

(X0, Y0)

θ1 θ2a cb θ3

Figure 22. The complete arctic curve when α(u) is a piecewise linear func-
tion made of two pieces of width a and c and slope 1, with a discontinuity
by b in-between (here for a = 1/3, b = 1 and c = 2/3). The pieces of slope
1 give rise to freezing boundaries on the left and on the right of the lower
boundary of D and create frozen domains of type R, while the discontinuity
gives rise to a central freezing boundary with a gap along the segment [θ1, θ2],
creating two frozen domains of respective type F and U. The resulting arctic
curve is an ellipse, as expected since, up to a shear, the path/tiling problem
is equivalent to that of the rhombus tiling of a hexagon with edge lengths
na, nb, nc.

edge. We also analyzed, without explicit derivation, the shape of new portions induced by
more general freezing boundaries.

It is interesting to better understand the meaning of the fundamental function x(t). First,
we note that, associated to the asymptotic boundary “shape” is the actual distribution of
starting points, which can be defined in the finite size as:

ρn(v) =
1

n+ 1

n∑
i=0

δ(v − ai) .

The limiting distribution is then defined on [0, α(1)] as

ρ(v) = lim
n→∞

n ρn(nv) =

∫ 1

0

du δ(v − α(u)) =
1

α′(α−1(v))
,
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(X1, Y1)

(X∞, Y∞)

(X0, Y0)

θ2θ1 θ5θ4θ3 θ7θ6

Figure 23. The complete arctic curve when α(u) is a (discontinuous) piece-
wise linear function consisting of an alternation of pieces with slope 1 of
widths γ1 = γ2 = γ4 = 1

6
, γ3 = 1

2
and of gaps δ1 = 1

4
, δ2 = 1 and δ3 = 1

2
. This

results in an alternation of frozen domains adjacent to the lower boundary
of the domain D.

(X1, Y1)

(X∞, Y∞)

(X0, Y0)

α(u) = u+u2
3/4 3/2

α(u) = 1+u

(u > 1/2)(u ≤ 1/2)

gap

Figure 24. The complete arctic curve when α(u) = u+ u2 for u ≤ 1/2 and
α(u) = 1 + u for u > 1/2, hence with a gap of linear size 3/2− 3/4 = 3/4.
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where α−1(v) is the composition inverse of the function α(u) whenever well-defined. We
may consequently interpret the quantity x(t) of (3.7) as giving the moment generating
function (or resolvent) of the distribution ρ, namely:

(7.1) − Log(x(t)) =
∞∑
n=0

µn
tn+1

, µn =

∫ α(1)

0

vnρ(v)dv =

∫ 1

0

α(u)ndu .

Another remark is that the formula (1.1) for the arctic curve may be rephrased in the
language of the Legendre transformation as follows: introducing the quantity

(7.2) s(t) :=
x(t)

1− x(t)
,

the equation (3.9) for the tangent line may be rewritten as

X = t− s(t)Y
so that, if we express the arctic curve (1.1) by its Cartesian equation X = X(Y ), the
quantities t and s(t) are respectively the value at the origin (Y = 0) and minus the slope
of the line tangent to X(Y ) at the point Y = Y (t). In particular, at Y = Y (t), we have
s(t) = −X ′(Y ) (a relation which may also be checked directly from (1.1)) and, inverting
s = s(t) into t = t(s), we may write the above relation as

t(s) = X(Y (s)) + s Y (s) where Y (s) = −X ′−1(s)

in terms of the composition inverse X ′−1 of the function X ′(Y ). This states that the
function t(s) is simply the Legendre transform of the function X(Y ) and vice versa, to that
we may write as well

X(Y ) = t(s(Y ))− Y s(Y ) where s(Y ) = t′−1(Y )

in terms of the composition inverse t′−1 of the function t′(s). This latter expression allows
to directly get the location X(Y ) of the arctic curve as the Legendre transform of the
function t(s), the composition inverse of s(t) given by (7.2). In practice, the equation
s = s(t) may have several solutions in t so that t(s) can be made of several branches.
Each branch gives in turn one branch for X(Y ) (recall that X(Y ) is made of at least two
branches corresponding to the two generic portions of the arctic curve) or several ones with
cusps if t′′(s) vanishes for some s.

We conclude this paper with three comments: we first give the equation for the arctic
curve in modified coordinates adapted to the rhombus tiling interpretation. We then dis-
cuss a direct geometric construction of the arctic curve inspired by the well-known Wulff
construction for crystal shape. We end by a more technical point on some alternative use of
the tangent method consisting in moving the extremal starting point instead of the ending
one.
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(X∆
1 , Y ∆

1 )

(X∆
∞, Y ∆

∞ ) (X∆
0 , Y ∆

0 )

Figure 25. The “rectified” version of Figure 19, obtained by modifying the
tiles as shown on the left. The vertical axial symmetry of the boundary
condition induces a vertical axial symmetry of the arctic curve.

7.2. Rhombus tilings. The problem we studied was conveniently expressed in terms of
paths on the lattice Z2. However, the dual tiling problem has the natural symmetry of
the triangular lattice, the tiles being the three possible rhombi obtained by gluing pairs
of adjacent triangles. All the results of this paper can be reformulated in this framework,
provided we perform a change of coordinates:

(X, Y ) 7→
(
X∆ = X − 1

2
Y, Y ∆ =

√
3

2
Y

)
.

Some of the symmetries observed in this paper become more manifest in this frame. For
illustration we have represented in Figure 25 the “rectified” version of the case of Figure
19, of a k = 5 piecewise linear α(u), with a manifest vertical axial symmetry.

In the new coordinates, the arctic curve reads:
X∆(t) = t+

x(t)2 − 1

2x′(t)

Y ∆(t) =
√

3
(x(t)− 1)2

2x′(t)
.

The corresponding parametric family of tangent lines has equation:

(1 + x(t))Y +
√

3(1− x(t)) (X − t) = 0 .

7.3. A geometric construction. One may wonder whether our result (1.1) connecting
the boundary conditions to the shape of the arctic curve has a direct geometric description.
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P

M

O

Q

X
+
Y
=
1

L(M
)

Figure 26. Geometric construction of the line L(M) from a point M on
the curve (t, x(t)) in some orthonormal frame. The line L(M) (fat line) is
the line orthogonal to (OQ) passing through P . Moving the point M along
the curve generates a family of lines L(M) whose envelope is the arctic curve.

It is very reminiscent indeed of the so-called Wulff construction that relates the surface
tension of a growing two-dimensional crystal to the shape of its boundaries. In that case,
the crystal is grown from an initial center (x0, y0), with a surface tension σ(θ) depending
on the angle θ measuring the orientation of the normal to the growing surface with respect
to the microscopic crystalline axes. This surface tension may be represented by the one-
dimensional curve r = σ(θ) in polar coordinates centered at (x0, y0): the shape of the
boundary of the crystal is then (up to a global scaling) given by the envelope of the family
of lines L(θ) that are normal to the radius vector at the point (σ(θ), θ) (more precisely the
shape is given by the convex hull of this envelope).

If we could interpret our family of tangent lines as arising from some Wulff construction,
it would give access to some candidate surface tension σ(θ). However, the problem is ill-
posed, as there seems to be no favored choice of the center (x0, y0), and in fact if we were
to think of our model as the final stage of some growth process, it would rather start from
frozen boundaries, and the status of fixed boundaries with arbitrary α(u) is unclear in that
respect.

On the other hand, we may devise the following direct geometrical construction for the
arctic curve (1.1) based again, in the spirit of the Wulff construction, on the data of some
one-dimensional curve in the plane. Here this curve is simply the plot of the function
x(t) itself, namely the curve (t, x(t)) in cartesian coordinates (using some orthonormal
basis). Given a point M on this curve, we may easily obtain the corresponding value of
t by projecting the point vertically on the X-axis as the resulting point is P = (t, 0) by
definition. The point Q of coordinates (1 − x(t), x(t)) is obtained by now projecting M
horizontally on the line of equation X + Y = 1 (see Figure 26). Denoting by O = (0, 0)
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(an+p, 0)

(an, n−`)
`

p

Figure 27. The tangent method applied to the NILP with paths made of
north- and west-oriented step, as obtained by moving the starting point of
the outermost path is moved from On = (an, 0) to O′n = (an + p, 0) with
p ∈ Z+, forcing the path to re-enter the domain D (here the displayed grid)
by a west-oriented step at some position (an, n− `) on the right boundary of
D.

the origin, the tangent to the arctic curve labelled by t is, from its equation (3.9), the line
L := L(M) orthogonal to the line (OQ) and passing trough the point P . Each point M of
the plot gives rise to a line L(M) and the arctic curve is the envelope of these lines.

7.4. Moving the starting point. So far we used the tangent method by moving the
ending point of the outermost (or rightmost) path out of the domain D. Another choice
would have been to move instead the starting point of this path. Let us briefly describe
how the method works in the original language of north- and west-oriented paths. Moving
the starting point On = (an, 0) to say O′n = (an+p, 0) for some p ∈ Z+ forces the outermost
path to re-enter the domain D at some point (an, n− `) on its right boundary (see Figure
27). The partition function for NILP in the domain D with their outermost path starting
at (an, n− `), properly normalized by Zn, defines our new one-point function Ȟn,` for this
new geometry. Its computation is made straightforward thanks to the remark that

Ĥn,m,` − Ĥn,m,`+1 = Ȟn,` − Ȟn,`−1

where m = an − n and Ĥn,m,` as is (6.4), which implies the sum rule

Ȟn,` = 1− Ĥn,m,`+1 .

These identities are obtained exactly via the same arguments as those given in Section 4.2
to prove (4.3). Using the explicit expression (6.4) for Ĥn,m,`, we may write

1− Ĥn,m,`+1 =

m∏
s=1

(n+m− bs)(
n+m

n− `

) ∮
C(b1,b2,...,bm,n+m)

dt

2iπ

1

(t−m− n)

m∏
s=1

1

(t− bs)

m+`−1∏
s=0

(t− s)

(m+ `)!
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where the contour now encircles the pole at m+n, since, as easily checked, its contribution
produces the first term 1 in the left hand side. Using now

(t−m− n)
n−1∏
s=0

(t− as)
m∏
s=1

(t− bs) =
n+m∏
s=0

(t− s)

and in particular, dividing by (t−m− n) and setting t = an = n+m,

n−1∏
s=0

(an − as)
m∏
s=1

(n+m− bs) = (n+m)! ,

the above expression yields immediately

Ȟn,` =
1

n−1∏
s=0

(an − as)

∮
C(an−(n−`),an−(n−`−1),...,an)

dt

2iπ

1

(t− an)

n−1∏
s=0

(t− as)
(n− `)!

n−∏̀
s=1

(t− an + s)

.

It is then a straightforward exercise to use the tangent method machinery to get, in the
large n asymptotic regime, the equation for the tangents and for the arctic curve. As
expected, we recover the same set of tangents as in Section 3.3, given by equation (3.9) for
t ∈ [α(1),+∞). This provides an alternative derivation for the first portion of the arctic
curve. Clearly, an alternative derivation for the second portion of arctic curve would consist
in moving out of D the starting point of the outermost path for NILP configurations with
paths made of east- and northeast-oriented steps.

Acknowledgments. We are thankful to Filippo Colomo, Christian Krattenthaler, Matthew
F. Lapa, Vincent Pasquier and Andrea Sportiello for valuable discussions. PDF is partially
supported by the Morris and Gertrude Fine endowment. EG acknowledges the support of
the grant ANR-14-CE25-0014 (ANR GRAAL).

References

[CEP96] Henry Cohn, Noam Elkies, and James Propp, Local statistics for random domino tilings of the
aztec diamond, Duke Math. J. 85 (1996), no. 1, arXiv:math/0008243 [math.CO].

[CS16] Filippo Colomo and Andrea Sportiello, Arctic curves of the six-vertex model on generic domains:
the tangent method, J. Stat. Phys. 164 (2016), no. 6, 1488–1523, arXiv:1605.01388 [math-ph].

[DFL18] Philippe Di Francesco and Matthew F. Lapa, Arctic curves in path models from the tangent
method, J. Phys. A: Math. Theor. 51 (2018), 155202, arXiv:1711.03182 [math-ph].

[DFR12] Philippe Di Francesco and Nicolai Reshetikhin, Asymptotic shapes with free boundaries, Comm.
Math. Phys. 309 (2012), no. 1, 87–121. MR 2864788

[DFSG14] Philippe Di Francesco and Rodrigo Soto-Garrido, Arctic curves of the octahedron equation, J.
Phys. A 47 (2014), no. 28, 285204, 34, arXiv:1402.4493 [math-ph]. MR 3228361

[GV85] Ira Gessel and Gérard Viennot, Binomial determinants, paths, and hook length formulae, Adv.
Math. 58 (1985), no. 3, 300–321.



ARCTIC CURVES FOR PATHS WITH ARBITRARY FIXED STARTING POINTS 55

[JPS98] William Jockusch, James Propp, and Peter Shor, Random domino tilings and the arctic circle
theorem, arXiv:math/9801068 [math.CO] (1998).

[KO06] Richard Kenyon and Andrei Okounkov, Planar dimers and harnack curves, Duke Math. J 131
(2006), no. 3, 499–524, arXiv:math/0311062 [math.AG].

[KO07] , Limit shapes and the complex burgers equation, Acta Math. 199 (2007), no. 2, 263–302,
arXiv:math-ph/0507007.

[KOS06] Richard Kenyon, Andrei Okounkov, and Scott Sheffield, Dimers and amoebae, Ann. Math.
(2006), 1019–1056, arXiv:math/0311062 [math.AG].

[KP13] Richard Kenyon and Robin Pemantle, Double-dimers, the Ising model and the hexahedron re-
currence, 25th International Conference on Formal Power Series and Algebraic Combinatorics
(FPSAC 2013), Discrete Math. Theor. Comput. Sci. Proc., AS, Assoc. Discrete Math. Theor.
Comput. Sci., Nancy, 2013, pp. 109–120. MR 3090984

[Kra99] C. Krattenthaler, Advanced determinant calculus, Sém. Lothar. Combin. 42 (1999), Art. B42q,
67, The Andrews Festschrift (Maratea, 1998). MR 1701596

[Lin73] Bernt Lindström, On the vector representations of induced matroids, Bull. London Math. Soc.
5 (1973), no. 1, 85–90.
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