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We study the problem of determining the capacity of the binary perceptron for two variants of the problem
where the corresponding constraint is symmetric. We call these variants the rectangle-binary-perceptron
(RPB) and the u−function-binary-perceptron (UBP). We show that, unlike for the usual step-function-
binary-perceptron, the critical capacity in these symmetric cases is given by the annealed computation
in a large region of parameter space (for all rectangular constraints and for narrow enough u−function
constraints, K < K∗). We prove this fact (under two natural assumptions) using the first and second
moment methods. We further use the second moment method to conjecture that solutions of the symmetric
binary perceptrons are organized in a so-called frozen-1RSB structure, without using the replica method.
We then use the replica method to estimate the capacity threshold for the UBP case when the u−function
is wide K > K∗. We conclude that full-step-replica-symmetry breaking would have to be evaluated in
order to obtain the exact capacity in this case.

I. INTRODUCTION

In this paper we revisit the problem of computing the capacity of the binary perceptron1,2 for storing random
patterns. This problem lies at the core of early statistical physics studies of neural networks and their learning
and generalization properties, for reviews see e.g.3–6. While the perceptron problem is motivated by studies of
simple artificial neural networks as discussed in detail in the above literature, in this paper we view it as a random
constraint satisfaction problem (CSP) where the vector of binary weights w ∈ {±1}N (a solution) must satisfy M
step constraints of the type

N
∑

i=1

Xµiwi ≥ K , (1)

where µ = 1, . . . ,M , K ∈ R is the threshold, the random variables Xµi are iid Gaussian variables with zero mean
and variance 1/N , and the rows of the matrix X ∈ R

M×N are called patterns. We define an indicator function
associated to the perceptron with a step constraint as ϕs(z) = 1z ≥ K .

We say that a given vector w is a solution of the perceptron instance if all M constraints given by eq. (1)
are satisfied. The storage capacity is then defined similarly to the satisfiability threshold in random constraint
satisfaction problems: we denote the constraint density as α ≡ M/N and define the storage capacity αc(K) as the
infimum of densities α such that in the limit N → ∞, with high probability (over the choice of the matrix X) there
are no solutions. It is natural to conjecture that the converse also holds, i.e. the storage capacity αc(K) equals the
supremum of α such that in the limit N → ∞ solutions exist with high probability. In this case we would say the
storage capacity is a sharp threshold.
Gardner and Derrida in their paper1 assume the storage capacity αc(K) is a sharp threshold and they apply

the replica calculation to compute it, but reach a result inconsistent with a simple upper bound obtained by
the first moment method. Mézard and Krauth2 found a way to obtain a consistent prediction from the replica
calculation and concluded that the storage capacity αs

c(K) for the step binary perceptron (SBP), i.e. associated
to the constraint ϕs, is given by the largest α for which the following quantity, the entropy in physics, is positive:

φs
RS(α,K) = SPq0,q̂0







1

2
(q0 − 1) q̂0 +

∫

Dt log
[

2 cosh
(

t
√

q̂0

)]

+ α

∫

Dt log





∫ ∞

K−t
√

q0√
1−q0

Du











, (2)

where Dt =
∫

e−t2/2
√
2π

dt is a Gaussian measure, and SP stands for “saddle point” meaning that the expression is

evaluated where the derivatives on the curl-bracket, with respect to q0 ≥ 0 and q̂0 ≥ 0, is zero.
Several decades of subsequent research in the statistical physics of disordered systems are consistent with the

conjectured Mézard-Krauth formula for the storage capacity of the binary perceptron. Despite the simplicity of the
above conjecture and decades of impressive progress in the mathematics of spin glasses and related problems, (see
e.g.7–12 and many others), the storage capacity of the binary perceptron remains an open mathematical problem.
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In fact, even the very existence of a sharp threshold, i.e. the fact that in the limit N → ∞ the probability that
patterns can be stored drops sharply from one to zero at the capacity, is an open problem. Up to very recently
only widely non-matching upper bounds and lower bounds for the storage capacity of the binary perceptron were
available13,14. As the present work was being finalized Ding and Sun15 proved in a remarkable paper a lower
bound on the capacity that matches the Krauth and Mezard conjecture (note that much like Theorem 4 below,
the main theorem in15 depends on a numerical hypothesis). A matching upper bound remains an open challenge
in mathematical physics and probability theory.
In this paper we introduce two simple symmetric variants of the binary perceptron problem. Let zµ(w) =

∑N
i=1 Xµiwi. For a threshold K ∈ R+, we consider two different types of symmetric constraints:

• The rectangle binary perceptron (RBP) requires |zµ| ≤ K, ∀µ = 1, . . . ,M . Its associated indicator function
is ϕr(z) = 1|z| ≤ K .

• The u-function binary perceptron (UBP) requires |zµ| ≥ K, ∀µ = 1, . . . ,M . Its associated indicator function
is ϕu(z) = 1|z| ≥ K .

These constraints are symmetric in the sense that if w is a solution then −w is a solution as well.
The main result of the present paper, presented in section II, is a proof, subject to a numerical hypothesis, of

a formula for the storage capacity, defined in the same way as for the step-function binary perceptron above. In
particular, we show that in these symmetric variants the first moment upper bound (corresponding to the annealed
capacity in physics) on the storage capacity is tight (except for K > K∗ ≃ 0.817 for the UBP case). We prove this
statement using the second moment method.
Let Z ∼ N (0, 1), and for K ∈ R+ let pr,K = P[|Z| ≤ K] and pu,K = P[|Z| ≥ K].

• The storage capacity for the rectangle binary perceptron is:

αr
c(K) =

− log(2)

log(pr,K)
∀K ∈ R

+ . (3)

• The storage capacity for the u−function binary perceptron is:

αu
c (K) =

− log(2)

log(pu,K)
for 0 < K < K∗ ≃ 0.817 . (4)

The constant K∗ ≃ 0.817 stems from the properties of the second moment entropy eq. (10). In the physics terms
it is defined as the point of intersection between the annealed capacity αu

a(K) and the local stability of the RS
solution αu

AT(K) eq. (17). That is, K∗ is the solution of the following equation:

πp2u,KeK
2

log(pu,K) = −2 log(2)K2 . (5)

The two symmetric variants of the perceptron problem considered here share many of the intriguing geometric
properties of the original step-function binary perceptron problem. Most significant is the conjectured frozen-
1RSB2 nature of the space of solutions that splits into well separated clusters of vanishing entropy at any α > 0.
Remarkably, this frozen-1RSB property can be deduced from the form of the second moment entropy as we explain
in section III. Our justification of the frozen-1RSB property does not rely on the replica method and is hence of
independent interest.
For the UBP and K > K∗, the second-moment proof technique fails, and this failure marks tightly the onset

of the replica symmetry breaking region. In that region, we evaluate the one-step replica symmetry breaking
(1RSB) approximation for the storage capacity, but conclude that full-step replica symmetry breaking (FRSB)
would be needed to obtain the exact result. While the FRSB equations can be written along the lines of16, they are
more involved than the ones for the Sherrington-Kirkpatrick model17–19, and solving them numerically or getting
additional insight from them is a challenging task left for future work. We present the replica analysis in section IV.
Table I contains the summary of our main results along with the predictions for the step-function perceptron.
Finally let us comment on the simpler and more commonly considered case of spherical perceptron where the

binary constraint on the vector w is replaced by the spherical constraint w⊺w =
∑N

i=1 w
2
i = N . For K = 0 the

spherical perceptron reduces to the famous problem of intersection of half-spaces with capacity αc = 2 as solved
by Wendell20 and Cover21. For K > 0 the Gardner-Derrida solution1 is correct as proven in22,23. For K < 0 the
situation is more challenging and FRSB is needed to compute the storage capacity; for recent progress in physics
see16,24, while mathematical considerations about this case were presented in25.
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Binary perceptron Constraint Constraint function Range of K Storage capacity

Step-function z ≥ K ϕs(z) = 1z ≥ K ∀K ∈ R RS eq. (2)

Rectangle |z| ≤ K ϕr(z) = 1|z| ≤ K ∀K ∈ R
+ Annealed eq. (3)

U -function |z| ≥ K ϕu(z) = 1|z| ≥ K 0 < K < K∗ = 0.817 Annealed eq. (4)

U -function |z| ≥ K ϕu(z) = 1|z| ≥ K ∀K > K∗ = 0.817 FRSB?

TABLE I. This table summarizes results for storage capacity in binary perceptrons with different types of constraints. The
result for canonical step-function is from2. The results for the rectangle and u-function are obtained in this paper.

II. PROOF OF CORRECTNESS OF THE ANNEALED CAPACITY

To state the main results precisely we introduce some definitions. Let X(N,M) be the random M ×N pattern
matrix. Define the partition functions

Zr(X) =
∑

w∈{±1}N

M
∏

µ=1

ϕr(zµ(w)) and Zu(X) =
∑

w∈{±1}N

M
∏

µ=1

ϕu(zµ(w)) ,

which count respectively the number of solutions for the rectangle and u−function constraints respectively. Let
Er(N,M) and Eu(N,M) be the events that Zr(X) ≥ 1 and Zu(X) ≥ 1. We formally define the storage capacity.

Defintition 1. The storage capacity αr
c(K) is

αr
c(K) = inf{α : lim

N→∞
P[Er(N, ⌊αN⌋)] = 0} ,

and likewise for αu
c (K).

It is believed that there is a sharp threshold for the existence of solutions.

Conjecture 2. The storage capacity is a sharp threshold:

αr
c(K) = sup{α : lim

N→∞
P[Er(N, ⌊αN⌋)] = 1} ,

and likewise for αu
c (K).

The corresponding conjecture for the random k-SAT model is the celebrated ‘satisfiability threshold conjecture’
proved for k large by Ding, Sly, and Sun12.
Next, couple two standard Gaussians Z1, Zβ by letting Z and Z ′ be independent standard Gaussians and setting

Z1 =
√
βZ +

√
1− βZ ′ and Zβ =

√
βZ −√

1− βZ ′. Let







qr,K(β) = P[|Z1| ≤ K ∧ |Zβ| ≤ K] = qK(β) ,

qu,K(β) = P[|Z1| ≥ K ∧ |Zβ| ≥ K] = 1− 2pr,K + qK(β) ,
(6)

with qK(β) the probability that two standard Gaussians with correlation 2β− 1 are both at most K in absolute
value, that is:

qK(β) =
1

2π

∫ K

−K

dy

∫
K+(1−2β)y

2
√

β(1−β)

−K+(1−2β)y

2
√

β(1−β)

e−
x2+y2

2 dx .

Note that qt,K(1) = pt,K and qt,K(1/2) = p2t,K for t ∈ {r, u}. We now introduce the functions that dictate the
effectiveness of the second moment bound. Let

Fr,K,α(β) = H(β) + α log qr,K(β) (7)

Fu,K,α(β) = H(β) + α log qu,K(β) (8)

where H(β) = −β log β − (1 − β) log(1 − β) is the Shannon entropy function.
We state a numerical hypothesis in terms of the derivatives of these two functions.
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Hypothesis 3. For all choices of K > 0 and α > 0 so that F ′′
r,K,α(1/2) < 0, there is exactly one β ∈ (1/2, 1) so

that F ′
r,K,α(β) = 0. The same holds for Fu,K,α.

Our main theorem is a proof, under Hypothesis 3, that the storage capacity is given by the annealed computation.

Theorem 4. Under the assumption of Hypothesis 3, the following hold.

1. For all K > 0, we have αr
c(K) = − log(2)/ log(pr,K).

2. For all K ∈ (0,K∗), we have αu
c (K) = − log(2)/ log(pu,K).

Under our definition of αr
c(K) and αu

c (K), we must prove two statements to show that αr
c(K) = − log(2)/ log(pr,K)

(and similarly for αu
c (K)). We use the first moment method to show that for α > − log(2)/ log(pr,K),

limN→∞ Pr(Er(N,M)) = 0; then we use the second moment method to show that for α < − log(2)/ log(pr,K),
lim infN→∞ Pr(Er(N,M)) > 0 (a result analogous to what Ding and Sun prove for the more challenging
step binary perceptron15). Conjecture 2 asserts the stronger statement that for α < − log(2)/ log(pr,K),
limN→∞ Pr(Er(N,M)) = 1.

A. First moment upper bound

Proposition 5.

1. If α > αr
a(K) = − log(2)

log(pr,K) , then whp there is no satisfying assignment to the binary perceptron with the

rectangle activation function.

2. If α > αu
a(K) = − log(2)

log(pu,K) , then whp there is no satisfying assignment to the binary perceptron with the

u-function activation function.

Proof. We give the proof for the rectangle function as the proof for the u-function is identical. Let ǫ = α−αr
a(K) > 0.

Let 1 denote the vector of dimension N with all 1 entries.

P[Er(N,αN)] ≤ E[Zr(X(N,αN))] = 2NE

[

αN
∏

µ=1

1|zµ(1)|≤K

]

= 2NpαNr,K = exp(N(log(2) + α log(pr,K)))

= exp(Nǫ log(pr,K)) → 0 as N → ∞ .

B. Second moment lower bound

Proposition 6.

1. If α < − log(2)
log(pr,K) , then

lim inf
N→∞

P[Er(N,αN)] > 0.

2. If K < K∗ and α < − log(2)
log(pu,K) , then

lim inf
N→∞

P[Eu(N,αN)] > 0.

To prove Proposition 6 we will apply the second-moment method in a similar fashion to Achlioptas and Moore26

who determined the satisfiability threshold of random k-SAT to within a factor 2 by considering not-all-equal
satisfying assignments (not-all-equal satisfiability (NAE-SAT) constraints are symmetric in the same way the
rectangle and u-function constraints are symmetric). Recall the Paley-Zygmund inequality.

Lemma 7. Let X be a non-negative random variable. Then

P[X > 0] ≥ E[X ]2

E[X2]
.

We will also use the following application of Laplace’s method from Achlioptas and Moore26.
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Lemma 8. Let g(β) be a real analytic function on [0, 1] and let

G(β) =
g(β)

ββ(1− β)1−β
.

If G(1/2) > G(β) for all β 6= 1/2 and G′′(1/2) < 0, then there exists constants c1, c2 so that

c1G(1/2)N ≤
N
∑

l=0

(

N

l

)

g(l/N)N ≤ c2G(1/2)N .

1. Rectangle binary perceptron

We calculate

E[Zr(X)2] =
∑

w1,w2∈{±1}N

P[w1,w2 satisfying] = 2N
∑

w∈{±1}N

P[1,w satisfying] = 2N
N
∑

l=0

(

N

l

)

qr,K(l/N)αN ,

where we recall qr,K from eq. (6). Define

Gr,K,α(β) ≡ exp(Fr,K,α(β)) =
qr,K(β)α

ββ(1 − β)1−β
, (9)

If we can show that Gr,K,α(1/2) > Gr,K,α(β) for all β 6= 1/2 and G′′
r,K,α(1/2) < 0, then by Lemma 8, we have

E[Zr(X)2] ≤ c24
Nqr,K(1/2)αN

= c24
Np2αNr,K .

Then since Zr(X) is integer valued, we have

P[Zr(X) ≥ 1] ≥ E[Zr(X)]2

E[Zr(X)2]
=

(2NpαNr,K)2

E[Zr(X)2]

≥
(2NpαNr,K)2

c24Np2αNr,K

= 1/c2 > 0 .

It remains to show that when α < − log(2)
log(pr,K) , then Gr,K,α(1/2) > Gr,K,α(β) for all β 6= 1/2 and G′′

r,K,α(1/2) < 0.

By eq. (9) and the fact that G′
r,K,α(1/2) = 0, it is enough to show the same for Fr,K,α.

Certainly one necessary condition is that Fr,K,α(1/2) > Fr,K,α(1). This reduces to the condition 2p2αr,K > pαr,K
or α < − log(2)

log(pr,K) which is exactly the condition of Proposition 6. Next consider F ′′
r,K,α(1/2).

A calculation shows that

F ′′
r,K,α(1/2) = 4

(

−1 +
2

π

αK2e−K2

p2r,K

)

.

In particular, F ′′
r,K,α(1/2) < 0 if and only if

α <
π

2

p2r,K
K2e−K2 .

But a calculation also shows that

− log(2)

log(pr,K)
<

π

2

p2r,K
K2e−K2

for all K > 0 and so the condition of Proposition 6 implies that F ′′
r,K,α(1/2) < 0.

Moreover, since Fr,K,α(β) is symmetric around β = 1/2 and it has a local maximum at β = 1/2, Hypothesis 3
implies that the global maximum of Fr,K,α(β) occurs at either 1/2 or 1, and since Fr,K,α(1/2) > Fr,K,α(1), we
have that Fr,K,α(1/2) > Fr,K,α(β) for all β 6= 1/2, completing the proof of Proposition 6 for the rectangle binary
perceptron.
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2. u-function binary perceptron

The proof for the u-function is similar. We can calculate

E[Zu(X)2] = 2N
N
∑

l=0

(

N

l

)

qu,K(l/N)αN = exp (N(log(2) + Fu,K,α(β))) ,

where we recall qu,K from eq. (6). Using Lemma 8 and Hypothesis 3 again, it suffices to show that for 0 < K < K∗

and α < − log(2)
log(pu,K) we have Fu,K,α(1/2) > Fu,K,α(1) and F ′′

u,K,α(1/2) < 0. The first follows immediately from the

fact that α < − log(2)
log(pu,K) . For the second, we have

F ′′
u,K,α(1/2) = 4

(

−1 +
2

π

αK2e−K2

p2u,K

)

and so F ′′
u,K,α(1/2) < 0 if and only if

α <
π

2

p2u,K
K2e−K2 .

Unlike with the rectangle function it is not true that

− log(2)

log(pu,K)
<

π

2

p2u,K
K2e−K2 (10)

for all K: the left and right sides of the inequality cross at K = K∗, which implicitly defines K∗. Thus for K < K∗

and α < − log(2)
log(pu,K) we have F ′′

u,K,α(1/2) < 0, which completes the proof of Proposition 6 for the u-function binary

perceptron.
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FIG. 1. Second moment entropy densities. a): the rectangle binary perceptron for α ≤ αr
a = 1.816 (dashed pink), β = 1

2
is the global maximizer. For α ≥ αr

a, β = 0 and β = 1 are the maximizers. b): the u-function binary perceptron for
α ≤ α∗ = 0.430, β = 1

2
is the maximizer while for α∗ ≤ α ≤ αu

a = 0.604 (dashed yellow), the maximizer is non-trivial β 6= 0.

3. Illustration

As an illustration, we plot the second moment entropy density limN→∞
1
N logE[Z2

t ] = log(2)+Ft,K,α for t ∈ {r, u}
at K = 1 > K∗ in fig. 1. For the rectangle function (a), the second moment is tight: the maximum is reached for
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β = 1/2 for all α smaller than the first moment αr
a (dashed pink). Exactly the same happens for the u−function

with K < K∗. However for K > K∗, the second moment method fails (b): β = 1/2 becomes a minimum and
the maximum is obtained for non trivial values β 6= 1/2 for constraint density smaller than the first moment αu

a

(dashed yellow).

III. FROZEN-1RSB STRUCTURE OF SOLUTIONS IN BINARY PERCEPTRONS

One of the most striking properties of the canonical step-function perceptron is the predicted frozen-1RSB2

nature of the space of solutions. This means that the dominant (measure tending to one) part of the space of
solutions splits into well separated clusters each of which has vanishing entropy density at any α > 0. This frozen-
1RSB scenario and quantitative properties of the solution space were studied in detail recently27,28. Following
up on conjectures that such a frozen structure of solutions implies computational hardness in diluted constraint
satisfaction problems29, it was argued that finding a satisfying assignment in the binary perceptron should also
be algorithmically hard since its solution space is dominated by clusters of vanishing entropy density28. Yet this
conjecture contradicted empirical results of30. This paradox was resolved in31 where the authors identified that
there are subdominant parts (i.e. parts of measure converging to zero as the system size diverges) of the solution
space that form extended clusters with large local entropy and all the algorithms that work well always find a
solution belonging to one of those large-local-entropy clusters. These sub-dominant clusters are not frozen and
somewhat strangely are not captured in the canonical 1RSB calculation31. It was argued that existence of these
large-local-entropy clusters bears more general consequences on the dynamics of learning algorithms in neural
networks, see e.g.32.
While frozen-1RSB structure has also been identified in constraint satisfaction problems on sparse graphs33,34,

we want to note that its nature in the binary perceptron is of a rather different nature. In sparse systems a simple
argument using expansion properties of the underlying graph and properties of the constraints show that each
cluster with high probability contains only one solution. In the perceptron model, which has a fully connected
bipartite interaction graph, this argument from sparse models does not apply.
In the present paper, we deduce from the second moment calculation of the previous section that the space of

solutions in the symmetric binary perceptrons is also of the frozen-1RSB type and this property moreover extends
to any finite temperature (with energy being defined as the number of unsatisfied constraints). This is different
from the locked constraint satisfaction problems of29,34 living on diluted hypergraphs, where the solution-clusters
have extensive entropy at any non-zero temperature. Another difference is that whereas in the locked constraint
satisfaction problems the size of each cluster is one with high probability, in the binary perceptron there are still
many solutions in the clusters, it is only their entropy density (i.e. logarithm of their number per variable) that
vanishes as N → ∞.
Investigation of the large local entropy clusters and their implications for learning in the symmetric perceptrons

is also of great interest, but left for future work. Clearly since mathematically the symmetric perceptrons are
simpler than the step-function one, they should also be the proper playground to deepen our understanding of the
large local entropy clusters and their relation to learning and generalization.
We present the frozen-1RSB scenario as a conjecture and then below indicate how the second moment calculation

gives evidence for this conjecture. Given an instance X and a solution w, let Γ(w, d) denote the set of solutions
w′ with Hamming distance at most d from w.

Conjecture 9. For every K > 0 and every α ∈ (0, αr
c(K)) there exists dmin > 0 so that with high probability over

the choice of the random instance X from the RBP, the following property holds: for almost every solution w,

1

N
log |Γ(w, dmin)| → 0

as N → ∞. The same holds for the UBP for all K ≤ K∗.

A. The link between the second-moment entropy and size of clusters

In this section we use t ∈ {r, u} and note that the form of the second moment entropy density 1
N logE[Z2

t ] has
very direct implications on the structure of solutions in the corresponding models. As we defined it above, the
second moment entropy is the normalized logarithm of the expected number of pairs of solutions of overlap β.
For problems such as the symmetric binary perceptrons where the quenched and annealed entropies are equal

in leading order, there is a striking relation between the planted and the random ensemble of the model35,36. The
random ensemble is the problem we have considered so far, while the planted ensemble is defined by starting with
a configuration of the weights (a solution) and then including only constraints that are satisfied by this planted

configuration. As long as the quenched and annealed entropies of the random ensemble are equal in leading order
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the planted and random ensembles should be contiguous, meaning that high-probability properties that hold in
one ensemble also hold in the other. Moreover the planted configuration in the planted ensemble has all the
properties of a configuration sampled uniformly at random in the random ensemble. These properties follow on
the heuristic level from the cavity method reasoning36. They were established fully rigorously in a range of models,
see e.g.35,37,38. In the present case of symmetric binary perceptrons we have not yet managed to prove contiguity
between the random and the planted ensemble, and so we leave a rigorous mathematical result for future work.
(In fact the missing ingredient is a version of Friedgut’s sharp threshold result39 suitable for perceptrons; such a
result combined with Theorem 4 would also prove Conjecture 2). We hence rely on the above heuristic argument
and assume it holds in what follows.
Given a planted solution w and a configuration wβ that agrees with w on βN coordinates, the probability that

wβ is a solution in the planted model is (qt,K(β)/pt,K)M , and thus the expected number of solutions at Hamming
distance βN from the planted solution in the planted ensemble is

E[Zβ ] =

(

N

βN

)

(qt,K(β)/pt,K)M ,

and its entropy density is

ωt(β) ≡ lim
N→∞

1

N
logE[Zβ ] = Ft,K,α(β) − α log pt,K for t ∈ {r, u} . (11)

Recalling that contiguity implies that the planted solution has the properties of a uniformly chosen solution in the
random ensemble then this entropy gives us direct access to properties of the solution space in the random ensemble
at equilibrium. Most notably we notice (see derivation in section III B below) that the derivative of ωt(β) at β = 1
is +∞ thus implying that ∀ǫ > 0 with high probability there are no solutions at overlap β ∈ [dmin(α,K), (1 − ǫ)].
In turn, this means that the dominant (measure converging to one as N → ∞) part of the solution space splits
into clusters each of which has vanishing entropy density (i.e. logarithm of the number of solutions in the cluster
divided by N goes to zero as N → ∞). The missing ingredient in a full proof of Conjecture 9 is a proof of the
contiguity statement.

B. Form of the 2nd moment entropy implying frozen-1RSB

0.5 0.6 0.7 0.8 0.9 1.0
β

−0.05

−0.04

−0.03

−0.02

−0.01

0.00

ω
r
(β
)
at

(K
,α

)
=
(1
,1
.8
0)

dmin(α,K)

0.5 0.6 0.7 0.8 0.9 1.0
β

−0.01

0.00

0.01

0.02

0.03

0.04

0.05

0.06

ω
k
−
N
A
E
(β
)
at

(k
,α

)
=
(7
,4
0)

FIG. 2. a) Density of the annealed entropy of solutions at overlap β from a random solution in the rectangle binary
perceptron at K = 1, α = 1.80 ≤ αr

c(K = 1). We see there are no solution in an interval of overlaps (1− dmin, 1− ǫ). This
curve is obtained from the second moment entropy and contiguity between the random and planted ensembles. It implies
the frozen-1RSB nature of the space of solutions. The same holds for the u−function. b) To compare we plot the density
of the annealed entropy of solutions at overlap β from a random solution in the k-NAE SAT model26 at k = 7, α = 40. We
see the density is positive in a large region close to β = 1, showing the absence of frozen-1RSB structure in this problem.
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In fig. 2a we plot ωr(β) for the rectangle binary perceptron, at K = 1, α = 1.80 ≤ αr
c(K = 1). Thanks to the

contiguity between the planted and random ensembles that holds as long as the second moment entropy density is
twice the first moment entropy density, this curve represents also the annealed entropy of solutions at overlap β with
a random reference solution. We see notably that there is an interval of distances in which no solutions are present.
Analytically we can see from the properties of the functions Ft,K,α(β) and log pt,K that Ft,K,α(1) = α log pt,K and
the derivative of Ft,K,α(β) → ∞. This is in contrast with, for instance, the satisfiability problems studied in26,
where the function corresponding to Ft,K,α(β) would have a negative derivative in β = 1 (see fig. 2b). There could
still be an interval of forbidden distance, but the bump in entropy for β ≈ 1 corresponds to the size of the clusters
to which typical solutions belong and those would be extensive.

1. Frozen 1RSB in rectangle binary perceptron

In the rectangle binary perceptron, the random and planted ensembles are conjectured to be contiguous for all
K > 0 and α ∈ (0, αr

c(K)). Using eq. (8), the first derivative of ωr(β), eq. (11), is given by (see Appendix VIE)

∂ωr

∂β
=

∂Fr,K,α

∂β
= log

(

1− β

β

)

+
α

qr,K,T (β)

1

π
√

β(1 − β)

(

e−
K2

2(1−β)

(

e
(2β−1)K2

2(1−β)β − 1

))

,

and it diverges for all K ∈ R
+, α > 0 in the limit β → 1:

∂ωr

∂β
−−−→
β→1

+∞ . (12)

This implies vanishing entropy density of clusters to which typical solutions belong.

2. Frozen 1RSB in the u-function binary perceptron

In the u-function binary perceptron, the random and planted ensembles are conjectured to be contiguous for all
0 < K ≤ K∗ and α ∈ (0, αu

c (K)). Using eq. (8), the first derivative of ωu(β) eq. (11), is given by

∂ωu

∂β
=

∂Fu,K,α

∂β
= log

(

1− β

β

)

+
α

qu,K,T (β)

1

π
√

β(1 − β)

(

e−
K2

2(1−β)

(

e
(2β−1)K2

2(1−β)β − 1

))

−→
β→1

+∞ ,

thus reaching the same conclusion on presence of frozen-1RSB.
In appendix VIE we extend the second moment calculation to finite temperature (for both the rectangle and

u−function case). This means that we define energy of a configuration E(w) as the number of constraints that are
violated by this configurations. Then the corresponding partition function is defined Z(T ) =

∑

w e−E(w)/T . There
is a one-to-one mapping between the temperature T and energy density e = E/N , consequently the corresponding
finite-temperature second moment entropy density counts the number of pairs of solutions at overlap β and energy
density e. In appendix VIE we apply the same argument as here connecting the random and planted ensemble,
and deduce that the finite-temperature solution space of the models is of also of the frozen-1RSB type for any
T < ∞.

C. Frozen-1RSB as derived from the replica analysis

We stress that we derived the frozen-1RSB nature of the space of solutions without the use of replicas. For
completeness we summarize here how this translates to the properties of the one-step-replica-symmetry breaking
solution. This is the way this phenomena was originally discovered and described in2,27,40. For readers not familiar
with the replica method this section should be read after reading section IV.
In general, three kinds of fixed points of the 1RSB equations are possible:

• The replica symmetric (RS) solution q0 = q1 = qRS < 1 ,

• The frozen-1RSB solution (f1RSB) (q0, q1) = (qRS, 1) ,

• The 1RSB solution (q0, q1) with q1 6= 1 .
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1− qRS

1− q1

1− q0

1− q0

FIG. 3. Illustration of the configuration space for the different phases: a): RS - solutions are concentrated in a single cluster
of typical size 1− qRS. b): 1RSB - solutions form clusters of size 1− q1 at a distance 1− q0 from each other. c): f1RSB -
clusters are point-like (1− q1 ≃ 0) at a distance 1− q0 = 1− qRS from each other.

The frozen-1RSB is characterized by an inner-cluster overlap q1 = 1 and an inter-cluster overlap q0 = qRS, which
means that clusters have vanishing entropy density and remain far from each other. Mathematically RS and f1RSB
solutions are equivalent in the sense that these solutions have the same free energy eq. (20) Φ1RSB{qRS, qRS} =
Φ1RSB{qRS, 1}, and the complexity of the f1RSB solution equals the RS entropy Σ(φ = 0) = φRS eq. (22, 15).
However, RS and f1RSB do not share the same configuration space. The RS phase is associated to a single cluster
of solution with typical size 1− qRS, while the f1RSB configuration space is composed of many point-like solutions
of size q1 ≃ 1 and at distance 1− q0 = 1− qRS of each other, see fig. 3. From this point of view f1RSB is the correct
description of the phase space.

IV. REPLICA CALCULATION OF THE STORAGE CAPACITY

In this section we recall the replica calculation leading to the expression of the storage capacity in the step-function
binary perceptron. We show that in the symmetric binary perceptrons the annealed calculation is reproduced by
the replica symmetric result. For the u−function binary perceptron we show that K∗ coincides with the onset of
replica symmetry breaking and we evaluate the 1RSB capacity for K > K∗.

A. Replica calculation

For the purpose of the calculations, we introduce the constraint function C(z) that returns 1 if w satisfies all the
constraints {ϕ(zµ)}Mµ=1 and 0 otherwise

C(z) =
M
∏

µ=1

ϕ(zµ) with zµ = Xµw .

Recall the partition function Z is the number of satisfying vectors w, with prior distribution Pw(w), for a given
matrix X

Z(X) =
∑

w∈{±1}N

M
∏

µ=1

ϕ (Xµw) =

∫

dwPw(w)

∫

dz C(z)δ(z −Xw) .

The replica method allows one to compute explicitly the quenched average EX[log(Z(X))]41. More precisely,
using the replica trick, the average of the logarithm can be expressed as the limit n → 0 of the derivative with
respect to n of the average of the n-th moment of the partition function. Finally the free entropy reads:

φ(α) ≡ lim
N→+∞

1

N
EX[log(Z(X))] = lim

N→+∞
lim
n→0

1

Nn

∂ log (EX[Z(X)n])

∂n
. (13)

Computing the n-th moment of the partition function Z, for n ∈ N, is equivalent to considering n copies, also
called replicas, of the initial system. For a given disorder, these n replicas are non-interacting and Zn can be
computed easily. However, averaging over the ”disorder” with distribution PX makes the replicas interacting:
replicated weight-vectors wa and wb, for a, b ∈ [1 : n], are correlated by the overlap matrix Q = (Qab)

n
a,b=1 =

(

1
N

∑N
i=1 w

a
i w

b
i

)n

a,b=1
.
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We show in Appendix VIA that after averaging over the distribution PX , using an analytical continuation for
n ∈ R and finally reversing the limits N → ∞ and n → 0, the free entropy φ eq. (13) can finally be expressed as a

saddle point equation over n× n symmetric matrices Q and Q̂

φ(α) = −SPQ,Q̂

{

lim
n→0

∂Sn(Q, Q̂)

∂n

}

, (14)

where Q̂ is a parameter involved in the change of variable between {wa,wb} and Qab and with


























Sn(Q, Q̂) = 1
2Tr(QQ̂)− log(In

w(Q̂))− α log (In
z (Q)) ,

In
w(Q̂) =

∫

R

n dw̃Pw̃(w̃)e
1
2 w̃

⊺Q̂w̃ where w̃ ∈ Rn and Pw̃(w̃) =

n
∏

a=1

[δ(w̃a − 1) + δ(w̃a + 1)] ,

In
z (Q) =

∫

R

n dz̃Pz̃(z̃)C(z̃) where z̃ ∈ Rn and Pz̃ , N (0,Q) .

In order to be able to compute the derivative of Sn with respect to n eq. (14), we need an analytical formulation

of Q and Q̂ as a function of n.

B. RS entropy

The simplest ansatz is to assume that the overlap matrix Q is Replica Symmetric (RS), which means that all
replicas play the same role: the correlation between two arbitrary, but different, replicas is denoted q0, and therefore
the RS ansatz reads:

∀(a, b) ∈ [1 : n]× [1 : n],
1

N
(wa ·wb) =

{

q0 if a 6= b ,

Q = 1 if a = b .

It enforces the matrix Q̂ to present the same symmetry, respectively with parameters q̂0 and Q̂ = 1. Using this
ansatz and the n → 0 limit, the Replica Symmetric (RS) entropy can be expressed as a set of saddle point equations
over scalar parameters q0 and q̂0, evaluated at the saddle point (Appendix VIB):

φRS(α) = SPq0,q̂0

{

−1

2
+

1

2
(q0q̂0 − 1) + Iw

RS(q̂0) + αIz
RS(q0)

}

, (15)

with











Iw
RS(q̂0) ≡

∫

Dt log (gw0 (t, q̂0)) ,

Iz
RS(q0) ≡

∫

Dt log (fz
0 (t, q0)) ,

and for i ∈ N



















gwi (t, q̂0) ≡
∫

dw wiPw(w) exp

(

(1− q̂0)

2
w2 + t

√

q̂0w

)

,

fz
i (t, q0) ≡

∫

Dz ziϕ(
√
q0t+

√

1− q0z) .

(16)

Note that above and in what follows Dt =
∫

e−t2/2
√
2π

dt. In the binary perceptron case, the function Pw is defined

as Pw(w) = [δ(w − 1) + δ(w + 1)] (note that this is not a probability distribution because of the normalization),
and recall ϕ(z) is the indicator function, checking that a constraint on the argument is satisfied (e.g in the step
case, ϕs(z) = 1 if z > K).
While in the step binary perceptron (SBP) the fixed point solution (q0, q̂0) is non-trivial, the symmetry of the

activation function in the RBP and UBP cases enforces the configuration space to be symmetric and the fixed point
(q0, q̂0) = (0, 0) to exist. If this symmetric fixed point is stable and has the lowest free energy, the RS free entropy
matches the annealed entropy φt

a(α) = log(2) + α log(pt,K) = 1
N logEX[Zt(X)] from section IIA with t ∈ {r, u}.

1. Rectangle

Solving numerically the corresponding saddle point equations leads to the single symmetric fixed point (q0, q̂0) = (0, 0).
Hence the RS entropy saturates the first moment bound:

φr
RS(α) = log(2) + α log (pr,K) = φr

a(α) ,

and the RS capacity equals the annealed capacity eq. (II A):

αr
RS(K) = αr

a(K) =
− log(2)

log (pr,K)
.
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2. U-function

• For K ≤ K∗, only the symmetric fixed point (q0, q̂0) = (0, 0) exists, which leads again to the annealed free
entropy:

φu
RS(α) = log(2) + α log (pu,K) = φu

a(α) ,

and annealed capacity eq. (II A):

αu
RS(K) = αu

a(K) =
− log(2)

log (pu,K)
.

• For K > K∗, the RS entropy does not match the annealed entropy because the fixed point (q0, q̂0) 6= (0, 0)
corresponds to a lower free energy than the symmetric fixed point (0, 0). The symmetric fixed point becomes
unstable for K > K∗, where K∗ is remarkably given by the same value as in the independent section II B 2.
Hence it naturally verifies eq. (5) even though its definition derives from the stability of the RS solution, that
we study in the next section.

C. Stability

The local stability of the RS solution can be studied using de Almeida and Thouless (AT) method42, based

on the positivity of the Hessian of Sn(Q, Q̂). The replica symmetric AT-line αAT is given by the solution of the
following implicit equation (Appendix VID):

1

α
=

1

(1− q0(α))2

∫

Dt

(

fz
0 (f

z
0 − fz

2 ) + (fz
1 )

2
)2

(fz
0 )

4
(t, q0(α))

∫

Dt

(

gw0 g
w
2 − (gw1 )

2
)2

(gw0 )
4

(t, q̂0(α)) .

As illustrated above, for the rectangle and u−function, the symmetry of the weights Pw and the constraint ϕ
imposes the existence of the symmetric fixed point (q0, q̂0) = (0, 0). This simplifies the previous condition and
becomes equivalent to the linear stability condition of the symmetric fixed point (q0, q̂0) = (0, 0) (see Appendix
VID):

1

αAT
=

(

f̃z
2 − f̃z

0

f̃z
0

)2
(

g̃w2
g̃w0

)2

, where for i ∈ N:















g̃wi =

∫

dwwiPw(w)e
w2

2 ,

f̃z
i =

∫

Dzziϕ(z) .

We plotted the annealed capacity, the replica symmetric capacity and the AT-line for the step, rectangle and
u-function binary perceptrons as functions of K in fig. 4, 5, 6.

1. Step binary perceptron

We note that for the step binary perceptron the RS solution is always stable towards 1RSB, even for negative
threshold K < 0. This is interesting in the view of recent work on the spherical perceptron with negative threshold
where the replica symmetry breaks for all K < 0, and full-step RSB is needed to evaluate the storage capacity16.

2. Rectangle

As the RS capacity αr
RS is always below the AT line αr

AT, the RS solution is always locally stable.

3. u-function

There is a crossing between the values of the RS capacity αu
RS and the AT-line αu

AT, which defines implicitly the
value K∗ ≃ 0.817, and matches the equality in eq. (10):

− log (2)

log (pu,K∗)
=

π

2

(pu,K∗)
2

e−(K∗)2(K∗)2
. (17)

For K ≤ K∗, the RS solution is locally stable, while for K > K∗ the RS solution becomes unstable, and a symmetry
breaking solution appears.
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FIG. 4. Step binary perceptron (SBP): the RS capacity αs

RS (black) does not match the annealed capacity αs
a (blue) and is

always below the AT-line αs

AT (orange). The AT-line is closest to the annealed capacity for Kmin ≃ 3.62 where the difference
αs

AT − αs
a ≃ 0.0012. For K = 0, we retrieve well known results2: αr

RS ≃ 0.833, αr

AT ≃ 1.015 and αr
a = 1. The left and right

hand sides, and the inset, represent the same data on different scales. The satisfiable (SAT) phase is represented by the
beige shaded area and is located below the RS capacity, while the unsatisfiable (UNSAT) starts at the capacity (black line)
and extends for a larger number of constraints.
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FIG. 5. Rectangle binary perceptron (RBP): the RS capacity αr

RS (black) matches the annealed bound αr
a (blue), and the

RS solution is locally stable for all K: αr

RS < αr

AT. The AT-line (orange) is closest to the annealed capacity for Kmin ≃ 1.24
where the difference αs

AT − αs
a ≃ 0.15. The left and right hand sides, and the inset, represent the same data on different

scales. The satisfiable (SAT) phase is represented by the beige shaded area and is located below the RS capacity, while the
unsatisfiable (UNSAT) starts at the capacity (black line) and extends for a larger number of constraints.
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FIG. 6. U−function binary perceptron (UBP): the RS capacity black) matches the annealed bound (blue) for K < K∗.
At K = K∗, the RS capacity crosses the AT-line (orange). For K > K∗, the RS solution is unstable and the RS capacity
deviates from the annealed capacity. The left and right hand sides, and the inset, represent the same data on different
scales. The satisfiable (SAT) phase is represented by the beige shaded area and is located below the RS capacity, while the
unsatisfiable (UNSAT) starts at the capacity (black line) and extends for a larger number of constraints.

D. 1RSB calculation

In the previous section we concluded that the replica symmetric solution is unstable in the u−function binary
perceptron for K > K∗, we analyze therefore the first-step of replica symmetry breaking (1RSB) ansatz in this
section. This ansatz and calculations is due to seminal works of G. Parisi and is classic in the field of disordered
systems and well presented in the literature17–19,43, we thus mainly give the key formulas and defer the details into
the Appendix VIC.
The 1RSB ansatz assumes that the space of configurations splits into states. Consequently replicas are not

symmetric anymore and instead n replicas are organized in n
m groups containing m replicas each:

∀(a, b) ∈ [1 : n]× [1 : n],
1

N
(wa ·wb) =











q1 if a,b belong to the same state,

q0 if a,b do not belong to the same state,

Q = 1 if a = b .

(18)

Following44, the partition function Zm associated to m replicas falling in the same state is expressed as a sum
over all possible states Ψ weighted by their corresponding free entropy φ:

Zm =
∑

{Ψ}
exp(Nmφ(Ψ)) =

∑

{φ}
Nφ exp(Nmφ) =

∑

{φ}
exp(NΣ(φ)) exp(Nmφ) ∼

∫

dφ exp(N(mφ+Σ(φ)) ,

where we introduced the number of states at a given free entropy φ: Nφ ≡ exp(NΣ(φ)) and the complexity Σ(φ),
also called the configurational entropy.
Using the saddle point method in the N → ∞ limit, the 1RSB replicated free entropy Φ1RSB is written as a

function of the Parisi parameter m, the free entropy φ and the complexity Σ(φ):

Φ1RSB(m,α) ≡ lim
N→∞

1

N
EX [log(Zm(X))] = mφ+Σ(φ) . (19)

Injecting the 1RSB ansatz eq. (18) in the replica derivation eq. (14), the 1RSB replicated free entropy Φ1RSB is
written as a saddle point equation over q = (q0, q1) and q̂ = (q̂0, q̂1) (see Appendix VIC):

Φ1RSB(m,α) = SP
q,q̂

{

m

2
(q1q̂1 − 1) +

m2

2
(q0q̂0 − q1q̂1) +mIw

1RSB(q̂) + αmIz
1RSB(q)

}

(20)
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with







Iw
1RSB(q̂) =

1
m

∫

Dt0 log
(∫

Dt1g
w
0 (t, q̂)

m)
,

Iz
1RSB(q) =

1
m

∫

Dt0 log
(∫

Dt1f
z
0 (t,q)

m)
,

denoting t = (t0, t1), and for i ∈ N:











gwi (t, q̂) =
∫

dwwiPw(w) exp
(

(1−q̂1)
2 w2 +

(√
q̂0t0 +

√
q̂1 − q̂0t1

)

w
)

,

fz
i (t,q) =

∫

Dz ziϕ(
√
q0t0 +

√
q1 − q0t1 +

√
1− q1z) .

(21)
Taking the derivative of Φ1RSB with respect to m, the free entropy φ and complexity Σ can be written as:















φ(α) = ∂Φ1RSB(m,α)
∂m = SP

q,q̂

{

1
2 (q1q̂1 − 1) +m (q0q̂0 − q1q̂1) + J w

1RSB(q̂) + αJ z
1RSB(q)

}

,

Σ(φ) = Φ1RSB −mφ = SP
q,q̂

{

m2

2 (q1q̂1 − q0q̂0) +m(Iw
1RSB − J w

1RSB)(q̂) +mα(Iz
1RSB − J z

1RSB)(q)
}

,

(22)

with











J w
1RSB(q̂) =

∂(mIw
1RSB)

∂m =
∫

Dt0
∫

Dt1 log(gw
0 (t,q̂))gw

0 (t,q̂)m
∫

Dt1gw
0 (t,q̂)m

,

J z
1RSB(q) =

∂(mIz
1RSB)

∂m =
∫

Dt0
∫

Dt1 log(fz
0 (t,q))fz

0 (t,q)
m

∫

Dt1fz
0 (t,q)

m .

E. 1RSB results for UBP

From now on we only consider the u−function binary perceptron, whose RS solution is unstable for K > K∗.
The Parisi parameter m is fixed to its equilibrium value by maximizing the total entropy in the SAT phase,

φtot = φ+Σ(φ), under the constraint that the free entropy and complexity are both positive φ ≥ 0 and Σ(φ) ≥ 0:

meq = max
m|φ≥0,Σ≥0

φ+Σ(φ) .

Using the expressions eq. (22) and varying the Parisi parameter m ∈ [0; 1], we obtain the curve of the complexity
Σ(φ) as shown in fig. 7. At m = 1, the complexity is negative. Decreasing m, the complexity increases and becomes
positive at the value meq. Besides for small values of m, an unphysical (convex) branch appears, as commonly
observed in other systems solved by the replica method.
We note that at α increases both the equilibrium complexity and free entropy decrease. In constraint satisfaction

problems such as K-satisfiability or random graph coloring the mechanism in which the satisfiability threshold
appears is that the maximum of the complexity becomes negative. In the present UBP problem it is actually both
the free entropy and the complexity that vanish together, as illustrated in fig. 7.
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FIG. 7. Complexity Σ(φ) as a function of the free entropy φ for the u−function binary perceptron at K = 1.5 > K∗.
Complexity reaches Σ = 0 (black dot) at meq. For K = 1.5 and α = 0.33 a) the free-entropy corresponding to meq is
positive φeq > 0, whereas for α = 0.34 b) the free entropy at meq is negative φeq < 0 and therefore there is no part of the
curve where both complexity and free entropy are positive: thus this value of α is beyond the 1RSB storage capacity, and
the capacity is in the interval [0.33; 0.34].

Computing the equilibrium value meq(α), we have access to the corresponding equilibrium overlaps q∗0 and q∗1 ,
that we may compare with the RS solution qRS. All these are depicted in fig. 8. We also compute the 1RSB entropy
φu
1RSB ≤ φu

RS which vanishes at the 1RSB capacity αu
1RSB as depicted in fig. 9a. The 1RSB solution provides a

small correction to the RS result for storage capacity, as illustrated in fig. 9b, where we plotted the difference
between the annealed upper bound and the capacity for the RS and 1RSB solutions: αu

a − αu
RS and αu

a − αu
1RSB.
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RS solution is stable: RS and 1RSB entropies match exactly. Above K∗, the RS solution is unstable: the 1RSB entropy
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F. 1RSB Stability

In the previous section we evaluated the 1RSB storage capacity of the u−function binary perceptron for K > K∗.
In this section we will argue that this cannot be an exact solution to the problem.
We could investigate the stability of 1RSB towards further levels of replica symmetry breaking along the same

lines we did for the RS solution. However, in the present case we do not need to do that to see that the obtained
solution cannot be correct. The explanations lies in the breaking of the up-down symmetry in the problem. This
symmetry must either be broken explicitly as in the ferromagnet, where the system would acquire an overall
magnetization, but we have not observed any trace of this in the present problem. Or this up-down symmetry
must be conserved in the final correct solution. The conservation of the up-down symmetry is manifested in the
value q0 = 0 in the replica symmetric phase. The fact that in the 1RSB solution evaluated above we do not observe
q0 = 0, but instead q0 > 0 is a sign of the fact that we are evaluating a wrong solution. The only possible way
to obtain an exact solution we foresee is to evaluate the full-step replica symmetry breaking with a continuity of
overlaps q(x), the smallest one of them should be 0 in order to restore the up-down symmetry. We let the evaluation
of the full-RSB for future work.
Finally let us note that the 1RSB solution obtained in the previous section can be interpreted as frozen-2RSB.

In 2RSB we would have 3 kinds of overlaps, q0, q1 and q2. In frozen 2RSB we would have q2 = 1, q1 = q1RSB
1 ,

q0 = q1RSB
0 .

V. CONCLUSION

The step-function binary perceptron has thus far eluded a rigorous establishment of the conjectured storage
capacity, eq. (2). This prediction is expected to be exact because of the frozen-1RSB nature of the problem2,27.
At the same time the work of31 sheds light on the fact that the structure of the space of solutions is not fully
described by the frozen-1RSB picture, and that rare dense and unfrozen regions exist and in fact are amenable
to dynamical procedures searching for solutions. It remains to be understood how is it possible that the 1RSB
calculation does not capture these dense unfrozen regions of solutions31. They do not dominate the equilibrium,
but the RSB calculation is expected to describe rare events via their large deviations, which in this case it does
not.
In this paper we focus on two cases of the binary perceptron with symmetric constraints, the rectangle binary

perceptron and the u−function binary perceptron. We prove (up to a numerical assumption) using the second
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moment method that the storage capacity agrees in those cases with the annealed upper bound, except for the
u−function binary perceptron for K > K∗ eq. (5). We analyze the 1RSB solution in that case and indeed obtain
a lower prediction for the storage capacity. However, we do not expect the 1RSB to provide the exact solution
because it does not respect the up-down symmetry of the problem. Though the precise nature of the satisfiable
phase for the u−function binary perceptron for K > K∗ remains illusive, we can conjecture it is full-RSB17–19.
Establishing this rigorously would provide much deeper understanding and remains a challenging subject for future
work.
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VI. APPENDICES

A. General replica calculation

We present here the replica computation for general prior distribution Pw and constraint function ϕ. In order
to compute the quenched average of the free entropy, we consider the partition function of n ∈ N identical copies
of the initial system. Using the replica trick, and an analytical continuation, the averaged free entropy φ of the
initial system reads:

φ(α) ≡ lim
N→+∞

1

N
EX[log(Z(X))] = lim

N→+∞
lim
n→0

1

N

∂ log (EX[Z(X)n])

∂n
, (23)

where the replicated partition function can be written as

EX[Z(X)n] =

∫

dXPX(X)Z(X)n =

∫

dXPX(X)

n
∏

a=1

∫

dwaPw(w
a)

∫

dzaC(za)δ(za −Xwa) , (24)

with the global constraint function C(z) =
M
∏

µ=1

ϕ(zµ).

We suppose that inputs are iid distributed from PX , N
(

0, 1
N

)

. More precisely, for i, j ∈ [1 : N ], µ, ν ∈ [1 : M ],

EX[XiµXjν ] =
1
N δµνδij . Hence zaµ =

∑N
i=1 Xiµw

a
i is the sum of iid random variables. The central limit theorem

insures that zaµ ∼ N
(

EX[zaµ],EX[zaµz
b
µ]
)

, with two first moments:

{

EX[zaµ] =
∑N

i=1 EX[Xiµ]w
a
i = 0

EX[zaµz
b
µ] =

∑

ij EX[XiµXjµ]w
a
i w

b
j =

1
N

∑

ij δijw
a
i w

b
j =

1
N

∑N
i=1 w

a
i w

b
i .

(25)

In the following we introduce the symmetric overlap matrix Q ≡ ( 1
N

∑N
i=1 w

a
i w

b
i )a,b=1..n. Define z̃µ ≡ (zaµ)a=1..n

and w̃i ≡ (wa
i )a=1..n. z̃µ follows a multivariate gaussian distribution z̃µ ∼ Pz̃ , N (0,Q) and Pw̃(w̃) =

∏n
a=1[δ(w̃a−

1) + δ(w̃a + 1)]. Introducing the change of variable and the Fourier representation of the δ-Dirac function that

involves a new parameter Q̂:

1 =

∫

dQ
∏

a≤b

δ

(

NQab −
N
∑

i=1

wa
i w

b
i

)

=

∫

dQ

∫

dQ̂ exp

(

−N

2
Tr(QQ̂)

)

exp

(

1

2

N
∑

i=1

w̃
⊺

i Q̂w̃i

)

,

the replicated partition function becomes an integral over the matrix parameters Q and Q̂, that can be evaluated
using Laplace method in the N → ∞ limit,

EX[Z(X)n] =

∫

dQdQ̂e
−N

(

1
2Tr(QQ̂)−log

(

∫

dw̃Pw̃(w̃)e
1
2
w̃⊺Q̂w̃

)

−α log(
∫

dz̃Pz̃(z̃)C(z̃))
)

(26)

=

∫

dQdQ̂e−NSn(Q,Q̂) ≃
N→∞

e−N ·SP
Q,Q̂{Sn(Q,Q̂)}, (27)
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where SP states for saddle point and we defined



















Sn(Q, Q̂) = 1
2Tr(QQ̂)− log(Iw

n (Q̂))− α log (Iz
n(Q))

Iw
n (Q̂) =

∫

Rn dw̃Pw̃(w̃)e
1
2 w̃

⊺Q̂w̃

Iz
n(Q) =

∫

Rn dz̃Pz̃(z̃)C(z̃).

(28)

Finally, using eq. (23) and switching the two limits n → 0 and N → ∞, the quenched free entropy φ simplifies
as a saddle point equation

φ(α) = −SP
Q,Q̂

{

lim
n→0

∂Sn(Q, Q̂)

∂n

}

, (29)

over general symmetric matrices Q and Q̂. In the following we will assume simple ansatz for these matrices that
allows to get analytic expressions in n in order to take the derivative.

B. RS entropy

Let’s compute the functional Sn(Q, Q̂) appearing in the free entropy eq. (29) in the simplest ansatz: the Replica

Symmetric ansatz. This later assumes that all replica remain equivalent with a common overlap q0 = 1
N

∑N
i=1 w

a
i w

b
i

for a 6= b and a norm Q = 1
N

∑N
i=1 w

a
i w

a
i , leading to the following expressions of the matrices Q and Q̂ ∈ R

n×n:

Q =















Q q0 ... q0

q0 Q ... ...

... ... ... q0

q0 ... q0 Q















and Q̂ =















Q̂ q̂0 ... q̂0

q̂0 Q̂ ... ...

... ... ... q̂0

q̂0 ... q̂0 Q̂















. (30)

Let’s compute separately the terms involved in the functional Sn(Q, Q̂) eq. (28): the first is a trace term, the
second a term of prior Iw

n and finally the third a term depending on the constraint Iz
n.

a. Trace term The trace term can be easily computed and takes the following form:

1

2
Tr(QQ̂)

∣

∣

∣

∣

RS

=
1

2

(

nQQ̂+ n(n− 1)q0q̂0

)

. (31)

b. Prior integral Evaluated at the RS fixed point, and using a gaussian identity also known as a Hubbard-
Stratonovich transformation, the prior integral can be further simplified

Iw
n (Q̂)

∣

∣

∣

RS
=

∫

dw̃Pw̃(w̃)e
1
2 w̃

⊺Q̂w̃ =

∫

dw̃Pw̃(w̃) exp

(

(Q̂ − q̂0)

2

n
∑

a=1

(w̃a)2

)

exp



q̂0

(

n
∑

a=1

w̃a

)2


 (32)

=

∫

Dt

[

∫

dwPw(w) exp

(

(Q̂− q̂0)

2
w2 + t

√

q̂0w

)]n

. (33)

c. Constraint integral Recall the vector z̃ ∼ Pz̃ , N (0,Q) follows a gaussian distribution with zero mean and
covariance matrix Q. In the RS ansatz, the covariance can be rewritten as a linear combination of the identity
I and J the matrix with all ones entries of size n × n: Q|RS = (Q − q0)I + q0J, that allows to split the variable
za =

√
q0t+

√
Q− q0u

a with t ∼ N (0, 1) and ∀a, ua ∼ N (0, 1). Finally, the constraint integral reads:

Iz
n(Q)|RS =

∫

dz̃Pz̃(z̃)C(z̃) =
∫

Dt

∫ n
∏

a=1

Duaϕ
(√

q0t+
√

Q− q0u
a
)

(34)

=

∫

Dt

[
∫

Duϕ
(√

q0t+
√

Q− q0u
)

]n

. (35)



21

d. Summary and RS free entropy φRS Finally putting pieces together, the functional Sn taken at the RS fixed
point has an explicit formula and dependency in n:

Sn(Q, Q̂)
∣

∣

∣

RS
=

1

2
Tr(QQ̂)− log(In

w(Q̂))− α log (In
z (Q))

∣

∣

∣

∣

RS

(36)

≃
n→0

1

2

(

nQQ̂+ n(n− 1)q0q̂0

)

− n

∫

Dt log

(

∫

dwPw(w) exp

(

(Q̂− q̂0)

2
w2 + t

√

q̂0w

))

(37)

− nα

∫

Dt log

(∫

Duϕ
(

y,
√
q0t+

√

Q− q0u
)

)

. (38)

Finally taking the derivative with respect to n and the n → 0 limit, the RS free entropy has a simple expression

φRS(α) = SPq0,q̂0

{

−1

2
QQ̂+

1

2
q0q̂0 + Iw

RS(q̂0) + αIz
RS(q0)

}

, (39)

with Q = Q̂ = 1 and the following notations,











Iw
RS(q̂0) ≡

∫

Dt log
(

∫

dwPw(w) exp
(

(Q̂−q̂0)
2 w2 + t

√
q̂0w

))

Iz
RS(q0) ≡

∫

Dt log
(∫

Dzϕ
(√

q0t+
√
Q− q0z

))

. (40)

C. 1RSB entropy

The free entropy eq. (23) can also be evaluated at the simplest non trivial fixed point: the one step Replica
Symmetry Breaking ansatz (1RSB). Instead assuming that replicas are equivalent, it assumes that the symmetry
between replica is broken and that replicas are clustered in different states, with inner overlap q1 and outer overlap
q0. Translating this in a matrix formulation, the matrices can be expressed as

Q = q0Jn + (q1 − q0) I n
m

⊗ Jm + (Q− q1) In and Q̂ = q̂0Jn + (q̂1 − q̂0) I n
m

⊗ Jm +
(

Q̂− q̂1

)

In . (41)

a. Trace term Again, the trace term can be easily computed

1

2
Tr(QQ̂)

∣

∣

∣

∣

1RSB

=
1

2

(

nQQ̂+ n(m− 1)q1q̂1 + n(n−m)q0q̂0

)

. (42)

b. Prior integral Separating replicas with different overlaps, the prior integral can be written as

Iw
n (Q̂)

∣

∣

∣

1RSB
=

∫

dw̃Pw̃(w̃)e
(Q̂−q̂1)

2

∑n
a=1(w̃

a)2+
(q̂1−q̂0)

2

∑

n
m
k=1

∑km
a,b=(k−1)m+1 w̃aw̃b+

q̂0
2 (
∑n

a=1 w̃a)
2

(43)

=

∫

Dt0

[

∫

Dt1

[

∫

dwPw(w) exp

(

(Q̂ − q̂1)

2
w2 +

(

√

q̂0t0 +
√

q̂1 − q̂0t1

)

w

)]m] n
m

(44)

c. Constraint integral Again the vector z̃ ∼ Pz̃ , N (0,Q) follows a gaussian vector with zero mean and
covariance Q|1RSB = q0Jn + (q1 − q0) I n

m
⊗ Jm + (Q− q1) In. The gaussian vector of covariance Q|1RSB can be

decomposed in a sum of normal gaussian vectors t0 ∼ N (0, 1), ∀k ∈ [1 : n
m ], tk ∼ N (0, 1) and ∀a ∈ [(k − 1)m+ 1 :

km], ua ∼ N (0, 1): za =
√
q0t0 +

√
q1 − q0tk +

√
Q− q1ua. Finally the constraint integral reads

Iz
n(Q)|1RSB =

∫

Dt0

∫

n
m
∏

k=1

Dtk

∫ km
∏

a=(k−1)m+1

Duaϕ(
√
q0t0 +

√
q1 − q0tk +

√

Q− q1ua) (45)

=

∫

Dt0

[
∫

Dt1

[
∫

Duϕ(
√
q0t0 +

√
q1 − q0t1 +

√

Q− q1u)

]m] n
m

. (46)
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d. Summary and 1RSB free entropy φ1RSB Gathering the previous computations eq. (42, 44, 46), the functional
Sn evaluated at the 1RSB fixed point reads:

Sn(Q, Q̂)
∣

∣

∣

1RSB
=

1

2
Tr(QQ̂)− log(In

w(Q̂))− α log (In
z (Q))

∣

∣

∣

∣

1RSB

(47)

≃
n→0

1

2

(

nQQ̂+ n(m− 1)q1q̂1 + n(n−m)q0q̂0

)

(48)

− n

m

∫

Dt0 log

(

∫

Dt1

[

∫

dw̃Pw(w̃) exp

(

(Q̂ − q̂1)

2
w̃2 +

(

√

q̂0t0 +
√

q̂1 − q̂0t1

)

w̃

)]m)

(49)

− α
n

m

∫

dy

∫

Dt0 log

(∫

Dt1

[∫

Duϕ(y,
√
q0t0 +

√
q1 − q0t1 +

√

Q− q1u)

]m)

. (50)

Let’s introduce the replicated free entropy following44. We consider m reals replicas of the same system and we
imagine we put a small field, that allows the m replicas to fall in the same state. The replicated free entropy is
the free entropy corresponding to these m uncorrelated copies in the limit of zero coupling. To compute it, we
consider n′ = n

m replicas. Denoting q = (q0, q1) and q̂ = (q̂0, q̂1), the replicated free entropy reads as m times the
free entropy of n replicas with 1RSB structure:

Φ1RSB(α) : =

(

lim
N→∞

1

N
EX [log(Zm(X)]

)

≃ lim
N→∞

1

N
lim
n′→0

∂ log
(

EX[Zmn′
(X)]

)

∂n′ (51)

= m

(

lim
N→∞

lim
n→0

1

N

∂ log (E[Zn(X)]X)

∂n

)

= m

(

−SP
Q,Q̂

{

lim
n→0

∂Sn(Q, Q̂)

∂n

})

(52)

= SP
q,q̂

{

m

2

(

q1q̂1 −QQ̂
)

+
m2

2
(q0q̂0 − q1q̂1) +mIw

1RSB(q̂) + αmIz
1RSB(q)

}

. (53)

with t = (t0, t1), g
w
0 and fz

0 defined in eq. (21) and

Iw
1RSB(q̂) =

1

m

∫

Dt0 log

(∫

Dt1g
w
0 (t, q̂)

m

)

and Iz
1RSB(q) =

1

m

∫

Dt0 log

(∫

Dt1f
z
0 (t,q)

m

)

. (54)

D. RS Stability

1. De Almeida Thouless RS Stability

The stability of a given saddle point ansatz is related to the positivity the hessian of the functional Sn. This
stability analysis has first been done by de Almeida Thouless and following1,5,42, replicons eigenvalues of the RS
ansatz λA

3 and λB
3 can be expressed as functions of {gwi , fz

i }2i=0 defined in eq. (16):

λA
3 (q0) =

1

(Q − q0)2

∫

Dt

(

fz
0 (f

z
0 − fz

2 ) + (fz
1 )

2
)2

(fz
0 )

4
(t, q0) , and λB

3 (q̂0) =

∫

Dt

(

gw0 g
w
2 − (gw1 )

2
)2

(gw0 )
4

(t, q̂0) . (55)

The instability AT-line is defined when the determinant of the hessian vanishes that translates as an implicit
equation over α, where q0, q̂0 are solution of the saddle point equations eq. (15) at α = αAT :

1

αAT
= λA

3 (q0(αAT ), β)λ
B
3 (q̂0(αAT )) . (56)

However for α < αAT , (q0, q̂0) = (0, 0) is the only solution. Using {f̃z
i , g̃

w
i }2i=0 defined eq. (58), this expression

simplifies because of the symmetry of the prior distribution Pw and the constraints ϕ in the rectangle and u−function
cases. In fact the symmetry imposes f̃z

1 = 0 and g̃w1 = 0 and the condition reads:

1

αAT
=

(

f̃z
2 − f̃z

0

f̃z
0

)2
(

g̃w2
g̃w0

)2

. (57)
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2. Existence and stability of the RS fixed point (q0, q̂0) = (0, 0)

We provide an alternative approach to get the instability condition of the RS solution for symmetric prior and
constraint. In this symmetric case, the stability can be derived from the existence and stability of the symmetric
fixed point (q0, q̂0) = (0, 0). Let’s define











F (q0) ≡ α
∫

Dt
(fz

1 )2−2t
√
q0f

z
0 f

z
1 +q0t

2(fz
0 )

2

(1−q0)2(fz
0 )

2 (t, q0) ,

G(q̂0) ≡
∫

Dt
gw
2 −tq̂

−1/2
0 gw

1

gw
0

(t, q̂0) ,

with







f̃z
i (y) ≡

∫

Dzziϕ(z) ,

g̃wi ≡
∫

dwwiPw(w)e
w2

2 .

(58)

In fact the saddle point equations at the RS fixed point eq. (15) can be written using the functions F,G, and
can be reduced to a single fixed point equation over q0:







q0 = G(q̂0) ,

q̂0 = F (q0) ,
⇒
{

q0 = G ◦ F (q0) ≡ H(q0) . (59)

As stressed above, the RS stability is equivalent to the existence and stability of the fixed point q0 = 0. According
to that, let’s compute the stability of the above fixed point equation eq. (59). Computing F, F ′, G,G′ in the limit

(q0, q̂0) → (0, 0), expanding {fz
i ,g

w
i }i as functions of {f̃z

i , g̃
w
i }i and finally using the symmetry that implies f̃z

1 = 0
and g̃w1 = 0:



























































F (q0) =
q0→0

α

[

(

f̃z
1

f̃z
0

)2

+ q0

(

(f̃z
2 −f̃z

0 )
2

(f̃z
0 )2

+ 3
(f̃z

1 )
4

(f̃z
0 )

4
− 4

(f̃z
1 )

2(f̃z
2 −f̃z

0 )

(f̃z
0 )

3

)

+O(q20)

]

∼αq0

(

f̃z
2 −f̃z

0

f̃z
0

)2

−→
q0→0

0 ,

∂F
∂q0

(q0) =
q0→0

α

[

(

f̃z
2 −f̃z

0

f̃z
0

)2

+
(

f̃z
1

f̃z
0

)2 (

3
(f̃z

1 )
2

(f̃z
0 )

2
− 4

(f̃z
2 −f̃z

0 )

f̃z
0

)

+O(q0)

]

−→
q0→0

α
(

f̃z
2 −f̃z

0

f̃z
0

)2

,

G(q̂0) =
q̂0→0

(

g̃w
1

g̃w
0

)2

+ q̂0

(

(

g̃w
2

g̃w
0

)2

+
g̃w
1

g̃w
0

(

3
(

g̃w
1

g̃w
0

)3

− 4
g̃w
1 g̃w

2

(g̃w
0 )2

))

+O(q̂
3/2
0 ) −→

q̂0→0
0 ,

∂G
∂q̂0

=
q̂0→0

(

g̃w
2

g̃w
0

)2

+
g̃w
1

g̃w
0

(

3
(

g̃w
1

g̃w
0

)3

− 4
g̃w
1 g̃w

2

(g̃w
0 )2

)

+O(
√
q̂0) −→

q̂0→0

(

g̃w
2

g̃w
0

)2

.

(60)

Finally, the existence and stability conditions of the fixed point (q0, q̂0) = (0, 0) translate as an explicit condition
over α that defines αAT















H(q0) = G ◦ F (q0) →
q0→0

0

∂H
∂q0

∣

∣

∣

q0=0
= ∂G

∂q̂0

∣

∣

∣

q̂0=0

∂F
∂q0

∣

∣

∣

q0=0
≤ 1 ,

⇒ α ≤





(

f̃z
2 − f̃z

0

f̃z
0

)2
(

g̃w2
g̃w0

)2




−1

≡ αAT . (61)

E. Moments at finite temperature

In this section we generalize the definition of the partition function for any temperature T . The energy of
a configuration w is defined as the number of unsatisfied constraints and the corresponding partition function
is defined by Z(X, T ) =

∑

w∈{±1}N e−E(w)/T . In particular for the rectangle and u−function constraints, the

partition functions at temperature T read

Zr(X, T ) =
∑

w∈{±1}N

M
∏

µ=1

e
− 1

T

(

1−1∣
∣

∣

∣

zµ(w)
∣

∣

∣

∣

≤K

)

and Zu(X, T ) =
∑

w∈{±1}N

M
∏

µ=1

e
− 1

T

(

1−1∣
∣

∣

∣

zµ(w)
∣

∣

∣

∣

≥K

)

. (62)

We define the probabilities that constraints are satisfied at temperature T :






























pr,K,T ≡
∫

Dze
− 1

T

(

1−1|z|≤K

)

= e−
1
T + (1− e−

1
T )pr,K ,

pu,K,T ≡
∫

Dze
− 1

T

(

1−1|z|≥K

)

= e−
1
T + (1− e−

1
T )pu,K ,

ps,K,T ≡
∫

Dze
− 1

T

(

1−1z ≥ K

)

= e−
1
T + (1 − e−

1
T )ps,K .

(63)
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1. First moment at finite temperature

Let Er(N,M, T ) the event that Zr(X, T ) ≥ 1. Let’s compute the first moment in the rectangle case,

P[Er(N,αN, T )] ≤ E[Zr(X(N,αN), T )] = 2NE







αN
∏

µ=1

e
− 1

T

(

1−1∣
∣

∣

∣

zµ(1)
∣

∣

∣

∣

≤K

)





(64)

= 2NpαNr,K,T = exp(N(log(2) + α log(pr,K,T ))) . (65)

and this derivation holds similarly for the step and u−function.

2. Second moment at finite temperature

Again we show the computation for the rectangle and it can be done similarly for the u−function.
a. Expression of Fr,K,α,T

E[Zr(X(N,αN), T )2] =
∑

w1,w2∈{±1}N

E







αN
∏

µ=1

e
− 1

T

(

1−1∣
∣

∣

∣

zµ(w1)
∣

∣

∣

∣

≤K

)

e
− 1

T

(

1−1∣
∣

∣

∣

zµ(w2)
∣

∣

∣

∣

≤K

)





(66)

= 2N
∑

w∈{±1}N

αN
∏

µ=1

E






e
− 1

T

{(

1−1∣
∣

∣

∣

zµ(1)
∣

∣

∣

∣

≤K

)

+

(

1−1∣
∣

∣

∣

zµ(w)
∣

∣

∣

∣

≤K

)}




(67)

= 2N
N
∑

l=0

(

N

l

)

qr,K,T (l/N)αN ≡ exp(N(log(2) + Fr,K,α,T )) , (68)

where we defined qr,K,T the probability that two standard Gaussians with correlation β are both at most K in
absolute value at temperature T . Defining ρ(β) = 1− 2β and

Iα2,β2

α1,β1
(ρ) ≡

∫ β1

α1

∫ β2

α2

dxdy
e−

1
2 (x

2+y2+2ρxy)

2π
√

1− ρ2
=

1

2π

∫ β2

α2

∫
β1+ρy√

1−ρ2

α1+ρy√
1−ρ2

dydxe−
y2+x2

2 , (69)

the function Fr,K,α,T at finite temperature can be written

Fr,K,α,T = H(β) + α log qr,K,T (β) ,

where

qr,K,T (β) ≡
∫

R

2

dxdy
e−

1
2 (x

2+y2+2ρ(β)xy)

2π
√

1− ρ(β)2
e
− 1

T

((

1−1∣
∣

∣

∣

zµ(1)
∣

∣

∣

∣

≤K

)

+

(

1−1∣
∣

∣

∣

zµ(w)
∣

∣

∣

∣

≤K

))

(70)

= I−K,K
−K,K + e−

1
T

(

I−K,K
−∞,−K + I−K,K

K,+∞ + I−∞,−K
−K,K + IK,+∞

−K,K

)

+ e−
2
T

(

I−∞,−K
−∞,−K + IK,+∞

−∞,−K + I−∞,−K
K,+∞ + IK,+∞

K,+∞

)

.

(71)

b. Expression of ∂βFr,K,α,T

To compute the derivative of qr,K,T , we first introduce

Gα2,β2
γ (ρ) ≡ 1

2π

∫ β2

α2

dye−
y2

2 e
− 1

2
(γ+ρy)

1−ρ2 (y + γρ) .

The derivative of each integral involved in eq. (71) can be easily computed as

∂βIα2,β2

α1,β1
(ρ(β)) = − 1

4(β(1− β))3/2

(

Gα2,β2

β1
− Gα2,β2

α1

)

(ρ(β)) . (72)

Hence taking the derivative of each term of the form Iα2,β2

α1,β1
and simplifying it, the probability qr,K,T reads:

qr,K,T (β) = − 1

4(β(1− β))3/2

(

G−K,K
K − G−K,K

−K

)

(ρ)(1− e−1/T )2 =
(1 − e−1/T )2

π
√

β(1 − β)

(

e−
K2

2(1−β)

(

e
(2β−1)K2

2(1−β)β − 1

))

.
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In the end, the derivative of the second moment can be evaluated for β = 0 and β = 1 at all temperature T :

∂Fr,K,α,T

∂β
(β) = log

(

1− β

β

)

+
α

qr,K,T

∂qr,K,T (β)

∂β
(73)

= log

(

1− β

β

)

+
α

qr,K,T (β)

(1− e−1/T )2

π
√

β(1− β)

(

e−
K2

2(1−β)

(

e
(2β−1)K2

2(1−β)β − 1

))

−−−−−−−−→
β→1/2±1/2

±∞ . (74)

In particular at T = 0,

∂Fr,K,α

∂β
(β) = log

(

1− β

β

)

+
α

qr,K,T (β)

1

π
√

β(1 − β)

(

e−
K2

2(1−β)

(

e
(2β−1)K2

2(1−β)β − 1

))

. (75)

c. Expression of ∂βFu,K,α,T

Adapting the previous steps and using

qu,K,T (β) ≡
∫

R

2

dxdy
e−

1
2 (x

2+y2+2ρ(β)xy)

2π
√

1− ρ(β)2
e
− 1

T

((

1−1∣
∣

∣

∣

zµ(1)
∣

∣

∣

∣

≤K

)

+

(

1−1∣
∣

∣

∣

zµ(w)
∣

∣

∣

∣

≤K

))

=
(

I−∞,−K
−∞,−K + IK,+∞

−∞,−K + I−∞,−K
K,+∞ + IK,+∞

K,+∞

)

+ e−
1
T

(

I−K,K
−∞,−K + I−K,K

K,+∞ + I−∞,−K
−K,K + IK,+∞

−K,K

)

+ e−
2
T

(

I−K,K
−K,K

)

= qr,K,−T e
− 2

T ,

and eq. (74) the derivative for the u−function is straightforward to compute and is given by

∂Fu,K,α,T

∂β
(β) = log

(

1− β

β

)

+
α

qu,K,T (β)

∂qu,K,T

∂β
(β)

= log

(

1− β

β

)

+
α

qu,K,T (β)

(e−1/T − 1)2

π
√

β(1 − β)

(

e−
K2

2(1−β)

(

e
(2β−1)K2

2(1−β)β − 1

))

=−−−−−−−−→
β→1/2±1/2

±∞ .
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