
HAL Id: cea-02009764
https://cea.hal.science/cea-02009764v1

Preprint submitted on 6 Feb 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Generalisation dynamics of online learning in
over-parameterised neural networks

Sebastian Goldt, Madhu S. Advani, Andrew M. Saxe, Florent Krzakala,
Lenka Zdeborova

To cite this version:
Sebastian Goldt, Madhu S. Advani, Andrew M. Saxe, Florent Krzakala, Lenka Zdeborova. Generali-
sation dynamics of online learning in over-parameterised neural networks. 2019. �cea-02009764�

https://cea.hal.science/cea-02009764v1
https://hal.archives-ouvertes.fr


Generalisation dynamics of online learning in
over-parameterised neural networks

Sebastian Goldt1, Madhu S. Advani2, Andrew M. Saxe3,
Florent Krzakala4 and Lenka Zdeborová1

1Institut de Physique Théorique, CNRS, CEA, Université Paris-Saclay, France
2Center for Brain Science, Harvard University, Cambridge, MA 02138, USA

3Department of Experimental Psychology, University of Oxford, United Kingdom
4Laboratoire de Physique de l’Ecole Normale Supérieure, Université PSL, CNRS, Sorbonne Université,

Université Paris-Diderot, Sorbonne Paris Cité, Paris, France

Deep neural networks achieve stellar generalisation on a variety of problems, de-
spite often being large enough to easily fit all their training data. Here we study
the generalisation dynamics of two-layer neural networks in a teacher-student setup,
where one network, the student, is trained using stochastic gradient descent (SGD)
on data generated by another network, called the teacher. We show how for this
problem, the dynamics of SGD are captured by a set of differential equations. In
particular, we demonstrate analytically that the generalisation error of the student
increases linearly with the network size, with other relevant parameters held constant.
Our results indicate that achieving good generalisation in neural networks depends
on the interplay of at least the algorithm, its learning rate, the model architecture,
and the data set.

1. Introduction

One hallmark of the deep neural networks behind state-of-the-art results in image classifica-
tion [1] or the games of Atari and Go [2, 3] is their size: their free parameters outnumber the
samples in their training set by up to two orders of magnitude [4]. Statistical learning theory
would suggest that such heavily over-parameterised networks should generalise poorly without
further regularisation [5, 6, 7, 8, 9, 10, 11], yet empirical studies consistently find that increasing
the size of networks to the point where they can fit their training data and beyond does not
impede their ability to generalise well [12, 13, 14]. This paradox is arguably one of the biggest
challenges in the theory of deep learning.

In practice, it is notoriously difficult to determine the point at which a statistical model
becomes over-parameterised for a given data set. Instead, here we study the dynamics of learning
neural networks in the teacher-student setup. The student is a two-layer neural network with
weights w that computes a scalar function φ(w, x) of its inputs x. It is trained with samples
(x, y), where y = φ(B, x) + ζ is the noisy output of another two-layer network with weights B,
called the teacher, and ζ is a Gaussian random variable with mean 0 and variance σ2. Crucially,
the student can have a number of hidden units K that is different from M , the number of
hidden units of the teacher. Choosing L ≡ K −M > 0 then gives us neural networks that are
over-parameterised with respect to the generative model of their training data in a controlled
way. The key quantity in our model is the generalisation error

εg ≡
1

2
〈[φ(w, x)− φ(B, x)]2〉, (1)

1

ar
X

iv
:1

90
1.

09
08

5v
1 

 [
st

at
.M

L
] 

 2
5 

Ja
n 

20
19



where the average 〈·〉 is taken over the input distribution. Our main questions are twofold: how
does εg evolve over time, and how does it depend on L?

Main contributions. We derive a set of ordinary differential equations (ODEs) that track the
typical generalisation error of an over-parameterised student trained using SGD. This description
becomes exact for large input dimension and data sets that are large enough to allow that we visit
every sample only once before training converges. Using this framework, we analytically calculate
the generalisation error after convergence ε∗g. We find that with other relevant parameters held
constant, the generalisation error increases at least linearly with L. For small learning rates η
in particular, we have

ε∗g ∼ ησ2L. (2)

Our model thus offers an interesting perspective on the implicit regularisation of SGD, which we
will discuss in detail. The derivation of a set of ODEs for over-parameterised neural networks
and their perturbative solution in the limit of small noise are an extension of earlier work by [15]
and [16, 17].

The concepts and tools from statistical physics that we use in our analysis have a long and
successful history of analysing average-case generalisation in learning and inference [18, 19, 20,
21, 22], and they have recently seen a surge of interest [23, 24, 25, 26, 27].

We begin our paper in Sec. 2 with a description of the teacher-student setup, the learning
algorithm and the derivation of a set of ordinary differential equations that capture the dynamics
of SGD in our model. Using this framework, we derive Eq. (2) in Sec. 3 and discuss networks
with sigmoidal, linear and ReLU activation functions in detail. We discuss our results and in
particular the importance of the size of the training set in Sec. 4 before concluding in Sec. 5.

2. Setup

2.1. The teacher generates test and training data

We study the learning of a supervised regression problem with inputs x ∈ RN and outputs
y(x) ∈ R with a generative model as follows. We take the components of the inputs xn (n =
1, . . . , N) to be i.i.d. Gaussian random variables1 with zero mean and unit variance. The output
y(x) is given by a neural network with a single hidden layer containing M hidden units and
all-to-all connections, see Fig. 1. Its weights B ∈ RM×N from the inputs to the hidden units are
drawn at random from some distribution p(B) and kept fixed2. Given an input x, the network’s
output is given by

φ(B, x) =

M∑

m=1

g

(
Bmx√
N

)
(3)

where Bm is the mth row of B, Bmx is the dot product between two vectors and g : R → R is
the activation function of the network. We focus on the case where both student and teacher
have the same activation function. In particular, we study linear networks with g(x) = x,
sigmoidal networks with g(x) = erf

(
x/
√

2
)
, and rectified linear units where g(x) = max(0, x).

The training set consists of P tuples (xµ, yµB(xµ)), µ = 1, . . . , P ; where

yµB(xµ) ≡ φ(B, xµ) + ζµ, (4)

is a noisy observation of the network’s output and the random variable ζµ is normally distributed
with mean 0 and variance σ2.

In the statistical physics literature on learning, a data-generating neural network is called the
teacher and neural networks of the type (3) are called Soft Committee Machines [28]. They
combine the apparent simplicity of their architecture, which allows for a detailed analytical

1N.B. our results for large N are valid for any input distributions that has the same mean and variance, for
example equiprobable binary inputs xn = ±1.

2It is also possible to extend our approach to time-dependent weights B.

2



...

x

gK

...

g2

g1

gk = g(wkx)

φ

φ =
∑

k gk

Figure 1: Neural network with a single hidden layer. A network with K hidden units

and weights w implements a scalar function of its inputs x, y =
∑K

k g(wkx), where
g : R→ R is the non-linear activation function of the network.

description, with the power of a universal approximator: given a hidden layer of sufficient size,
they can approximate any continuous function of their inputs to any desired accuracy [29, 30].
They have thus been at the center of a lot of recent research on the generalisation of neural
networks [31, 32, 26, 33, 34].

2.2. The student aims to mimic the teacher’s function

Once a teacher network has been chosen at random, we train another neural network, called
the student, on data generated by the teacher according to (4). The student has a single fully-
connected hidden layer with K hidden units, and we explicitly allow for K 6= M . The student’s
weights from the input to the hidden layer are denoted w ∈ RK×N and its output is given by
φ(w, x). We keep the weights from the hidden units to the output fixed at unity and only train
the first layer weights w. We consider both networks in the thermodynamic limit, where we let
N →∞ while keeping M,K of order 1.

The key quantity in our study is the generalisation error of the student network with respect
to the teacher network, which we defined in Eq. (1) as the mean squared error between the
outputs of the student and the noiseless output of the teacher, averaged over the distribution
of inputs. Note that including the output noise of the teacher would only introduce a constant
offset proportional to the variance of the output noise.

2.3. The student is trained using online learning

Since we are training the student for a regression task, we choose a quadratic loss function.
Given a training data set with P samples, the training error reads

E(w) =
1

2

P∑

µ=1

(
φ(w, xµ)− yµB

)2
. (5)

We perform stochastic gradient descent on the training error to optimise the weights of the
student, using only a single sample (xµ, yµB) to evaluate the gradient of E(w) at every step. To
make the problem analytically tractable, we consider the limit where the training data set is
large enough to allow that each sample (xµ, yµB) is visited only once during the entire training
until the generalisation error converges to its final value3. We can hence index the steps of the
algorithm by µ and write the weight updates as

wµ+1
k = wµk −

κ

N
wµk −

η√
N
∇wkE(w)|(xµ,yµB) (6)

3In Sec. 4, we investigate the case of small P via simulations.

3



10 1 100 101 102 103 10410 6

10 5

10 4

10 3

10 2

10 1

100
g

(a)
M = K = 4, = 0.4

= 0.05
= 0.02
= 0.01
= 0.005
= 0

10 1 100 101 102 103 10410 6

10 5

10 4

10 3

10 2

10 1

100

g

(b)
M = K = 4, = 0.01

= 0.4
= 0.2
= 0.1
= 0.05

10 1 100 101 102 103 104

10 4

10 3

10 2

10 1

100

g

(c)
M = 4, = 0.01, = 0.4

K = 2
K = 4
K = 6
K = 8

Figure 2: The analytical description of the generalisation dynamics of sigmoidal net-
works (solid) matches simulations (crosses). We show learning curves εg(α)
obtained by integration of the ODEs (12) (solid). From left to the right, we vary the
variance of the teacher’s output noise σ, the learning rate η, and the number of hidden
units in the student K. For each combination of parameters shown in the plots, we ran
a single simulation of a network with N = 784 and plot the generalisation observed
(crosses). κ = 0 in all cases.

where κ is the weight decay rate, the learning rate is η, and we have chosen their scaling with
N such that all terms remain of order 1 in the thermodynamic limit N → ∞. Evaluating the
derivative yields

wµ+1
k = wµk −

κ

N
wµk −

η√
N
xµrµk (7)

where
rµk ≡ g

′(λµk)
[
φ(w, xµ)− yµB

]
(8)

and we have defined λµk ≡ wkx
µ/
√
N .

Stochastic gradient descent with mini-batch size 1 in the limit of very large training sets is
also known as online or one-shot learning. Kinzel [35] first realised that its dynamics could be
described in terms of order parameters, initiating a number of works on the perceptron [36, 21].
Online learning in committee machines was first studied by Biehl and Schwarze [15] in the case
M = 1,K = 2 and by Saad and Solla [17, 37], who gave a detailed analytic description of the case
K = M with g(x) = erf

(
x/
√

2
)
. Beyond its application to neural networks, its performance has

been analysed for problems ranging from PCA [38, 39] to the training of generative adversarial
networks [40].

2.4. The dynamics of online learning can be described in closed form

Our aim is to track the evolution of the generalisation error εg (1), which can be written more
explicitly as

εg =
1

2

〈[
K∑

k=1

g
(
λµk
)
−

M∑

m=1

g(νµm)

]2〉
, (9)

where νµm ≡ Bmx
µ/
√
N . Since the inputs x only appear as products with the weight vectors

of the student and the teacher, we can replace the average 〈·〉 over x with an average over λµk
and νµm. To determine the distribution of the latter, the assumption that every sample (xµ, yµB)
is only used once during training becomes crucial, because it guarantees that the inputs and
the weights of the networks are uncorrelated. By the central limit theorem, νµm, λ

µ
k are hence

normally distributed with mean zero since 〈xn〉 = 0. Their covariance is also easily found:
writing wka for a component of the kth weight vector, we have

〈λkλl〉 =

∑N
a,bwkawlb〈xaxb〉

N
=
wkwl
N
≡ Qkl (10)

4



since 〈xaxb〉 = δab. Likewise, we define

〈νnνm〉 =
BnBm
N

≡ Tnm, 〈λkνm〉 =
wkBm
N

≡ Rkm. (11)

The variables Rin, Qik, and Tnm are called order parameters in statistical physics and measure
the overlap between student and teacher weight vectors wi and Bn and their self-overlaps, re-
spectively. Crucially, from Eq. (9) we see that they are sufficient to determine the generalisation
error εg.

We can obtain a closed set of differential equations for the time evolution of the order pa-
rameters Q and R by squaring the weight update (7) and taking its inner product with Bn,
respectively4. Then, an average over the inputs x needs to be taken. The resulting equations of
motion for R and Q can be written as

dRin
dα

= −κRin + η〈riνn〉 (12a)

dQik
dα

= −2κQik + η〈riλk〉+ η〈rkλi〉

+ η2〈rirk〉+ η2σ2〈g′(λi)g′(λk)〉
(12b)

where α = µ/N becomes a continuous time-like variable in the limit N → ∞. The averages
over inputs 〈·〉 can again be reduced to an average over the normally distributed local fields λµk
and νµm as above. If the averages can be evaluated analytically, the equations of motion (12)
together with the generalisation error (9) form a closed set of equations which can be integrated
numerically and provides an exact description of the generalisation dynamics of the network in
the limit of large N and large training sets. Indeed, the integrals have an analytical solution for
the choice g(x) = erf(x/

√
2) [15] and for linear networks. Eqns. (12) hold for any M and K,

enabling us to study the learning of complex non-linear target functions φ(B, x), rather than
data that is linearly separable or follows a Gaussian distribution [41, 42]. A detailed derivation
and the explicit form of the equations of motion are given in Appendix A.

We plot εg(α) obtained by numerically integrating5 Eqns. (12) and the generalisation error
observed during a single run of online learning (7) with N = 784 in Fig. 2. The plots demonstrate
a good quantitative agreement between simulations and theory and display some generic features
of online learning in soft committee machines.

One notable feature of all the plots in Fig. 2 is the existence of plateaus during training,
where the generalisation error is almost stationary. During this time, the student “believes”
that data are linearly separable and all its hidden units have roughly the same overlap with all
the hidden units of the teacher. Only after a longer time, the student picks up the additional
structure of the teacher and “specialises”: each of its hidden units ideally becomes strongly
correlated with one and only one hidden unit of the teacher before the generalisation error
decreases exponentially to its final value. This effect is well-known in the literature for both
batch and online learning [28, 15, 16] and will be revisited in Sec. 3.

It is perhaps surprising that the generalisation dynamics seem unaffected by the difference
in output noise (Fig. 2 a) until they leave the plateau. This is due to the fact that the noise
appears in the equations of motion only in terms that are quadratic in the learning rate. Their
effect takes longer to build up and become significant. The specialisation observed above is also
due to terms that are quadratic in the learning rate. This goes to show that even in the limit
of small learning rates, one cannot simplify the dynamics of the neural network by linearising
Eqns. (12) in η without losing some key properties of the dynamics.

4Since we keep the teacher fixed, T remains constant; however, our approach can be easily extended to a
time-dependent teacher.

5We have packaged our simulations and our ODE integrator into a user-friendly Python library. To download,
visit https://github.com/sgoldt/pyscm

5

https://github.com/sgoldt/pyscm


0 5 10 15
L

10 1* g
/

2

M = 4
M = 8

Figure 3: Theoretical predictions for ε∗g match simulations. We plot theoretical pre-
dictions for ε∗g/σ

2 for sigmoidal networks (Eq. (13), solid line) and linear networks
(Eq. (15), dashed) together with the result from a single simulation of a network with
N = 784. Parameters: η = 0.05, σ = 0.01.

3. Asymptotic generalisation of over-parameterised students after
online learning

In the absence of output noise (σ = 0) and without weight decay (κ = 0), online learning of a
student with K ≥ M hidden units will yield a network that generalises perfectly with respect
to the teacher. More precisely, at some point during training, the generalisation error will start
an exponential decay towards zero (see Appendix B.1). On the level of the order parameters Q
and R, a student that generalises perfectly with respect to the teacher corresponds to a stable
fixed point of the equations of motion (12) with εg = 0.

This fixed point disappears for σ > 0 and the order parameters converge to a different fixed
point. The values of the order parameters at that fixed point can be obtained perturbatively
in the limit of small noise, i.e. small σ. To this end, we first make an ansatz for the matrices
Q and R that involves eight order parameters for any M,K. We choose this number of order
parameters for two reasons: it is the smallest number of variables for which we were able to
self-consistently close the equations of motion (12), and they agree with numerical evidence
obtained from integrating the full equations of motion (12).

We then derive equations of motion for this reduced set of order parameters, and expand them
to first order in σ around the fixed point with perfect generalisation. Throughout this section, we
set κ = 0 and choose uncorrelated and isotropic weight vectors for the teacher, i.e. Tnm = δnm,
which is equivalent to drawing the weights at random from a standard normal distribution.

3.1. Sigmoidal networks

We have performed this calculation for teacher and student networks with g(x) = erf(x/
√

2).
We discuss the details of this tedious calculation in Appendix 3, and here we only state the
asymptotic value of the generalisation error ε∗g to first order in the variance of the noise σ2 for
teacher and student with sigmoidal activation:

ε∗g =
σ2η

2π
f(M,L, η) +O(σ3) (13)

where f(M,L, η) is a lengthy rational function of its variables. The full expression spans more
than two pages, so here we plot it in Fig. 3 together with a single run of a simulation of a neural
network with N = 784, which is in excellent agreement.

6



0 1
i

0

1

k
Qik, K = 2

0 1 2
i

0

1

2

k

Qik, K = 3

0 1 2 3 4
i

0
1
2
3
4

k

Qik, K = 5

1.00
0.75
0.50
0.25

0.00
0.25
0.50
0.75
1.00

0 1
n

0

1

i

Rin, K = 2

0 1
n

0

1

2

i
Rin, K = 3

0 1
n

0
1
2
3
4

i

Rin, K = 5

1.00
0.75
0.50
0.25

0.00
0.25
0.50
0.75
1.00

0 1
i

0

1

k

Qik, K = 2

0 1 2
i

0

1

2

k

Qik, K = 3

0 1 2 3 4
i

0
1
2
3
4

k

Qik, K = 5

1.00
0.75
0.50
0.25

0.00
0.25
0.50
0.75
1.00

0 1
n

0

1

i

Rin, K = 2

0 1
n

0

1

2

i

Rin, K = 3

0 1
n

0
1
2
3
4

i

Rin, K = 5

1.00
0.75
0.50
0.25

0.00
0.25
0.50
0.75
1.00

Figure 4: Sigmoidal networks learn different representations from a noisy teacher
than ReLU networks. For sigmoidal networks (left), we see clear signs of speciali-
sation as described in Sec. 3.1: for K = 3, one unit is simply shut down: w1 = 0. As
we increase K, some units become exactly anti-correlated to each other (e.g. units 1,
4 for K = 5), hence effectively setting their weights to zero (we keep the weights of
the second layer fixed at unity). ReLU networks instead find representations where
several nodes are used. Parameters: N = 784, η = 0.3, σ = 0.1, κ = 0.

3.1.1. Discussion

One notable feature of Fig. 3 is that with all else being equal, the generalisation error increases
monotonically with L. In other words, our result (13) implies that SGD alone fails to reg-
ularise the student networks of increasing size in our setup, instead yielding students whose
generalisation error increases at least linearly with L.

One might be tempted to mitigate this effect by simultaneously decreasing the learning rate
η for larger students. However, this raises two problems: first of all, a lower learning rate means
the model would take longer to train. More importantly though, the resulting longer training
time implies that more data is required until the final generalisation error is achieved. This is in
agreement with statistical learning theory, where given more and more data, models with more
parameters (higher L) and a higher complexity class, e.g. a higher VC dimension or Rademacher
complexity [6], generalise just as well as smaller ones. In practice however, more data might not
be readily available. Furthermore, we show in the Appendix B.2.1 that even when we choose
η = 1/K, the generalisation error still increases with L before plateauing at a constant value.

We can gain some intuition for the result (13) by considering the final representations learnt
by a sigmoidal network. On the left half of Fig. 4, we plot the overlap matrices Q and R for
a teacher with M = 2 and various K. For K = 2, we see that each of the hidden units of the
student has learnt the weights of one teacher hidden unit, yielding diagonal matrices Q and R
(modulo the permutation symmetry of the hidden units). As we add a third hidden unit to the
student, K = 3, the specialisation discussed in the previous section becomes apparent: two of
the hidden units of the student each align almost perfectly with a different hidden unit of the
teacher, such that R01 = R20 ≈ 1, while the weights of the third unit go to zero (Q11 ≈ 0). As
we add even more hidden units, (K = 5), the weight vectors of some units become exactly anti-
correlated, hence effectively setting their weights to zero as far as the output of that network is
concerned (since we set the weights of the second layer to unity). This behaviour is essentially
a consequence of the sigmoidal form of the activation function, which makes it hard to express
the sum of M hidden units with K 6= M hidden units, instead forcing 1-to-1 specialisation of
the student’s hidden units.

In the over-parameterised case, L = K −M units of the student are hence effectively spe-
cialising to hidden units of the teacher with zero weights. Although their weights are unbiased
estimators of the weights B = 0, their variance is finite due to the noise in the teacher’s output.

7



Thus they always hurt generalisation.
This intuition can be confirmed analytically by going to the limit of small learning rates,

which is the most relevant in practice. Expanding ε∗g to first order in the learning rate reveals a
particularly revealing form,

ε∗g =
σ2η

2π

(
L+

M√
3

)
+O(η2), (14)

with second-order corrections that are quadratic in L. The linear term in η is the sum of two
contributions: the asymptotic generalisation errors of M independent networks with one hidden
units that are learning from a teacher with single hidden unit hand T = 1. The L = K −M
superfluous units contribute each the error of a continuous perceptrons that is learning from a
teacher with zero weights (T = 0). Again, we relegate the detailed calculation to the Appendix C.

3.2. Linear networks

One might suspect that part of the scaling ε∗g ∼ L in sigmoidal networks is due to the specialisa-
tion of the hidden units or the fact that teacher and student network can implement functions of
different range if K 6= M . It thus makes sense to calculate ε∗g for linear neural networks, where
g(x) = x [43]. These networks have no specialisation transition [26] and their output range is
set by the magnitude of their weights, rather than their number of hidden units. Furthermore,
linear networks are receiving increasing attention as models for neural networks [44, 25, 45].

Following the same steps as for the sigmoidal networks, a perturbative calculation in the limit
of small noise yields

ε∗g =
ησ2(L+M)

4− 2η(L+M)
+O(σ3). (15)

In the limit of small learning rates, the above expression further simplifies to

ε∗g =
1

4
ησ2(L+M) +O

(
η2
)
. (16)

Hence we see that in the limit of small learning rates, the asymptotic generalisation error of
linear networks has the same scaling with σ, η and L as for sigmoidal networks. This result is
again in good agreement with the results of simulations, demonstrated in Fig. 3.

3.2.1. Discussion

The linear scaling of ε∗g with L, keeping all other things equal, might be surprising given that
all linear networks implement a linear transformation with an effective matrix W =

∑
k wk,

irrespective of their number of hidden units. However, this is exactly the problem: adding
hidden units to a linear network does not augment the class of functions it can implement, but
it adds free parameters which will indiscriminately pick up fluctuations due to the output noise
in the teacher. The optimal generalisation error is indeed realised with K = 1 irrespective of M ,
since a linear network with K = 1 has the lowest number of free parameters while having the
same expressive power as a teacher with arbitrary M . Our formula (15) however only applies
to the case K > M .

Linear networks thus show that the scaling of ε∗g with L is not only a consequence of either
specialisation or the mismatched range of the networks’ output functions, as one might have
suspected by looking only at sigmoidal networks.

Interestingly, if we rescale the learning rate by choosing η = 1/K, we find that the generali-
sation error (15) becomes equal to σ2/2, independent of L. Again, this rescaling of the learning
rate comes at the cost of increased training time and hence, in this model, increased training
data. A quantitative exploration of the trade-off between learning rate and network size for a
fixed data set is an interesting problem, however, it goes beyond the domain of online learning
and is hence left for future work.

8



10 5 10 3 10 1
2

10 7

10 6

10 5

10 4

10 3

10 2
* g

a) = 0.04
= 0.08

10 3 10 2 10 1
10 7

10 6

10 5

10 4

10 3

* g

b) = 0.1
= 0.01

0 4 8 12 16 20
L

0.0001

0.0002

0.0003

0.0004

0.0005

* g

c) M=4
M=16

Figure 5: The final generalisation error of over-parametrised ReLU networks scales
as ε∗g ∼ ησ2L. Simulations confirm that the asymptotic generalisation error ε∗g of
a ReLU student learning from a ReLU teacher scales with the learning rate η, the
variance of the teacher’s output noise σ2 and the number of additional hidden units
as εg ∼ ησ2L, which is the same scaling as the one found analytically for sigmoidal
networks in Eq. (14). Straight lines are linear fits to the data, with slope 1 in (a) and
(b). Parameters: M = 2,K = 6 (a, b) and M = 4, 16; K = M + L (c); in all figures,
N = 784, κ = 0.

3.3. Numerical results suggest the same scalings for ReLU networks, too

The analytical calculation of εg described above for networks with ReLU activation function
poses some additional technical challenges, so here we resort to simulations to illustrate the
behaviour of ε∗g in this case and leave the analytical description for future work. The results
are shown in Fig. 5: we found numerically that the asymptotic generalisation error of a ReLU
student learning from a ReLU teacher has the same scaling as the one we found analytically for
networks with sigmoidal and with linear activation functions: ε∗g ∼ ησ2L.

3.3.1. Discussion

Looking at the final overlap matrices Q and R for ReLU networks in the right half of Fig. 4, we
see a mechanism behind Eq. (2) for ReLU networks that is reminiscent of the linear case: instead
of the one-to-one specialisation of sigmoidal networks, all the hidden units of the student have
a finite overlap with all the hidden units of the teacher. This is a consequence of the fact that
it is much simpler to re-express the sum of M ReLU units with K 6= M ReLU units. However,
this also means that there are a lot of redundant degrees of freedom, which nevertheless all pick
up fluctuations from the output noise and degrade the generalisation error.

For ReLU networks, one might imagine that several ReLU units can specialise to one and only
one teacher unit and thus act as an effective denoiser for that teacher unit. However, we have
checked numerically that this configuration is not a stable fixed point of the SGD dynamics.

4. Discussion

The main result of the preceding section was a set of ODEs that described the generalisation
dynamics of over-parameterised two-layer neural networks. This framework allowed us to derive
the scaling of the generalisation error of the student with the network size, the learning rate and
the noise level in the teacher’s outputs. This scaling is robust with respect to the choice of the
activation function as it holds true for linear, sigmoidal and ReLU networks. In this section, we
discuss several possible changes to our setup and discuss their impact on the scaling of ε∗g.

9



0 4 8 12 16
L

10 5g

0 4 8 12 16
L

10 5

10 4

10 3

10 2

10 1

100

g

online
P = 1
P = 4
P = 50

0 4 8 12 16
L

10 5

10 4

10 3

10 2

10 1

100

g

Figure 6: The scaling of ε∗g with L depends on the size of the training set. We plot ε∗g
after SGD with a finite training set with PN samples for linear, sigmoidal and ReLU
networks from left to right. The result for online learning for linear and sigmoidal
networks, Eqns. (13) and (15), are plotted in violet. In the linear case, the online
learning result exactly matches the simulation for P = 50. Error bars indicate one
standard deviation over 10 simulations, each with a different training set; many of them
are too small to be clearly visible. Parameters: N = 784,M = 4, η = 0.1, σ = 0.01.

4.1. Weight decay

A natural strategy to avoid overfitting is to explicitly regularise the weights, for example by
using weight decay. In our setup, this is introduced by choosing a finite κ > 0 in Eq. (7). In our
simulations with κ > 0, we did not find a scenario where weight decay did not increase the final
generalisation error compared to the case κ = 0. In particular, we did not find a scenario where
weight decay improved the performance of a student with L > 0. The corresponding plots can
be found in Appendix D.

4.2. SGD with mini-batches

We also made sure that the phenomenology we observed persists if we move to stochastic gradient
descent with mini-batches, where the gradient estimate in Eq. (7) is averaged over several samples
(x, yB), as is standard in practice. We observed that increasing the mini-batch size lowers the
asymptotic generalisation error up to a certain mini-batch size of order ∼ 100 samples, after
which it stays roughly constant. Crucially, having mini-batches does not change the scaling of
ε∗g with L (see Appendix E for details).

4.3. Structured input data

One idealised assumption in our setup is that we take our inputs x as i.i.d. draws from a standard
normal distribution (see Sec. 2). We therefore repeated our experiments using MNIST images as
inputs x, while leaving all other aspects of our setup the same. In particular, we still trained the
student on a regression task with y generated using a random teacher. This setup allowed us to
trace any change in the generalisation behaviour of the student to the higher-order correlations
of the input distribution. Switching to MNIST inputs reproduced the same εg-L curve as having
Gaussian inputs to within the experimental error; the interested reader is referred to Appendix F
for a detailed description of these experiments.

4.4. The scaling of ε∗g with L depends also on the size of the training set

In practice, a single sample of the training data set will be visited several times during training.
After a first pass through the training set, the online assumption that an incoming sample
(x, yB) is uncorrelated to the weights of the network thus breaks down. A complete analytical
treatment in this setting remains an open problem, so to study this practically relevant setup,
we turn to simulations. We keep the setup described in Sec. 2, but simply reduce the number

10



of samples in the training data set P . Our focus is again on the final generalisation error after
convergence ε∗g for linear, sigmoidal and ReLU networks, which we plot from left to right as a
function of L in Fig. 6.

Linear networks show a similar behaviour to the setup with a very large training set discussed
in Sec. 3.2: the bigger the network, the worse the performance for both P = 4 and P = 50.
Again, the optimal network has K = 1 hidden units, irrespective of the size of the teacher.
However, for non-linear networks, the picture is more varied: For large training sets, where the
number of samples easily outnumber the free parameters in the network (P = 50, red curve; this
corresponds roughly to learning a data set of the size of MNIST), the behaviour is qualitatively
described by our theory from Sec. 3: the best generalisation is obtained by a network that
matches the teacher size, K = M . However, as we reduce the size of the training set, this is
no longer true. For P = 4, for example, the best generalisation is obtained with networks that
have K > M . Thus the size of the training set with respect to the network has an important
influence on the scaling of ε∗g with L. Note that the early-stopping generalisation error, which
we define as the minimal generalisation error over the duration of training, shows qualitatively
the same behaviour as ε∗g (see Appendix G for additional information.)

5. Concluding perspectives

We have studied the dynamics of online learning in two-layer neural networks within the teacher-
student framework, where we train a student network using SGD on data generated by another
network, the teacher. One advantage of this setup is that it allows us to investigate the behaviour
of networks that are over-parameterised with respect to the generative model of their data in a
controlled fashion. We derived a set of eight ODEs that describe the generalisation dynamics
of over-parameterised students of any size. Within this framework, we analytically computed
the final generalisation error of the student in the limit of online learning with small noise. One
immediate consequence of this result is that SGD alone is not enough to regularise the over-
parameterised student, instead yielding networks whose generalisation error scales linearly with
the network size.

Furthermore, we demonstrated that adding explicit regularisation by introducing weight decay
did not improve the performance of the networks and that the same phenomenology arises when
using mini-batches or after substituting the Gaussian inputs used in the theoretical analysis
with a more realistic data set. Nevertheless, we were able to find a scenario in our setup where
the generalisation decreases with the student’s size, namely when training using a finite data set
that contains roughly as many samples as there are free parameters in the network.

In the setting we analyse, our results clearly indicate that the regularisation of neural networks
goes beyond the properties of SGD alone. Instead, a full understanding of the generalisation
properties of deep networks requires taking into account the interplay of at least the algorithm,
its learning rate, the model architecture, and the data set, setting up a formidable research
programme for the future.

Acknowledgements

SG and LZ acknowledge funding from the ERC under the European Union’s Horizon 2020 Re-
search and Innovation Programme Grant Agreement 714608-SMiLe. MA thanks the Swartz Pro-
gram in Theoretical Neuroscience at Harvard University for support. AS acknowledges funding
by the European Research Council, grant 725937 NEUROABSTRACTION. FK acknowledges
support from “Chaire de recherche sur les modèles et sciences des données”, Fondation CFM
pour la Recherche-ENS, and from the French National Research Agency (ANR) grant PAIL.

11



APPENDICES

A. Derivation of the ODE description of the generalisation dynamics
of online learning

We will now show how to derive ODEs that describe the dynamics of online learning in two-
layer neural networks, following the seminal work by Biehl and Schwarze [15] and Saad and
Solla [16, 17]. We focus on the teacher-student setup introduced in the main paper, where a
student network with weights w ∈ RK×N and output

φ(w, x) =
K∑

k=1

g

(
wkx√
N

)
(17)

is trained on samples (xµ, yµ) generated by another two-layer network with weights B ∈ RM×N ,
the teacher, according to

yµB(xµ) ≡ φ(B, xµ) + ζµ. (18)

Here, ζµ is normally distributed with mean 0 and variance σ2. We will make two technical
assumptions, namely having a large network (N → ∞) and a data set that is large enough to
allow that we visit every sample only once before training converges.

A.1. Expressing the generalisation error in terms of order parameters

To make this section self-consistent, we briefly recapitulate how the assumptions stated above
allow to rewrite the generalisation error in terms of a number of order parameters. We have

εg ≡
1

2

〈
[φ(w, x)− φ(B, x)]2

〉
(19)

=
1

2

〈[
K∑

k=1

g
(
λµk
)
−

M∑

m=1

g(νµm)

]2〉
, (20)

where we have introduced the local fields

λµk ≡
wkx

µ

√
N
, (21)

νµm ≡
Bmx

µ

√
N

. (22)

Here and throughout this paper, we will use the indices i, j, k, . . . to refer to hidden units of the
student, and indices n,m, . . . to denote hidden units of the teacher. Since the input xµ only
appears in εg only via products with the weights of the teacher and the student, we can replace
the high-dimensional average 〈·〉 over the input distribution p(x) by an average over the K +M
local fields λµk and νµm. The assumption that the training set is large enough to allow that we
visit every sample in the training set only once guarantees that the inputs and the weights of
the networks are uncorrelated. Taking the limit N →∞ ensures that the local fields are jointly
normally distributed with mean zero (〈xn〉 = 0). Their covariance is also easily found: writing
wka for the ath component of the kth weight vector, we have

〈λkλl〉 =

∑N
a,bwkawlb〈xaxb〉

N
=
wkwl
N
≡ Qkl, (23)

since 〈xaxb〉 = δab. Likewise, we define

〈νnνm〉 =
BnBm
N

≡ Tnm, 〈λkνm〉 =
wkBm
N

≡ Rkm. (24)

12



The variables Rin, Qik, and Tnm are called order parameters in statistical physics and measure
the overlap between student and teacher weight vectors wi and Bn and their self-overlaps, re-
spectively. Crucially, from Eq. (20) we see that they are sufficient to determine the generalisation
error εg. We can thus write the generalisation error as

εg =
1

2

∑

i,k

I2(i, k) +
1

2

∑

n,m

I2(n,m)−
∑

i,n

I2(i, n), (25)

where we have defined

I2(i, k) ≡ 〈g(λi)g(λk)〉 =
1

π
arcsin

Qik√
1 +Qii

√
1 +Qkk

. (26)

The average in Eq. (26) is taken over a normal distribution for the local fields λi and λk with
mean (0, 0) and covariance matrix

C2 =

(
Qii Qik
Qik Qkk

)
. (27)

Since we are using the indices i, j, . . . for student units and n,m, . . . for teacher hidden units, we
have

I2(i, n) = 〈g(λi)g(νm)〉, (28)

where the covariance matrix of the joint of distribution λi and νm is given by

C2 =

(
Qii Rin
Tin Tnn

)
. (29)

and likewise for I2(n,m). We will use this convention to denote integrals throughout this section.
For the generalisation error, this means that it can be expressed in terms of the order parameters
alone as

εg =
1

π

∑

i,k

arcsin
Qik√

1 +Qii
√

1 +Qkk
+

1

π

∑

n,m

arcsin
Tnm√

1 + Tnn
√

1 + Tmm

− 2

π

∑

i,n

arcsin
Rin√

1 +Qii
√

1 + Tnn
. (30)

A.2. ODEs for the evolution of the order parameters

Expressing the generalisation error in terms of the order parameters as we have in Eq. (30) is
of course only useful if we can track the evolution of the order parameters over time. We can
derive ODEs that allow us to do precisely that by first writing again the SGD update of the
weights:

wµ+1
k = wµk −

κ

N
wµk −

η√
N
xµrµk , (31)

where µ is a running index counting the weight updates or, equivalently, the samples used so
far, and

rµk ≡ g
′(λµk)

[
φ(w, xµ)− yµB

]
. (32)

From this equation, we can obtain differential equations for the time evolution of the order
parameters Q by squaring the weight update (31) and for R taking the inner product of (31)
with Bn, respectively, which yields the Eqns. (12) of the main text and which we state again for
completeness:

dRin
dα

= −κRin + η〈riνn〉 (33a)

dQik
dα

= −2κQik + η〈riλk〉+ η〈rkλi〉+ η2〈rirk〉+ η2σ2〈g′(λi)g′(λk)〉 (33b)

13



where α = µ/N becomes a continuous time-like variable in the limit N →∞. These equations
are valid for any choice of activation functions g1 and g2. To make progress however, i.e. to
obtain a closed set of differential equations for Q and R, we need to evaluate the averages 〈·〉
over the local fields. In particular, we have to compute three types of averages:

I3 = 〈g′(a)bg′(c)〉, (34)

where a is one the local fields of the student, while b and c can be local fields of either the
student or the teacher;

I4 = 〈g′(a)g′(b)g(c)g(d)〉, (35)

where a and b are local fields of the student, while c and d can be local fields of both; and finally

J2 = 〈g′(a)g′(b)〉, (36)

where a and b are local fields of the teacher. In each of these integrals, the average is taken with
respect to a multivariate normal distribution for the local fields with zero mean and a covariance
matrix whose entries are chosen in the same way as discussed for I2.

We can re-write Eqns. (33) with these definitions in a more explicit form as [16, 17]

dRin
dα

= −κRin + η


∑

m

I3(i, n,m)−
∑

j

I3(i, n, j)


 , (37)

dQik
dα

= −2κQik + η2σ2J2(i, k)

+ η


∑

m

I3(i, k,m)−
∑

j

I3(i, k, j)




+ η


∑

m

I3(k, i,m)−
∑

j

I3(k, i, j)




+ η2


∑

n,m

I4(i, k, n,m)− 2
∑

j,n

I4(i, k, j, n) +
∑

j,l

I4(i, k, j, l)


 . (38)

The explicit form of the integrals I2(·), I3(·), I4(·) and J2(·) is given in Sec. H for the case
g(x) = erf

(
x/
√

2
)
. Solving these equations numerically forQ andR and substituting their values

in to the expression for the generalisation error (25) gives the full generalisation dynamics of the
student. We show the resulting learning curves together with the result of a single simulation in
Fig. 2 of the main text. We have bundled our simulation software and our ODE integrator as a
user-friendly Python package6. In Sec. B, we discuss how to extract information from them in
an analytical way.

B. Calculation of εg in the limit of small noise

Our aim is to understand the asymptotic value of the generalisation error

ε∗g ≡ lim
α→∞

εg(α). (39)

We focus on students that have more hidden units than the teacher, K ≥ M . These students
are thus over-parameterised with respect to the generative model of the data and we define

L ≡ K −M (40)

6To download, visit https://github.com/sgoldt/pyscm

14

https://github.com/sgoldt/pyscm


as the number of additional hidden units in the student network. In this section, we focus on
the sigmoidal activation function

g(x) = erf
(
x/
√

2
)
, (41)

unless stated otherwise.
Eqns. (37) are a useful tool to analyse the generalisation dynamics and they allowed Saad and

Solla to gain plenty of analytical insight into the special case K = M [16, 17]. However, they
are also a bit unwieldy. In particular, the number of ODEs that we need to solve grows with K
and M as K2 + KM . To gain some analytical insight, we make use of the symmetries in the
problem, e.g. the permutation symmetry of the hidden units of the student, and re-parametrised
the matrices Qik and Rin in terms of eight order parameters that obey a set of self-consistent
ODEs for any K > M . We choose the following parameterisation with eight order parameters:

Qij =





Q i = j ≤M,

C i 6= j; i, j ≤M,

D i > M, j ≤M or i ≤M, j > M,

E i = j > M,

F i 6= j; i, j > M,

(42)

Rin =





R i = n,

S i 6= n; i ≤M,

U i > M,

(43)

which in matrix form for the case M = 3 and K = 5 read:

R =




R S S
S R S
S S R
U U U
U U U




and Q =




Q C C D D
C Q C D D
C C Q D D
D D D E F
D D D F E




(44)

We choose this number of order parameters and this particular setup for the overlap matrices
Q and R for two reasons: it is the smallest number of variables for which we were able to self-
consistently close the equations of motion (37), and they agree with numerical evidence obtained
from integrating the full equations of motion (37).

By substituting this ansatz into the equations of motion (37), we find a set of eight ODEs for
the order parameters. These equations are rather unwieldy and some of them do not even fit
on one page, which is why we do not print them here in full; instead, we provide a Mathematica
notebook where they can be found and interacted with7. These equations allow for a detailed
analysis of the effect of over-parameterisation on the asymptotic performance of the student, as
we will discuss now.

B.1. Heavily over-parameterised students can learn perfectly from a noiseless
teacher using online learning

For a teacher with Tnm = δnm and in the absence of noise in the teacher’s outputs (σ = 0),
there exists a fixed point of the ODEs with R = Q = 1, C = D = E = F = 0, and perfect
generalisation εg = 0. Online learning will find this fixed point, as is demonstrated in Fig. 7,
where we plot the generalisation dynamics of a student with K hidden units learning from a
teacher with M = 4 hidden units for both Erf and ReLU activation functions. More precisely,
after a plateau whose length depends on the size of the network for the sigmoidal network, the
generalisation error eventually begins an exponential decay to the optimal solution with zero
generalisation error. The learning rates are chosen such that learning converges, but aren’t
optimised otherwise.

7To download, visit https://github.com/sgoldt/pyscm

15

https://github.com/sgoldt/pyscm


10 1 100 101 102 103 104 105 106

steps / N

10 6

10 5

10 4

10 3

10 2

10 1

100

101

102

g

K = 2, = 0.9
K = 3, = 0.9
K = 4, = 0.9
K = 8, = 0.5
K = 16, = 0.22
K = 32, = 0.11
K = 64, = 0.06
K = 128, = 0.03

10 1 100 101 102 103 104 105 106

steps / N

10 6

10 5

10 4

10 3

10 2

10 1

100

101

g

K = 2, = 0.8
K = 3, = 0.5
K = 4, = 0.5
K = 8, = 0.3
K = 16, = 0.002
K = 32, = 0.001
K = 64, = 0.0005
K = 128, = 0.0001

Figure 7: Over-parametrised networks with sigmoidal or ReLU activations learn per-
fectly from a noiseless teacher. The generalisation dynamics for students with
sigmoidal (left) and ReLU activation function (right) for various K learning from a
teacher with M = 4 is shown. In all cases, the generalisation error eventually decays
exponentially towards zero. (N = 784)

B.2. Perturbative solution of the ODEs

We have calculated the asymptotic value of the generalisation error ε∗g for a teacher with Tnm =
δnm to first order in the variance of the noise σ2. To do so, we performed a perturbative
expansion around the fixed point

R0 = Q0 = 1, (45)

S0 = U0 = C0 = D0 = E0 = F0 = 0, (46)

with the ansatz
X = X0 + σ2X1 (47)

for all the order parameters. Writing the ODEs to first order σ2 and solving for their steady
state where X ′(α) = 0 yielded a fixed point with an asymptotic generalisation error

ε∗g =
σ2η

2π
f(M,L, η) +O(σ3). (48)

f(M,L, η) is an unwieldy rational function of its variables. Due to its length, we do not print
it here in full; instead, we give the full function in a Mathematica notebook8. Here, we plot the
results in various forms in Fig. 8. We note in particular the following points:

B.2.1. Discussion

ε∗g increases with L, η The two plots on the left show that the generalisation error increases
monotonically with both L and η while keeping the other fixed, resp., for teachers with
M = 2 (red) and M = 16 (blue)

Divergence at large η Our perturbative result diverges for large L, or equivalently, for a large
learning rate that depends on the number of hidden units L ∼ K. For the special case
K = M , the learning rate ηdiv at which our perturbative result diverges is precisely the
maximum learning rate ηmax for which the exponential convergence to the optimal solution
is still guaranteed for σ = 0 [17]

ηmax =

√
3π

M + 3/
√

5− 1
(49)

as we show in the right-most plot of Fig. 8.

8To download, visit https://github.com/sgoldt/pyscm

16

https://github.com/sgoldt/pyscm


η = ���

η = ����

� �� �� ��� ���
�

����

�

��

���

ϵ�
* /σ�

� = �

� = ��

����� ����� ����� �
η

�����

�����

�����

�

��

���

ϵ�
* /σ�

η���

η���

� �� ��
�

���

���

���

���

η
�=�

Figure 8: The final generalisation error of over-parameterised Erf networks scales
linearly with the learning rate, the variance of the teacher’s output noise,
and L. We plot ε∗g/σ

2 in the limit of small noise, Eq. (48), for M = 2 (red) and M = 16
(blue). It is clear that generalisation error increases with the number of superfluous
units L at fixed learning rate (left) and the learning rate η (middle). Right: For
K = M , the learning rate ηdiv at which our perturbative result diverges is precisely
the maximum learning rate ηmax at which the exponential convergence to the optimal
solution is guaranteed for σ = 0, Eq. (49)

Expansion for small η In the limit of small learning rates, which is the most relevant in practice
and which from the plots in Fig. 8 dominates the behaviour of ε∗g outside of the divergence,
the generalisation error is linear in the learning rate. Expanding ε∗g to first order in the
learning rate reveals a particularly revealing form,

ε∗g =
σ2η

2π

(
L+

M√
3

)
+O(η2) (50)

with second-order corrections that are quadratic in L. This is actually the sum of the
asymptotic generalisation errors of M continuous perceptrons that are learning from a
teacher with T = 1 and L continuous perceptrons with T = 0 as we calculate in Sec. C.
This neat result is a consequence of the specialisation that is typical of SCMs with sigmoidal
activation functions as we discussed in the main text.

Rescaling the learning rate by K The expression for the generalisation error in the limit of
small learning rates might tempt one to rescale the learning rate η by K in order to
mitigate the detrimental effect of the over-parameterisation. As we note in the main text,
this a leads to a longer training duration which in our model implies that more data is
required until the final generalisation error is achieved, both of which might not be feasible
in practice. Moreover, we show in Fig. 9 that the asymptotic generalisation error (48) of
a student trained using SGD with learning rate η = 1/K still increases with L before
plateauing at a constant value that is independent of M .

C. Asymptotic generalisation error of a noisy continuous perceptron

What is the asymptotic generalisation for a continuous perceptron, i.e. a network with K = 1,
in a teacher-student scenario when the teacher has some additive Gaussian output noise? In
this section, we repeat a calculation by Biehl and Schwarze [15] where the teacher’s outputs are
given by

yB = g

(
Bx√
N

)
+ ζ (51)

where ζ is again a Gaussian random variable with mean 0 and variance σ2. We keep denoting the
weights of the student by w and the weights of the teacher by B. To analyse the generalisation

17



Figure 9: Asymptotic generalisation error for sigmoidal networks with learning rate
η = 1/K. We plot the asymptotic generalisation error ε∗g (48) over σ2 of a student
with a varying number of hidden units trained on data generated by teachers with
M = 2, 4, 16 using SGD with learning rate 1/K. The generalisation error still increases
with K, before plateauing at a constant value that is independent of M . κ = 0.

dynamics, we introduce the order parameters

R ≡ wB

N
, Q ≡ ww

N
and T ≡ BB

N
. (52)

and we explicitly do not fix T for the moment. For g(x) = erf
(
x/
√

2
)
, they obey the following

equations of motion:

dR

dt
=

2η

π (Q(t) + 1)

(
TQ(t)−R(t)2 + T√

(T + 1)Q(t)−R(t)2 + T + 1
− R(t)√

2Q(t) + 1

)
(53)

dQ

dt
=

4η

π(Q(t) + 1)

(
R(t)√

2(Q(t) + 1)−R(t)2
− Q(t)√

2Q(t) + 1

)

+
4η2

π2
√

2Q(t) + 1

[
−2 arcsin

(
R(t)√

(6Q(t) + 2)(2Q(t)−R(t)2 + 1)

)

+ arcsin

(
2
(
Q(t)−R(t)2

)
+ 1

2 (2Q(t)−R(t)2 + 1)

)
+ arcsin

(
Q(t)

3Q(t) + 1

)]

+
2η2σ2

π
√

2Q(t) + 1
. (54)

The equations of motion have a fixed point at Q = R = T which has perfect generalisation
for σ = 0. We hence make a perturbative ansatz in σ2

Q(t) =T + σ2q(t) (55)

R(t) =T + σ2r(t) (56)

and find for the asymptotic generalisation error

ε∗g =
ησ2(4T + 1)

2
√

2T + 1
(
−η
√

8T 2 + 6T + 1 + 4πT + π
) +O

(
σ3
)
. (57)

To first order in the learning rate, this reads

ε∗g =
ησ2

2π
√

2T + 1
, (58)

which should be compared to the corresponding result for the full SCMs, Eq. (50).

18



10 2 10 1 100

/

10 4

10 3

10 2

10 1

100

* g

L = 2
L = 1
L = 0
L = 1
L = 2
L = 4
L = 8
L = 16

10 2 10 1 100

/

10 4

10 3

10 2

10 1

100

* g

L = 2
L = 1
L = 0
L = 1
L = 2
L = 4
L = 8
L = 16

Figure 10: Weight decay. We plot the final generalisation error ε∗g of a student with a varying
number of hidden units trained on data generated by a teacher with M = 4 using
SGD with weight decay. The generalisation error clearly increases with the weight
decay constant κ. Parameters: N = 784, η = 0.1, sigma = 0.01.

D. Regularisation by weight decay does not help

A natural strategy to avoid the pitfalls of overfitting is to regularise the weights, for example by
using explicit weight decay by choosing κ > 0. We have not found a setup where adding weight
decay improved the asymptotic generalisation error of a student compared to a student that was
trained without weight decay in our setup. As a consequence, weight decay completely fails to
mitigate the increase of ε∗g with L. We show the results of an illustrative experiment in Fig. 10.

E. SGD with mini-batches

One key characteristic of online learning is that we evaluate the gradient of the loss function
using a single sample from the training step per step. In practice, it is more common to actually
use a number of samples b > 1 to estimate the gradient at every step. To be more precise, the
weight update equation for SGD with mini-batches would read:

wµ+1
k = wµk −

κ

N
wµk −

η

b
√
N

b∑

`=1

xµ,`g′(λµ,`k )
[
φ(w, xµ,`)− yµ,`B

]
. (59)

where xµ,` is the `th input from the mini-batch used in the mth step of SGD, λµ,`k is the local
field of the kth student unit for the `th sample in the mini-batch, etc. Note that when we use
every sample only once during training, using mini-batches of size b increases the amount of
data required by a factor b when keeping the number of steps constant.

We show the asymptotic generalisation error of student networks of varying size trained using
SGD with mini-batches and a teacher with M = 4 in Fig. 11. Two trends are visible: first,
using increasing the size of the mini-batches decreases the asymptotic generalisation error ε∗g
up to a certain mini-batch size, after which the gains in generalisation error become minimal;
and second, the shape of the ε∗g −L curve is the same for all mini-batch sizes, with the minimal
generalisation error attained by a network with K = M .

F. Using MNIST images for training and testing

In the derivation of the ODE description of online learning for the main text, we noted that
only the first two moments of the input distribution matter for the learning dynamics and for

19



2 0 2 4 6 8
L

10 3

10 2

g

bs=1
bs=4
bs=16
bs=128
bs=2048
bs=20000

2 0 2 4 6 8
L

10 3

10 2

10 1

g

bs=1
bs=4
bs=16
bs=128
bs=2048
bs=20000

Figure 11: SGD with mini-batches shows the same qualitative behaviour as online
learning We show the asymptotic generalisation error ε∗g for students with sigmoidal
(left) and ReLU activation function (right) for various K learning from a teacher
with M = 4. Between the curves, we change the size of the mini-batch used at each
step of SGD from 1 (online learning) to 20 000. Parameters: N = 500, η = 0.2, σ =
0.1, κ = 0.

2 0 2 4 6 8 10 12 14 16

10 3

10 2

* g

Control
MNIST

2 0 2 4 6 8 10 12 14 16
L

10 3

10 2

10 1

* g

Control
MNIST

Figure 12: Higher-order correlations in the input data do not play a role for the
asymptotic generalisation. WE plot the final generalisation error ε∗g after online
learning of a student of various sizes from a teacher with M = 4 using Gaussian
inputs (blue) and MNIST images (red) for training and testing. N = 784, η =
0.1, σ = 0.1, κ = 0.

20



0 4 8 12 16
L

10 5g

0 4 8 12 16
L

10 5

10 4

10 3

10 2

10 1

g

online
P = 1
P = 4
P = 50

0 4 8 12 16
L

10 5

10 4

10 3

10 2

10 1

100

g

0 4 8 12 16
L

10 5g

0 4 8 12 16
L

10 5

10 4

10 3

10 2

10 1

100

g
online
P = 1
P = 4
P = 50

0 4 8 12 16
L

10 5

10 4

10 3

10 2

10 1

100

g

Figure 13: The scaling of ε∗g with L shows a similar dependence on the size of the train-
ing set for early-stopping (top) and final (bottom) generalisation error. We
plot the asymptotic and the early-stopping generalisation error after SGD with a finite
training set containing PN samples (linear, sigmoidal and ReLU networks from left
to right). The result for online learning for linear and sigmoidal networks, Eqns. 13
and 15 of the main text, are plotted in violet. Error bars indicate one standard de-
viation over 10 simulations, each with a different training set; many of them are too
small to be clearly visible. Parameters: N = 784,M = 4, η = 0.1, σ = 0.01.

the final generalisation error. The reason for this is that the inputs only appear in the equations
of motion for the order parameters as a product with the weights of either the teacher or the
student. Now since they are – by assumption – uncorrelated with those weights, this product is
the sum of large number of random variables and hence distributed by the central limit theorem.

We have checked how our results change when this assumption breaks down in one example
where we train a network on a finite data set with non-trivial higher order moments, namely
the images of the MNIST data set. We studied the very same setup that we discuss throughout
this work, namely the supervised learning of a regression task in the teacher-student scenario.
We only replace the the inputs, which would have been i.i.d. draws from the standard normal
distribution, with the images of the MNIST data set. In particular, this means that we do not
care about the labels of the images. Figure 12 shows a plot of the resulting final generalisation
against L for both the MNIST data set and a data set of the same size, comprised of i.i.d. draws
from the standard normal distribution, which are in good agreement.

G. Early-stopping generalisation error for finite training sets

A common way to prevent over-fitting of a neural network when training with a finite training set
in practice is early stopping, where the training is stopped before the training error has converged
to its final value yet. The idea behind early-stopping is thus to stop training before over-fitting
sets in. For the purpose of our analysis of the generalisation of two-layer networks trained on a
fixed finite data set in Sec. 4 of the main text, we define the early-stopping generalisation error
ε̂g as the minimum of εg during the whole training process. In Fig. 13, we reproduce Fig. 6
from the main text at the bottom and plot ε̂g obtained from the very same experiments at the
top. While the ReLU networks showed very little to no over-training, the sigmoidal networks

21



showed more significant over-training. However, the qualitative dependence of the generalisation
errors on L was observed to be the same in this experiment. In particular, the early-stopping
generalisation error also shows two different regimes, one where increasing the network hurts
generalisation (P � K), and one where it improves generalisation or at least doesn’t seem to
affect it much (small P ∼ K).

H. Explicit form of the integrals appearing in the equations of
motion of sigmoidal networks

To be as self-contained as possible, here we collect the explicit forms of the integrals I2, I3, I4
and J2 that appear in the equations of motion for the order parameters and the generalisation
error for networks with g(x) = erf

(
x/
√

2
)
, see Eq. (37). They were first given by [15, 16]. Each

average 〈·〉 is taken w.r.t. a multivariate normal distribution with mean 0 and covariance matrix
C ∈ Rn, whose components we denote with small letters. The integration variables u, v are
always components of λ, while w and z can be components of either λ or ν.

J2 ≡ 〈g′(u)g′(v)〉 =
2

π

(
1 + c11 + c22 + c11c22 − c212

)−1/2
(60)

I2 ≡
1

2
〈g(w)g(z)〉 =

1

π
arcsin

c12√
1 + c11

√
1 + c12

. (61)

I3 ≡ 〈g′(u)wg(z)〉 =
2

π

1√
Λ3

c23(1 + c11)− c12c13
1 + c11

(62)

I4 ≡ 〈g′(u)g′(v)g(w)g(z)〉 =
4

π2
1√
Λ4

arcsin

(
Λ0√
Λ1Λ2

)
(63)

where
Λ4 = (1 + c11)(1 + c22)− c212 (64)

and

Λ0 = Λ4c34 − c23c24(1 + c11)− c13c14(1 + c22) + c12c13c24 + c12c14c23 (65)

Λ1 = Λ4(1 + c33)− c223(1 + c11)− c213(1 + c22) + 2c12c13c23 (66)

Λ2 = Λ4(1 + c44)− c224(1 + c11)− c214(1 + c22) + 2c12c14c24 (67)

References

[1] Y. LeCun, Y. Bengio, and G. E. Hinton. Deep learning. Nature, 521(7553):436–444, 2015.

[2] V. Mnih, K. Kavukcuoglu, D. Silver, A.A. Rusu, J. Veness, M.G. Bellemare, A. Graves,
M. Riedmiller, A.K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik,
I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis. Human-
level control through deep reinforcement learning. Nature, 518(7540):529–533, 2015.

[3] D. Silver, A. Huang, C.J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrit-
twieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham,
N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and
D. Hassabis. Mastering the game of Go with deep neural networks and tree search. Nature,
529(7587):484–489, 2016.

[4] K. Simonyan and A. Zisserman. Very Deep Convolutional Networks for Large-Scale Image
Recognition. In International Conference on Learning Representations, 2015.

22



[5] P.L. Bartlett and S. Mendelson. Rademacher and Gaussian complexities: Risk bounds and
structural results. Journal of Machine Learning Research, 3(3):463–482, 2003.

[6] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of Machine
Learning. MIT Press, 2012.

[7] B. Neyshabur, R. Tomioka, and N. Srebro. Norm-Based Capacity Control in Neural Net-
works. In Conference on Learning Theory, 2015.

[8] N. Golowich, A. Rakhlin, and O. Shamir. Size-Independent Sample Complexity of Neural
Networks. arxiv:1712.06541, 2017.

[9] G.K. Dziugaite and D.M. Roy. Computing Nonvacuous Generalization Bounds for Deep
(Stochastic) Neural Networks with Many More Parameters than Training Data. In Pro-
ceedings of the Thirty-Third Conference on Uncertainty in Artificial Intelligence, 2017.

[10] S. Arora, R. Ge, B. Neyshabur, and Yi Zhang. Stronger generalization bounds for deep
nets via a compression approach. arxiv:1802.05296, 2018.

[11] Z. Allen-Zhu, Y. Li, and Y. Liang. Learning and Generalization in Overparameterized
Neural Networks, Going Beyond Two Layers. arXiv:1811.04918, 2018.

[12] B. Neyshabur, R. Tomioka, and N. Srebro. In search of the real inductive bias: On the role
of implicit regularization in deep learning. In ICLR, 2015.

[13] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals. Understanding deep learning
requires rethinking generalization. In ICLR, 2017.

[14] D. Arpit, S. Jastrz, M. S. Kanwal, T. Maharaj, A. Fischer, A. Courville, and Y. Bengio. A
Closer Look at Memorization in Deep Networks. In Proceedings of the 34th International
Conference on Machine Learning, 2017.

[15] M. Biehl and H. Schwarze. Learning by on-line gradient descent. J. Phys. A. Math. Gen.,
28(3):643–656, 1995.

[16] D. Saad and S.A. Solla. Exact Solution for On-Line Learning in Multilayer Neural Networks.
Phys. Rev. Lett., 74(21):4337–4340, 1995.

[17] D. Saad and S.A. Solla. On-line learning in soft committee machines. Phys. Rev. E,
52(4):4225–4243, 1995.

[18] E. Gardner and B. Derrida. Three unfinished works on the optimal storage capacity of
networks. Journal of Physics A: Mathematical and General, 22(12):1983–1994, 1989.

[19] H. S. Seung, H. Sompolinsky, and N. Tishby. Statistical mechanics of learning from exam-
ples. Physical Review A, 45(8):6056–6091, 1992.

[20] T. L. H. Watkin, A. Rau, and M. Biehl. The statistical mechanics of learning a rule. Reviews
of Modern Physics, 65(2):499–556, 1993.

[21] A. Engel and C. Van den Broeck. Statistical Mechanics of Learning. Cambridge University
Press, 2001.

[22] L. Zdeborová and F. Krzakala. Statistical physics of inference: thresholds and algorithms.
Adv. Phys., 65(5):453–552, 2016.

[23] M. S. Advani and S. Ganguli. Statistical mechanics of optimal convex inference in high
dimensions. Physical Review X, 6(3):1–16, 2016.

23



[24] P. Chaudhari, A. Choromanska, S. Soatto, Y. LeCun, C. Baldassi, C. Borgs, J. Chayes,
L. Sagun, and R. Zecchina. Entropy-SGD: Biasing Gradient Descent Into Wide Valleys. In
ICLR, 2017.

[25] M. Advani and A. M. Saxe. High-dimensional dynamics of generalization error in neural
networks. arXiv:1710.03667, 2017.

[26] B. Aubin, A. Maillard, J. Barbier, F. Krzakala, N. Macris, and L. Zdeborová. The com-
mittee machine: Computational to statistical gaps in learning a two-layers neural network.
In Advances in Neural Information Processing Systems 31, pages 3227–3238, 2018.

[27] M. Baity-Jesi, L. Sagun, M. Geiger, S. Spigler, G.B. Arous, C. Cammarota, Y. LeCun,
M. Wyart, and G. Biroli. Comparing Dynamics: Deep Neural Networks versus Glassy
Systems. In Proceedings of the 35th International Conference on Machine Learning, 2018.

[28] H. Schwarze. Learning a rule in a multilayer neural network. Journal of Physics A: Math-
ematical and General, 26(21):5781–5794, 1993.

[29] G. Cybenko. Approximation by superpositions of a sigmoidal function. Math. Control.
Signals Syst., 2(4):303–314, 1989.

[30] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are universal
approximators. Neural Networks, 2(5):359–366, 1989.

[31] S. Mei, A. Montanari, and P.-M. Nguyen. A mean field view of the landscape of two-layer
neural networks. Proceedings of the National Academy of Sciences, 115(33):E7665–E7671,
2018.

[32] G. M. Rotskoff and E. Vanden-Eijnden. Parameters as interacting particles: long time con-
vergence and asymptotic error scaling of neural networks. In Advances in neural information
processing systems 31, pages 7146–7155, 2018.

[33] L. Chizat and F. Bach. On the global convergence of gradient descent for over-parameterized
models using optimal transport. In Advances in Neural Information Processing Systems 31,
pages 3040–3050, 2018.

[34] Y. Li and Y. Liang. Learning Overparameterized Neural Networks via Stochastic Gradient
Descent on Structured Data. In Advances in Neural Information Processing Systems 31,
2018.

[35] W. Kinzel and P. Ruján. Improving a Network Generalization Ability by Selecting Exam-
ples. EPL (Europhysics Letters), 13(5):473–477, 1990.

[36] C.W.H. Mace and A.C.C. Coolen. Statistical mechanical analysis of the dynamics of learning
in perceptrons. Statistics and Computing, 8(1):55–88, 1998.

[37] D. Saad and S.A. Solla. Learning with Noise and Regularizers Multilayer Neural Networks.
In Advances in Neural Information Processing Systems 9, pages 260–266, 1997.

[38] E. Oja and J. Karhunen. On stochastic approximation of the eigenvectors and eigenvalues
of the expectation of a random matrix. Journal of Mathematical Analysis and Applications,
106(1):69–84, 1985.

[39] C. Wang, J. Mattingly, and Yue M. Lu. Scaling Limit: Exact and Tractable Analysis
of Online Learning Algorithms with Applications to Regularized Regression and PCA.
arXiv:1712.04332, 2017.

[40] C. Wang, H. Hu, and Y. M. Lu. A Solvable High-Dimensional Model of GAN.
arXiv:1805.08349, 2018.

24



[41] A. Brutzkus, A. Globerson, E. Malach, and S. Shalev-Shwartz. SGD learns over-
parameterized networks that provably generalize on linearly separable data. In International
Conference on Learning Representations, 2018.

[42] M. Soltanolkotabi, A. Javanmard, and J.D. Lee. Theoretical insights into the optimization
landscape of over-parameterized shallow neural networks. IEEE Transactions on Informa-
tion Theory, 65(2):742–769, 2018.

[43] A. Krogh and J. A. Hertz. Generalization in a linear perceptron in the presence of noise.
Journal of Physics A: Mathematical and General, 25(5):1135–1147, 1992.

[44] A.M. Saxe, J.L. McClelland, and S. Ganguli. Exact solutions to the nonlinear dynamics of
learning in deep linear neural networks. In ICLR, 2014.

[45] A.K. Lampinen and S. Ganguli. An analytic theory of generalization dynamics and transfer
learning in deep linear networks. In International Conference on Learning Representations,
2019.

25


	1 Introduction
	2 Setup
	2.1 The teacher generates test and training data
	2.2 The student aims to mimic the teacher's function
	2.3 The student is trained using online learning
	2.4 The dynamics of online learning can be described in closed form

	3 Asymptotic generalisation of over-parameterised students after online learning
	3.1 Sigmoidal networks
	3.1.1 Discussion

	3.2 Linear networks
	3.2.1 Discussion

	3.3 Numerical results suggest the same scalings for ReLU networks, too
	3.3.1 Discussion


	4 Discussion
	4.1 Weight decay
	4.2 SGD with mini-batches
	4.3 Structured input data
	4.4 The scaling of g* with L depends also on the size of the training set

	5 Concluding perspectives
	A Derivation of the ODE description of the generalisation dynamics of online learning
	A.1 Expressing the generalisation error in terms of order parameters
	A.2 ODEs for the evolution of the order parameters

	B Calculation of g in the limit of small noise
	B.1 Heavily over-parameterised students can learn perfectly from a noiseless teacher using online learning
	B.2 Perturbative solution of the ODEs
	B.2.1 Discussion


	C Asymptotic generalisation error of a noisy continuous perceptron
	D Regularisation by weight decay does not help
	E SGD with mini-batches
	F Using MNIST images for training and testing
	G Early-stopping generalisation error for finite training sets
	H Explicit form of the integrals appearing in the equations of motion of sigmoidal networks

