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Abstract

In this work we analyse quantitatively the interplay between the loss landscape and performance of descent
algorithms in a prototypical inference problem, the spiked matrix-tensor model. We study a loss function that
is the negative log-likelihood of the model. We analyse the number of local minima at a fixed distance from
the signal/spike with the Kac-Rice formula, and locate trivialization of the landscape at large signal-to-noise
ratios. We evaluate in a closed form the performance of a gradient flow algorithm using integro-differential
PDEs as developed in physics of disordered systems for the Langevin dynamics. We analyze the performance
of an approximate message passing algorithm estimating the maximum likelihood configuration via its state
evolution. We conclude by comparing the above results: while we observe a drastic slow down of the gradient
flow dynamics even in the region where the landscape is trivial, both the analyzed algorithms are shown to
perform well even in the part of the region of parameters where spurious local minima are present.
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1 Introduction

A central question in computational sciences is the algorithmic feasibility of optimization in high-dimensional
non-convex landscapes. This question is particularly important in learning and inference problems where the
value of the optimized function is not the ultimate criterium for quality of the result, instead the generalization
error or the closeness to a ground-truth signal is more relevant.

Recent years brought a popular line of research into this question where various works show for a variety of
systems that spurious local minima are not present in certain regimes of parameters and conclude that consequently
optimization algorithms shall succeed, without the aim of being exhaustive these include [2, 3, 4, 5, 6, 7, 8, 9, 8, 10].
The spuriosity of a minima is in some works defined by their distance from the global minima, in other works as
local minimizers that lead to bad generalization or bad accuracy in reconstruction of the ground truth signal.
These two notions are not always equivalent, and certainly the later is more relevant and will be used in the
present work.

Many of the existing works stop at the statement that absence of spurious local minimizers leads to algorithmic
feasibility and the presence of such spurious local minima leads to algorithmic difficulty, at least as far as
gradient-descent-based algorithms are concerned. At the same time, even gradient-descent-based algorithms may
be able to perform well even when spurious local minima are present. This is because the basins of attraction of
the spurious minimas may be small and the dynamics might be able to avoid them. In the other direction, even
if spurious local minima are absent, algorithms might take long time to find a minimizer for entropic reasons
that in high-dimensional problems may play a crucial role.

Main results: In this work we provide a case-study of a high-dimensional inference problems – the spiked
matrix-tensor model – for which we are able to describe and quantitatively compare the following:

• With the use of the Kac-Rice formula [11, 12] we compute the expected number of local minimizers of the
associated likelihood at a given correlation with the ground truth signal.

• With the use of the recently introduced Langevin-state-evolution [1], that is a generalization of an approach
well known in physics for analysis of the Langevin dynamics [13, 14], we give a closed-form description for
the behaviour of the gradient flow (GF) algorithm in the limit of large system sizes.

• We analyze the state evolution of the maximum-likelihood version of the approximate message passing
algorithm (ML-AMP).

We show that the above two algorithms (GF and ML-AMP) achieve the same error in the regime where they
succeed. That same value of the error is also deduced from the position of all the minima strongly correlated
with the signal as obtained from the Kac-Rice approach (precise statement below). We quantify the region
of parameters in which the two above algorithms succeed and show that, up to the degree of accurancy of
the extrapolation of the GF performance, the two lines are not the same. We also show that the algorithmic
performance is not driven by the absence of spurious local minima. These results are summarized in Fig. 1. These
result show, that in order to obtain a complete picture for settings beyond the present model, the precise interplay
between absence of spurious local minima and algorithmic performance remains to be further investigated.

2 Problem definition

In this paper we consider the spiked matrix-tensor model as studied in [1]. This is a statistical inference problem
where the ground truth signal x∗ ∈ RN is sampled uniformly on the N − 1-dimensional sphere, SN−1(

√
N). We
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Figure 1: The figure summarizes the main results of this paper for the spiked matrix-tensor model with p = 3
(left) and p = 4 (right). As a function of the tensor-noise parameter ∆p on the x-axes, we plot the values of
1/∆2 above which the following happens (from above): Above ∆triv

2 (the dashed purple line) the landscape of
the problem becomes trivial in the sence that all spurious local minima disappear. Above ∆GF

2 (the dotted blue
line) and ∆ML−AMP

2 (the full cyan line), Eq. (32), the gradient flow and the ML-AMP algorithm, respectively,
converge close to the ground truth signal in time linear in the input size. While the results for Kac-Rice and
ML-AMP are given in a closed form, the ones for GF are obtained by extrapolating a convergence time obtained
by numerical solution of integro-differential equations that describe large size behaviour of the GF. We note
that all the three lines ∆triv

2 , ∆GF
2 , and ∆ML−AMP

2 converge to 1 as ∆p → ∞, consistently with the spiked
matrix model. These three lines, related to minimization of the landscape, and their mutual positions, are
the main result of this paper. The colors in the background, separated by the black dashed-dotted lines, show
for comparison the phase diagram for the Bayes-optimal inference, related to the ability to approximate the
marginals of the corresponding posterior probability distribution, and are taken from [1]. In the red region
obtaining a positive correlation with the signal in information-theoretically impossible. In the green region it is
possible to obtain optimal correlation with the signal using the Bayes-optimal AMP (BO-AMP). And in the
orange the region the BO-AMP is not able to reach the Bayes-optimal performance.

then obtain two types of observations about the signal, a symmetric matrix Y , and an order p symmetric tensor
T , that given the signal x∗ are obtained as

Yij =
x∗ix

∗
j√
N

+ ξij , (1)

Ti1,...,ip =

√
(p− 1)!

N (p−1)/2
x∗i1 . . . x

∗
ip + ξi1,...,ip (2)

for 1 ≤ i < j ≤ N and 1 ≤ i1 < · · · < ip ≤ N , using and symmetries to obtain the other non-diagonal
components. Here ξij and ξi1,...,ip are for each i < j and each i1 < · · · < ip independent Gaussian random
numbers of zero mean and variance ∆2 and ∆p, respectively.

The goal in this spiked matrix-tensor inference problem is to estimate the signal x∗ from the knowledge
of the matrix Y and tensor T . If only the matrix was present, this model reduces to well known model of
low-rank perturbation of a random symmetric matrix, closely related to the spiked covariance model [15]. If on
the contrary only the tensor is observed then the above model reduces to the spiked tensor model as introduced
in [16] and studies in a range of subsequent papers.

In this paper we study the matrix-tensor model where the two observations are combined. Our motivation
is similar to the one exposed in [1], that is, we aim to access a regime in which it is algorithmically tractable
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to obtain good performance with corresponding message passing algorithms yet it is challenging (e.g. leading
to non-convex optimization) with sampling or gradient descent based algorithms, this happens when both
∆2 = Θ(1) and ∆p = Θ(1), while N →∞ [1].

In this paper we focus on algorithms that aim to find the maximum likelihood estimator. The negative
log-likelihood (Hamiltonian in the physics language, or loss function in the machine learning language) of the
spiked matrix-tensor reads

L =
∑
i<j

1

2∆2

(
Yij −

xixj√
N

)2

+
∑

i1<···<ip

1

2∆p

(
Ti1...ip −

√
(p− 1)!

N (p−1)/2
xi1 . . . xip

)2

, (3)

where x ∈ SN−1(
√
N) is constrained to the sphere.

In a high-dimensional, N →∞, noisy regime the maximum-likelihood estimator is not always optimal as
it provides in general larger error than the Bayes-optimal estimator computing the marginals of the posterior,
studied in [1]. At the same time the log-likelihood (3) can be seen as a loss function, that is non-convex and
high-dimensional. The tractability and properties of such minimization problems are the most questioned in
machine learning these days, and are worth detailed investigation in the present model.

3 Landscape characterization
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Figure 2: The complexity Σ(m), Eq. (19), is shown for different values of parameter ∆2 at fixed ∆p = 4.0 in the
case p = 4. As ∆2 is decreased (the signal to noise ratio increases) the complexity allows to identify three main
scenarios in the topology of the loss landscape. In the first case (a) only a wide band of non-negative complexity
around the point of zero correlation is present, in the second case (b) minima with non-trivial correlation with
the signal appear but the band around m = 0 is still present, finally (c) the signal dominates over the noise and
only minima with non-trivial correlation are present. The transition from case (b) to case (c), i.e. when the
support of Σ(m) ≥ 0 becomes two discontinuous points, as the bulk close to m = 0 becomes negative, is called
the landscape trivialization. The ∆2 at which this occurs is denoted ∆triv

2 and depicted in dashed purple in
Fig. 1.

The first goal of this paper is to characterize the structure of local minima of the loss function (equivalently
local maxima of the log-likelihood) eq. (3) as a function of the noise parameters ∆2 and ∆p. We compute the
average number of local minimizers x having a given correlation with the ground truth signalm = limN→∞ x·x∗/N .
This leads to a so-called complexity function Σ(m) defined as the logarithm of the expected number of local
minima at correlation m with the ground truth.

A typical example of this function, resulting from our analysis, is depicted in Fig. 2 for p = 4, ∆p = 4.0, and
several values of ∆2. We see from the figure that at large ∆2 local minima appear only in a narrow range of
values of m close to zero, as ∆2 decreases the support of Σ(m) ≥ 0 widens. At yet smaller values of ∆2 the
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support Σ(m) ≥ 0 becomes disconnected so that it is supported on an interval of value close to m = 0 and on
two (one negative, one positive) isolated points. For yet smaller ∆2 the complexity for values of m close to zero
becomes negative, signalling what we call a trivialization of the landscape, where all remaining local minima are
(in the leading order in N) as correlated with the ground truth as the global minima. The support of Σ(m) ≥ 0
in the trivialized regions consists of two separated points. We call the value of ∆2 at which the trivialization
happens ∆triv

2 . In the phase diagram of Fig. 1 the trivialization of the energy landscape happens above the
purple dashed line.

We use the Kac-Rice formula to determine the complexity Σ(m) [17, 18]. Given an arbitrary continuous
function, the Kac counting formula allows to compute the number of points where the function crosses a given
value. The number of minima can be characterized using Kac’s formula on the gradient of the loss (3), counting
how many time the gradient crosses the zero value, under the condition of having a positive definite Hessian in
order to count only local minima and not saddles. Since the spiked matrix-tensor model is characterized by a
random landscape, due to the noise ξij and ξi1,...,ip , we will consider the expected number of minima obtaining
the Kac-Rice formula [17, 18].

For mathematical convenience we will consider the rescaled configurations σ = x/
√
N ∈ SN−1(1), and

rescaled signal σ∗ = x∗/
√
N . Call φG,F2,Fp the joint probability density of the gradient G of the loss, and of

the F2 and Fp the contributions of the matrix and tensor to the loss, respectively. Given the value of the two
contributions to the loss F2 = ε2N and Fp = εpN , and the correlation between the configuration and ground
truth m ∈ [−1,+1] that we impose using a Dirac’s delta, the averaged number of minimizers is

N (m, ε2, εp; ∆2,∆p) = eΣ̃∆2,∆p
(m,ε2,εp) =

=

∫
SN−1

E[detH|G = 0, F2 = Nε2, Fp = Nεp, H � 0]φG,F2,Fp(σ, 0, ε2, εp) δ(m− σ · σ∗) dσ .
(4)

Rewrite the loss Eq. (3) neglecting terms that are constant with respect to the configuration and thus do not
contribute to the complexity

L̂ =

√
N(p− 1)!

∆p

∑
i1<···<ip

ξi1...ipσi1 . . . σip +
N(p− 1)!

∆p

∑
i1<···<ip

σ∗i1σi1 . . . σ
∗
ipσip

+

√
N

∆2

∑
i<j

ξijσiσj +
N

∆2

∑
i<j

σ∗i σiσ
∗
jσj .

(5)

In the following we will use small letters f2, fp, g, h to characterize losses, gradient and Hessian constrained on
the sphere and capital letters for the same quantities unconstrained. Define Id the d-dimensional identity matrix.
The following lemma characterizes φG,F2,Fp .

Lemma 1. Given the loss function Eq. (5) and a configuration x such that the correlation and the signal is
m, then there exists a reference frame such that the joint probability distribution of f2, fp ∈ R, g ∈ RN−1 and
h ∈ R(N−1)×(N−1) is given by

fk
N
∼ 1

k∆k
mk +

1√
k∆k

1√
N
Zk ; (6)

g

N
∼

(
1

∆p
mp−1 +

1

∆2
m

)√
1−m2e1 −

√
1

∆p
+

1

∆2

1√
N

Z̃ ; (7)

h

N
∼

(
p− 1

∆p
mp−2 +

1

∆2

)
(1−m2)e1eT1 +

√
p− 1

∆p
+

1

∆2

√
N − 1

N
W− (pfp + 2f2)IN−1 ; (8)

with Zk standard Gaussians and k ∈ {2, p}, Z̃ ∼ N (0, IN−1) a standard multivariate Gaussian and W ∼
GOE(N − 1) a random matrix from the Gaussian orthogonal ensemble.
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Proof sketch. Starting from Eq. (5), split the contributions of the matrix and tensor in F2 and Fp, two Gaussian
variables and impose the spherical constrain with a Lagrange multiplier µ.

f2(σ) + fp(σ) = F2(σ) + Fp(σ)− µ

2

(∑
i

σ2
i − 1

)
, (9)

gi(σ) = Gi(σ)− µσi , (10)

hij(σ) = Hij(σ)− µ . (11)

The expression for µ in a critical point can be derived as follows. Given gi(σ) ≡ 0, multiply Eq. (10) by σi,
sum over the indices and we obtain: µ =

∑
iGi(σ)σi = 2f2(σ) + pfp(σ). We now restrict our study to the

unconstrained random variables and substitute µ. Since the quantities f2, fp, g, h, µ are linear functionals
of Gaussians they will be distributed as Gaussian random variables and therefore can be characterized by
computing expected values and covariances. Starting from the losses coming from the matrix and the tensor in
Eq. (5), F2(σ) and Fp(σ), respectively, consider the moments with respect to the realization of the noise, ξi1...ip ,
ξij . For k ∈ {2, p} the first moment leads to

E[Fk(σ)] =
N

k∆k
(σ · σ∗)k +O(1) . (12)

Let’s consider the second moment but having two different configurations σ and τ ,

E
[
Fk(σ)Fk(τ)

]
=

N

k∆k
(σ · τ)k +O(1) . (13)

Using standard results for derivatives of Gaussians (see e.g. [17] Eq. 5.5.4) we can obtain means and covariances
of the random variables taking derivatives with respect to σ and τ . Then set τ = σ, imposing the spherical
constrain and using σ · σ∗ = m.

The last step is the definition of a convenient reference frame {ej}j=1,...,N . Align the configuration along the
last coordinate eN = σ and the signal with a combination of the first and last coordinates σ∗ =

√
1−m2e1 +meN .

Finally, project on the sphere by discarding the last coordinate.

We can now rewrite the determinant of the conditioned Hessian by grouping the multiplicative factor in
front of the GOE in Eq. (8)

deth =

(
p− 1

∆p
+

1

∆2

)N−1
2 (

N

N − 1

)−N−1
2

det
[
W− tN IN−1 + θNe1eT1

]
(14)

with tN and θN given by

tN → t = 2
pεp + 2ε2√
p−1
∆p

+ 1
∆2

, (15)

θN → θ =

p−1
∆p

mp−2 + 1
∆2√

p−1
∆p

+ 1
∆2

(1−m2) (16)

in the large N -limit. Therefore the Hessian behaves like a GOE shifted by t with a rank one perturbation of
strength θ. This exact same problem has already been studied in [12] and we can thus deduce the expression for
the complexity as

Σ̃∆2,∆p(m, ε2, εp) =
1

2
log

p−1
∆p

+ 1
∆2

1
∆p

+ 1
∆2

+
1

2
log(1−m2)− 1

2

(
mp−1

∆p
+ m

∆2

)2

1
∆p

+ 1
∆2

(1−m2)− 2p∆p

(
εp −

mp

2p∆p

)2

− 4∆2

(
ε2 −

m2

4∆2

)2

+ Φ(t)− L(θ, t),

(17)
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with

Φ(t) =
t2

4
+ 1|t|>2

log

(√
t2

4
− 1 +

|t|
2

)
− |t|

4

√
t2 − 4



L(θ, t) =


1

4

∫ t

θ+ 1
θ

√
y2 − 4dy − θ

2

(
t−

(
θ +

1

θ

))
+
t2 −

(
θ + 1

θ

)2

8
θ > 1, 2 ≤ t < θ2 + 1

θ

∞ t < 2

0 otherwise.

We note at this point that for the case of the pure spiked tensor model ∆2 →∞ the above expression reduces
exactly to the complexity derived in [12]. The following theorem states that to the leading order Eq. (17)
represents the complexity of our problem.

Theorem 1. Given ∆2 and ∆p, for any (ε2, εp) ∈ R2 and m ∈ [−1,+1] it holds

lim
N→∞

1

N
log EN (m, ε2, εp; ∆2,∆p) =

= Σ̃∆2,∆p(m, εp, ε2)

(18)

Proof sketch. The proof comes immediately from [12] Thm. 2, see also Sec. 4.1.

The quantity that we are interested in is the projection of Eq. (17) to the maximal values of ε2 and εp:

Σ(m) = max
ε2, εp

Σ̃∆2,∆p(m, ε2, εp). (19)

Eq. (19) allows to understand if at a given correlation with the signal, there are regions with an exponential
expected number of minima, see Fig. 2. Thus it allows to locate parameters where the landscapes is trivial.

We computed the expected number of minima, i.e. the so-called annealed average. The annealed average
might be dominated by rare samples, and in general provides only an upper bound for typical samples. The
quenched complexity, i.e. the average of the logarithm of the number of minima, is more involved. The quenched
calculation was done in the case of a the spiked tensor model [19]. It is interesting to notice that in [19] the
authors found that the annealed complexity does not differ from the quenched complexity for m = 0. This
combined with analogous preliminary results for the spiked matrix-tensor model, suggest that considering the
quenched complexity would not change the conclusions of this paper presented in the phase diagrams Fig. 1.

4 Gradient flow analysis

In this section we analyze the performance of the gradient flow descent in the loss function (3)

d

dt
xi(t) = −µ(t)xi(t)−

δL
δxi

(t) , (20)

where the Lagrange parameter µ(t) is set in a way to ensure the spherical constraint x ∈ SN−1(
√
N). Our aim

is to understand the final correlation between the ground truth signal and the configuration reached by the
gradient flow in large but finite time, while N →∞.

The gradient flow (20) can be seen as a zero-temperature limit of the Langevin algorithm where

d

dt
xi(t) = −µ(t)xi(t)−

δL
δxi

(t)− ηi(t) , (21)

7
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Figure 3: Eq. (24) characterizes the evolution of the correlation of the gradient flow with the ground truth
signal, evaluated for several values of ∆2, at ∆p = 4.0 starting from m(0) = 10−10. The dynamics displays a fast
increase of the convergence time as ∆2 increases. At large times, the plateau we observe has the same value of
correlation m as the minima best correlated with the signal, as predicted via Kac-Rice approach.

with ηi(t) being the Langevin noise with zero mean and covariance
〈
ηi(t)ηj(t

′)
〉

= 2Tδijδ(t− t′), where T has
the physical meaning of temperature, the notation 〈. . . 〉 stands for the average over the noises ξij and ξi1,...,ip .
As we take the limit T → 0, the noise becomes peaked around zero, effectively recovering the gradient flow.

The performance of the Langevin algorithm was characterized recently in [1] using equations developed in
physics of disordered systems [13, 14]. In [1] this characterization was given for an arbitrary temperature T and
compared to the landscape of the Bayes-optimal estimator [20]. Here we hence summarize and use the results of
[1] corresponding to the limit T → 0.

The Langevin dynamics with generic temperature is in the large size limit, N → ∞, characterized by

a set of PDEs for the self-correlation C(t, t′) = limN→∞

〈
1
N

∑
xi(t)xi(t

′)
〉

, the response function R(t, t′) =

limN→∞

〈
1
N

∑ δxi(t)
δηi(t′)

〉
, and the correlation with the signal m(t) = limN→∞

〈
1
N

∑
xi(t)x

∗
i

〉
. Ref. [1] established

that as the gradient flow evolves these quantities satisfy eqs. (74)-(76) in that paper. Taking the zero-temperature
limit in those equations we obtain

∂

∂t
C(t, t′) = −µ̃(t)C(t, t′) +Q′(m(t))m(t′) +

∫ t

0
dt′′R(t, t′′)Q′′(C(t, t′′))C(t′, t′′)

+

∫ t′

0
dt′′R(t′, t′′)Q′(C(t, t′′)) ,

(22)

∂

∂t
R(t, t′) = −µ̃(t)R(t, t′) +

∫ t

t′
dt′′R(t, t′′)Q′′(C(t, t′′))R(t′′, t′) , (23)

∂

∂t
m(t) = −µ̃(t)m(t) +Q′(m(t)) +

∫ t

0
dt′′R(t, t′′)m(t′′)Q(C(t, t′′)) , (24)

with Q(f) = fp/(p∆p) + f2/(2∆2) and µ̃(t) = limT→0 Tµ(t) the rescaled spherical constraint. Boundary
conditions for the equations are C(t, t) = 1 ∀t, R(t, t′) = 0 for all t < t′ and limt′→t− R(t, t′) = 1 ∀t. An
additional equation for µ̃(t) is obtained by fixing C(t, t) = 1 in Eq. (22). In the context of disordered systems
those equations have been established rigorously for a related case of the matrix-tensor model without the spike
[21].
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4.1 Performance of the gradient flow

Eqs. (22-24) are integrated numerically showing the large-size-limit performance of the gradient flow algorithm.
Example of this evolution is given in Fig. 3 for p = 3, ∆p = 4. The code will be made available and linked to
this paper. For consistency we confirm numerically that at large times the gradient flow reaches values of the
correlation that correspond exactly to the value of the correlation of the minima correlated to the signal as
obtained in the Kac-Rice approach.

As the variance ∆2 increases the time it takes to the gradient flow to acquire good correlation with the
signal increases. We define the convergence time tc as the time it takes to reach 1/2 of the final plateau. The
dependence of tc on ∆2 is consistent with a power law divergence at ∆GF

2 . This is illustrated in Fig. 4 where
we plot the convergence time as a function of ∆2 and show the power-law fit in the inset. The points ∆GF

2 are
collected and plotted in Fig. 1, dotted blue line.

From Fig. 4 we see that the gradient flow algorithm undergoes a considerable slow-down even in the region
where the landscape is trivial, i.e. does not have spurious local minimizers. At the same time divergence of the
convergence time happens only well inside the phase where spurious local minimizers do exist.

1.5 2.0 2.5 3.0 3.5
1/ 2

0

250
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750
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1250

1500

1750

2000

t c

1.0 0.5 0.0 0.5
log10(1/ 2 1/ GF

2 )

2

3

lo
g 1

0(
t c

)

Figure 4: The convergence time the gradient flow takes to find a configuration well correlated with the signal
for ∆p = 4.0, p = 3 as a function of ∆2, starting from m(0) = 10−10. The points are fitted with a power law
consistent with a divergence point 1/∆GF

2 = 1.35 (vertical dotted line, log-log scale of the fit shown in the inset)
while landscape trivialization occurs at 1/∆triv

2 = 1.57 (vertical dashed line).

5 Maximum-likelihood approximate message passing

Approximate Message Passing (AMP) is a popular iterative algorithm [22] with a key advantage of being
analyzable via its state evolution [23]. The maximum-likehood AMP (ML-AMP) algorithm studied in this paper
is a generalization of AMP for the pure spiked tensor model from [16] to the spiked matrix-tensor model. We
will show that its fixed points correspond to stationary points of the loss function (3). This should be contrasted
with the Bayes-optimal AMP (BO-AMO) that was studied in [1] and aims to approximate the marginals of the
corresponding posterior probability distribution. The ML-AMP instead aims to estimate the maximum-likelihood
solution, x̂. In information theory the BO-AMP would correspond to the sum-product algorithm, while the
present one to the max-sum algorithm. In statistical physics language the BO-AMP corresponds to temperature
one, while the present one to zero temperature. In the appendix, Sec. C, we provide a schematic derivation of
the ML-AMP as a zero-temperature limit of the BO-AMP, using a scheme similar to [24].
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Figure 5: We show the mean-squared error (MSE) as achieved by the analyzed algorithms, for p = 3, ∆p = 1.0
as a function of the signal-to-noise (snr) ratio 1/∆2. The full cyan line corresponds to the error reached by
the ML-AMP algorithm, it jumps discontinuously at 1/∆ML−AMP

2 = 1.62. The blue points is the error reached
by the gradient flow in time t < 1000. The divergence of the convergence time is extrapolated to occur at
1/∆GF

2 = 1.97, blue dotted vertical line. The purple dotted line represents the maximum having the largest m of
the complexity function Σ(m), Eq. (19). The vertical purple dashed line at 1/∆triv

2 = 2.57 corresponds to the
trivialization of the landscape, beyond which only local minima well correlated with the signal remain. We note
that all these approaches agree on the value of the MSE up to numerical precision. For the sake of comparison
we show (the dashed-dotted grey line) also the minimal-MSE achieved in the Bayes-optimal setting.

The ML-AMP algorithm reads

Bt
i =

√
(p− 1)!

N (p−1)/2

∑
k2<···<kp

Tik2...kp

∆p
x̂tk2

. . . x̂tkp +
1√
N

∑
k

Yik
∆2

x̂tk − rtx̂
t−1
i , (25)

x̂t+1
i =

Bt
i

1√
N
||Bt||2

, (26)

σ̂t+1 =
1

1√
N
||Bt||2

(27)

with || · · · ||22 the `2-norm and rt the Onsager reaction term

rt =
1

∆2

1

N

∑
k

σ̂tk +
p− 1

∆p

1

N

∑
k

σ̂tk

 1

N

∑
k

x̂tkx̂
t−1
k

p−2

. (28)

5.1 ML-AMP & stationary points of the loss

Using an argument similar to Prop. 5.1 in [25] we can show that a fixed points found by ML-AMP corresponds
to finding a stationary point of the loss Eq. (3) with a ridge regularizer.

Property 1. Given (x̂∗, σ∗) a fixed point of ML-AMP, then x̂∗ satisfies the stationary condition of the loss.
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Proof sketch. Let us denote B∗, r∗ the fixed point of Eqs. (25) and (28). From Eq. (26) and Eq. (25) we have(
1√
N
||B∗||2 + r∗

)
x∗ =

1√
N

∑
k

Yik
∆2

x̂∗i +

√
(p− 1)!

N (p−1)/2

∑
k2<···<kp

Tik2...kp

∆p
x̂∗k2

. . . x̂∗kp (29)

which is exactly solution of the derivative of Eq. (3) with respect to xi when the spherical constraint is enforced
by a Lagrange multiplier µ

0 = −µxi +
1√
N

∑
k

Yik
∆2

xi +

√
(p− 1)!

N (p−1)/2

∑
k2<···<kp

Tik2...kp

∆p
xk2 . . . xkp .

Moreover ML-AMP by construction preserves the spherical constrain at every time iteration, thus the fixed
point value of the Lagrange multiplier in (29) is the one leading to the spherical constraint.

5.2 State evolution

The evolution of ML-AMP can be tracked through a set of equations called state evolution (SE). The state
evolution can be characterized via an order parameter: mt = 1

N

∑
i x̂

t
ix
∗
i , the correlation of the ML-AMP-

estimator with the ground truth signal at time t. According to the SE, as proven in [23, 16], this parameter
evolves in the large N limit as

mt+1 =

mt

∆2
+ (mt)p−1

∆p√
1

∆2
+ 1

∆p
+
(
mt

∆2
+ (mt)p−1

∆p

)2
, (30)

and the mean square error correspondingly

MSEt = 2(1−mt). (31)

A derivation of this state evolution is presented in the appendix, Sec. C.
Analysis of the simple scalar SE, Eq. (30), allows to identify the error reached by the ML-AMP algorithm.

We first observe that m = 0 is always a fixed point. For the performance of ML-AMP is the stability of this
fixed point that determines whether the ML-AMP will be able to find a positive correlation with the signal or
not. Analyzing Eq. (30) we obtain that the m = 0 is a stable fixed point for ∆2 > ∆ML−AMP

2 where

∆ML−AMP
2 (∆p) =

−∆p +
√

∆2
p + 4∆p

2
. (32)

Consequently for ∆2 > ∆ML−AMP
2 the ML-AMP algorithm converges to m = 0, i.e. zero correlation with the

signal. The line ∆ML−AMP
2 is the line plotted in Fig. 1. For p = 3 and p = 4, we obtain that for ∆2 < ∆ML−AMP

2

the ML-AMP algorithm converges to a positive m∗ > 0 correlation with the signal, depicted in Fig. 5. In Fig. 5
we also observe that this correlation agrees (up to the numerical precision) with the position of the maximum
having largest value of m in the complexity function Σ(m), this is also depicted in the figure. The trivialization
of the landscape occurs at ∆triv

2 < ∆ML−AMP
2 , thus showing that for ∆triv

2 < ∆ < ∆ML−AMP
2 the ML-AMP

algorithm is able to ignore a good portion of the spurious local minima and to converge to the local minima best
correlated with the signal.

In Fig. 5 we also compared to the MSE obtained by the Bayes-optimal AMP that provably minimizes the
MSE in the case depicted in the figure [1]. We see that the gap between the Bayes-optimal error and the one
reached by the loss minimization approaches goes rapidly to zero as ∆2 increases.
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6 Discussion

We analyzed the behavior of two descent algorithms in optimizing a rough high-dimensional loss landscape of
the spiked matrix-tensor model. We used the Kac-Rice formula to count the average number of minima of the
loss function having a given correlation with the signal. Analyzing the resulting formula we defined and located
where the energy landscape becomes trivial in the sence that spurious local minima disappear. We analyzed the
performance of gradient flow via integro-differential state-evolution-like equations. We numerically solved the
equations and extrapolated the divergence of their convergence-time. We delimited a region of parameters for
which the gradient flow is able to avoid the spurious minima and obtain a good correlation with the signal in
time linear in the input size. We also analyzed the maximum-likelihood AMP algorithm, located the region
of parameters in which this algorithm works, which is larger than the (numerically extrapolated) region for
which the gradient flow works. We found that in cases when both the algorithms converge to an informative
minima, the corresponding error is the same in both and also corresponds to the position of all the minima well
correlated with the signal in the Kac-Rice approach. The relation between existence or absence of spurious local
minima in the loss landscapes of a generic optimization problems and the actual performance of optimization
algorithm is yet to be understood. Our analysis of the spiked matrix-tensor model brings a case-study where we
were able to specify this relation quantitatively.
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A Kac-Rice formula
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Figure 6: Analogously to Fig. 2, the figures show the complexity, Eq. (19), as a function of the correlation with
the signal for different values of parameter ∆2 at fixed ∆p = 4.0 in the case p = 3.

A.1 p-odd cases
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Figure 7: The thresholds representing the trivialization of the landscape (purple) and the point where the
support of Σ(m) ≥ 0 become disconnected (brown) for tensors of order p = 3. We compare the two definitions of
the trivialization threshold described in Sec. A.1: the solid line considers just the positivity of the complexity
Eq. (19) at m = 0, the dashed line considers the whole non-informative band.

In the cases in which the order of the tensor p is odd we encounter an interesting phenomenon due to the
different symmetries of the two types of observation. The matrix is symmetric by inverting the sign of the
signal, x̂ 7→ −x̂, while the tensor is not symmetric for odd p. This creates an asymmetry in the complexity,
Fig. 6 (to be compared with Fig. 2) and causes a shift toward lower correlations of the band characterizing the
non-informative minima. Therefor observing when the complexity at m = 0 becomes negative does not guarantee
that the non-informative minima disappeared. To do so, one must check that the whole non-informative band
disappears. This should be contrasted with the case of even p where a maximum of the complexity Σ(m) is
always at m = 0. These two definitions of the threshold have little, but not negligible, difference, see Fig. 7.
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Observe that as ∆p increases the peak of the complexity decreases, since the loss Eq. (3) tends to the simple
matrix-factorization problem where the landscape is characterized by two isolated minima. This implies that
the two definitions become indistinguishable for large ∆p. In the main text we use the definition taking into
account the maximum (even when it is not strictly at m = 0) because gives a more accurate characterization of
the trivialization threshold.

B Gradient Flow

B.1 Dependence on the initial conditions
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Figure 8: The time corresponding to convergence close to the signal is shown for ∆p = 4.0 in the case p = 3.
Different shades of grey correspond to different initial conditions, from m(0) = 10−10 (light grey) to m(0) = 10−42

(dark grey). The different initializations collapse to a single line when the time is rescaled by alogm(0) with
a = 1.3, see inset. In the figure we fit only the case m(0) = 10−10 with a power law and use the same parameters
for all the other fits with a vertical translation. The divergence point extrapolated is 1/∆GF

2 = 1.35 and is
represented by the vertical dotted line, while the dashed line identifies the landscape trivialization predicted
with the Kac-Rice formula, 1/∆triv

2 = 1.57.

The dynamics of the gradient flow shows a dependence on the initial conditions, because formally zero
correlation is a (unstable) fixed point of the GF state evolution. In practice we observe for both GF and
ML-AMP that instability of the fixed point is sufficient for good performance of the algorithm. However, this
makes the definition of the convergence time depend of the initial condition.

We observed from our numerical solution of the GF state evolution equations that the initial condition add a
factor alogm(0) to the convergence times. Thus by fitting this term and rescaling the convergence times, the
different initializations collapse into a single curve, see inset of Fig. 8. Finally, the collapsed points were used to
extrapolate the critical line as shown in the main text, Fig. 4.

C AMP

C.1 From AMP to ML-AMP

In this section we consider the spiked-tensor model in a Bayesian way. We show how the Bayes-optimal AMP
leads to the Maximum Likelihood AMP using a temperature-like parameter T . We will introduce the algorithm
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AMP for a generic T , and show that as T → 0 we recover ML-AMP as presented in the main text. The
probability distribution we consider is

P (X|Y, T ) ∝ e−µ‖x‖
2 ∏
i<j

e
− 1

2T∆2

(
Yij−

xixj√
N

)2 ∏
i1<···<ip

e
− 1

2T∆p

(
Ti1...ip−

√
(p−1)!

N(p−1)/2
xi1 ...xip

)2

. (33)

The scheme for deriving AMP estimating marginals of such a probability distribution can be found in [24, 1]
and consist in making a Gaussian assumption on the distribution of the messages in the belief propagation (BP)
algorithm and neglecting the node-dependence in the messages. A final consideration to be used in order to
derive the algorithm is that the spherical constrain can be imposed by setting 1

N

∑
i(x̂i

2 + σi) = 1 at every
iteration. The resulting AMP algorithm will iterate on the following equations:

Bt
i =

√
(p− 1)!

N (p−1)/2

∑
k2<···<kp

Tik2...kp

T∆p
x̂tk2

. . . x̂tkp +
1√
N

∑
k

Yik
T∆2

x̂tk − rtx̂
t−1
i (34)

x̂t+1
i = 2

Bt
i

1 +
√

1 + 4
N ||Bt||22

, (35)

σt+1 =
2

1 +
√

1 + 4
N ||Bt||22

. (36)

with || · · · ||22 the `2-norm and rt the Onsager reaction term

rt =
1

∆2T 2

1

N

∑
k

σtk +
p− 1

∆pT 2

1

N

∑
k

σtk

 1

N

∑
k

x̂tkx̂
t−1
k

p−2

. (37)

In the limit T → 0 AMP defined by Eqs. (34-37) is equivalent to ML-AMP, Eqs. (25-28). To see this we
define the rescaled variables σ̂t

.
= σt/T , B̃t .= T Bt and r̃t

.
= T rt. Taking the limit T → 0 the expression for x̂t+1

i

Eq. (35) and the expression for σ̂t+1
i Eq. (36) simplify as Eq. (26) and as Eq. (26) respectively. Dropping the

tildes we obtain ML-AMP as presented in the main text.

C.2 State evolution

The generic T version of AMP has a slightly more complicated SE that depends of two order parameters: the
already introduced mt = 1

N

∑
i x̂

t
ix
∗
i and qt = 1

N

∑
i(x̂

t
i)

2 the self-overlap of the estimator. The SE equations are:

mt+1 = 2
zt(T )

1 +
√

1 + 4yt(T )
, (38)

qt+1 = 4
yt(T )(

1 +
√

1 + 4yt(T )
)2 (39)

and
MSEt = 1− 2mt + qt , (40)

with yt(T ) =
(
zt(T )

)2
+
(

1
T 2

qt

∆2
+ 1

T 2
(qt)p−1

∆p

)
and zt(T ) = 1

T
mt

∆2
+ 1

T
(mt)p−1

∆p
.

Given 1
N ||x̂

0||22 6= 0, in the limit T → 0 AMP SE Eqs. (38-39) simplify, to a single equation corresponding
to ML-AMP SE Eq. (41). This is seen by taking the limit for Eq. (39) which gives qt = 1 ∀t > 0, implying
MSEt = 2(1−mt). Then, using the result for qt, we show that Eq. (38) tends to Eq. (30).
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(a) p = 3 (b) p = 4

Figure 9: The phase diagram already describe in Fig. 1 with two additional lines. The dashed brown line is the
limit predicted by Kac-Rice formula where the support of the Σ(m) ≥ 0 becomes disconnected (above the line).
The full orange line is related to the ML-AMP algorithm, is called dynamical spinodal, below it the algorithm
converenges to m = 0 even if initialized in the solution. In the insets we show the large ∆p behaviour of the
thresholds, where we can observe that the lines merge at infinity.

C.3 Derivation of spinodals

From SE Eq. (30) we can obtain analytical equations for the spinodals, the threshold of stability of the different
ML-AMP fixed points. We have x̂t+1 = fSE(zt) with

fSE(z) =
z√
z2 + γ

, (41)

with γ = 1/∆2 + 1/∆p and z = m/∆2 +mp−1/∆p. Observe that: f ′SE(z) = γ

(z2+γ)
3
2

. We can now define either

∆p ≡ ∆p(z; ∆2, γ) = fSE(z)p−1

z− fSE(z)

∆2

or ∆2 ≡ ∆2(z; ∆p, γ) = fSE(z)

z− fSE(z)p−1

∆p

.

As remarked in [1], the spinodals are given by the following condition:

0 =
d log ∆2

dm
∝ d log ∆2

dz
=

z

[
(p− 2)γ

(
z√
z2+γ

)p−1

− z3∆p

]

z(z2 + γ)

[
∆pz2 − z

(
z√
z2+γ

)p−1
] . (42)

A trivial solution is given by z → 0 corresponding to stability of the non-informative solution m = 0, and
gives the algorithmic spinodal for the cases p ∈ {3, 4}. This solution and has a very simple equation for every p:
∆2 = 1/

√
γ giving Eq. (32), already presented in the main text. An interesting implication of Eq. (32) is that it

is independent from the value of p, it is in some sense universal among the 2 + p-models.
The expression for the stability of the informative solution, dynamical spinodal, is less straightforward, but

analytical progresses can be done in the cases p = 3 and p = 6 (using Cardano formula) and in the case p = 4
for which it is equivalent to a second order polynomial

z2 + γ =

(
(p− 2)γ

∆p

) 2
(p−1)

=

(
2γ

∆4

) 2
3

, (43)
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Figure 10: Phase diagram as shown in Fig. 9 for the case p = 6. The difference between p = 3, 4 and p > 4 is
that a new phase appears, called hybrid hard phase, where two fixed points of ML-AMP aligned with the signal
are present and the convergence to one or the other depends on the initialization. The region is highlighted in
the inset. In the phase diagram the grey dashed line represent the threshold above which the non-informative
fixed point becomes unstable.

p ∆2 ∆p

4 2
3 ' 0.667 4

3 ' 1.333

5 0.470 0.451

6 0.384 0.305

7 0.322 0.220

8 0.279 0.172

9 0.246 0.147

10 0.220 0.121

Table 1: Table of the values of tricritical points for p ≥ 4.

that admits a single solution in R+:

z =

√(
2γ

∆4

) 2
3

− γ . (44)

An important point in the phase diagram is where the algorithmic and dynamical spinodals meet, this is
called the tricritical point. Its value is obtained for different p, numerically (for p > 4) and analytically (for
p = 4), and is reported in Table 1. The case p = 3 does not show any tricritical point for any finite ∆p, the two
lines eventually meet at ∆p =∞ when the spiked matrix problem is recovered.

For the cases p > 4 we observe additionally the zero temperature analog of what is called hybrid phase
in AMP in Bayes-optimal regime [26]. The hybrid phase is illustrated in Fig. 10. This phase is defined as a
region where the ML-AMP algorithm initialized at random converges to a solution with positive correlation but
that is less correlated then the solution achievable starting from the solution. In these cases Eq. (32) does not
correspond to the algorithmic spinodal but it is just the stability of the non-informative solution.
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